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Path Integrals in Quantum Theories: 

A Pedagogic First Step 
 

The universe in each dimension 
is vast beyond all comprehension. 

A myriad of mysteries, 
a multitude of histories … 

       From Divine Intentions 
       by R. Klauber 

 

18.0 Preliminaries 
As I mentioned on the first page of the book, I strongly believe it is far easier, and more 

meaningful, for students to learn quantum field theory (QFT) first by the canonical quantization 
method, and once that has been digested, move on to the path integral (functional integral, many 
paths, or sum over histories) approach (functional quantization).  The rest of the book is devoted to 
the first of these; the present chapter, to a brief introduction to the second. 

18.0.1 Chapter Overview 
This chapter was composed so it can be read independently of (without reading) the rest of the 

book. So, some things may be defined/discussed again herein that are covered elsewhere in the text. 
In this chapter, we will define 
• the functional and 
• the functional integral, 
then, with regard to non relativistic quantum mechanicis (NRQM), 
• transition amplitudes for position eigenstates, 
• the role of the Lagrangian and the wave function peak, 
• the central idea in Feynman’s path integral approach, 
• expressing that idea mathematically, including Feynmans’ three postulates, 
• comparing the path integral approach in NRQM to Schrödinger and Heisenberg’s, 
• determining the transition amplitude from the functional integral, and 
• applying the theory to an example. 

Then, with regard to QFT, we will investigate 
• comparing particle theory (NRQM) to field theory (QFT) 
• “derivation” of the many paths approach to QFT, and 
• deducing the form of the transition amplitude for QFT   

 

18.1 Background Math 

18.1.1 Integrating Functions of a Function 
Functionals form the mathematical roots of Feynman’s many paths approach to quantum 

theories.  To help in understanding the concept, consider first a function of another function, such as 
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the Lagrangian of a particle, which is typically a function of particle position x and its time 
derivative xɺ . Position x, in turn, is a function of time t, i.e., x(t), and finding that functional 
dependence on time comprises typical problems to be solved. 

There are several ways we can integrate such a function of another function, two being shown in 
Wholeness Chart 18-1 (Part A) below. The figures and comments in that chart should be self 
explanatory. Mathematically, L can be any function of a function, but for our purposes, it will 
generally be the Lagrangian. 
 
         Wholeness Chart 18-1.  From a Function of a Function to the Functional Integral– Part A 

Process Graphically Math Comment 

1. 

Integration over 
the path in x(t) vs 
t space = area 
shown 

b
a

Lds
s
s∫  

where s is 
spacetime 
distance along 
path 

L is a function of the function x 
(and xɺ ), and the functional 
dependence of x on t is 
typically the problem to be 
solved. 

Integration shown is not 
relevant for us. 

2. 

Integration over t 
= projection of 
the area in #1 
onto the L-t plane 
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F Ldt
t
t

= ∫  

F is a functional 

If L is the Lagrangian, then this 
integral F = S, the action. 

Classically, S = minimum (or 
stationary) for physical paths 

 

18.1.2 Defining “Functional” 
In the path integral approach to quantum physics, we use a narrower definition of a functional 

than the general mathematical definition1. We define integration #2 above, the integral of the 

function (L) of a function (x(t)) with respect to the independent variable (t) between fixed limits ta 

and tb as a functional, and designate it as F. It is a number that depends on the form of the function 

x(t), on ta, and on tb. It is different for different paths. 

 (for a particular path)b
a

F Ldt
t
t

= ∫  (18-1) 

Functionals are symbolized by enclosing their arguments in square brackets. 

        [ ] [ ]Symbolism : ( ) orF x t F x ,    (18-2) 

though you may see functionals written with normal, rather than square, brackets. 
If L is the Lagrangian, then the functional F = S, the action. 

18.2 Defining Functional Integral 
A functional (our definition) is a definite integral, i.e., a number obtained by integrating between 

the end points of a certain path. Yet, because we get a different such number for each different path 
in x-t space, we can integrate those numbers over all possible paths. In other words, the functional, 
an integral for us, can itself be integrated. Such integrations are not simple, nor is their purpose at all 
obvious at this point. They are visualized in cases #4 and #7 below and are called functional 
integrals. We devote much of this chapter to explaining their origin, value, and means to evaluate. 
For now, just let the general concept sink in, without straining to analyze it too much. 

                                                 
1 Mathematically, a functional is a function of a vector space to a scalar field, i.e., a functional maps a vector to a 
scalar. Spatial functions of time, i.e., paths, form a vector space by themselves, so our narrower definition is in line 
with the general definition. In our case, the mapping involves an integration. 
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       Wholeness Chart 18-1 (continued).  From a Function of a Function to the Functional Integral – Part B 

Procedure Graphically Math Comment 

3. 

Sum F values as in #2 
above for a number of 
discrete paths between a 
and b. 
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 Not relevant for us. 

4. 
Integrate F over all 
possible (continuous range 
of) paths between a and b. 

Hard to show visually. ( )b
a

F x t
x
x∫ D  

Not relevant for us.   
Dx(t) implies all paths. 

5. 
Another function of F (i.e., 
where F is the argument), 
e.g. exponentiation of F. 

Not graphic. Raise e to i times 
value F for a given path. 

( )[ ]
tbi LdtiF x t tae e
∫=  

Relevant for us. 

6. 
Sum e

iF
 values for a 

number of discrete paths, 
like in #3 above. 

Same paths as in #3. 
4 4

1 1

n
n

tbi L dtiF ta

n n

e e
= =

∫=∑ ∑  Relevant for us. 

7. 
Integration like #4 above 
over all possible paths in 
x(t) vs t space. 

Hard to show visually. Same 
paths as in #4. 

( )iFb
a

e x t
x
x∫ D  

Feynman QM path 
integral approach. All 
paths, not just classical. 

 
 

The chart above should be relatively self explanatory. In summary, we can add the values Fn for 
a discrete number of paths N (= 4 in #3). In the limit of adding all paths, we pass to an integral 
(don’t worry how for now), where we use the symbol Dx(t) to represent that functional integration. 

 ( )
1 1

limit as
total paths (not relevant for us)

N N
b

n n
an n

b
a

t
Nt

F L dt F x t
x
x

= =
→∞= →∑ ∑∫ ∫ D . (18-3) 

Alternatively, we can do the same thing for a function of F, such as e
iF

 (as in #6 and #7 above). 

Note that e
iF

 can itself be considered a functional, as it comprises a mapping from x(t) to a 
(complex) scalar. 
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total paths (will be relevant for us)
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∑ ∑ ∫ D . (18-4) 

 
We will evaluate (18-4) for a free quantum particle later in this chapter. 

 
Alternative nomenclature:  Because functional integration involves integration over paths (in x-t 
space), Feynman’s approach is often also referred to as the path integral approach. 
 

18.3 The Transition Amplitude 
18.3.1 General Wave Functions (States) 

Recall from QM wave mechanics, that for a general normalized wave function ψ equal to a 
superposition of energy eigenfunction waves (which are each also normalized), 

 1 1 2 2 3 3A A Aψ ψ ψ ψ= + + , (18-5) 

A1 is the amplitude of ψ 1, so the probability of finding ψ 1 upon measuring is 

 
2

1 1 1
*A A A= . (18-6) 

If we were to start with ψ initially, and measure ψ 1 later, the wave function would have collapsed, 
i.e., underwent a transition to a new state.  (18-6) would be the transition probability. 
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over all paths. This 
is important in 
quantum physics 


