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Chapter 10  8/25/22 copyright of Robert D. Klauber        

The Vacuum Revisited 
 

“There might be more than you can see.” 

It’s Not My Time 

Three Doors Down 

10.0 Background 

10.0.1 Vacuum “Fluctuations” 

The term “vacuum fluctuations” has several meanings in the literature, one of which is related to 
the higher order corrections of the last chapter. Other uses of it have little to do with them. 

In my experience, although passed off as a seemingly simple concept in articles written for lay 
audiences, the term “vacuum fluctuations” is not only commonly misused in those articles, but from 
anything but a superficial perspective, invariably and inordinately confusing. At least it can be so 
for someone just getting grounded in QFT, who tries to relate such renditions of the term to the 
fundamentals of that theory. 

I also feel obliged to pass on that I have found a number of established physicists seemingly at a 
loss to explain the so-called vacuum fluctuations to me in terms of those fundamentals. I write this 
chapter in hopes of clarifying this issue, as best I can, for newcomers and perhaps, for others. 

10.0.2 Chapter Overview 

We will see how the term “vacuum fluctuations” can refer to any of the distinctly different 

 evanescent particle pair creation and destruction of lay literature fame, 

 ½ quanta expectation value for the vacuum state |0 (as in Chaps.$3, 4, 5), 

 vacuum bubbles with three virtual particles (as in Chap.$8), and 

 higher order correction virtual particles (as in Chap.$9). 

Then, we will 

 compare the above four cases theoretically, and 

 compare them to experiment. 

Following that, we will 

 review the uncertainty principle as applied to the first two cases, and 

 analyze how wave packet theory in QFT relates to those cases. 

10.1 Vacuum Fluctuations: The Theory 

In discussing the theoretical side of vacuum fluctuations, we begin with “the story”, the much 
circulated description of the vacuum, of which you have no doubt heard. We then review relevant 
parts of QFT, which we studied in earlier chapters, and compare those to the story. 

10.1.1 The Story 

A vacuum fluctuation is typically described as particle pair creation and destruction in the 
vacuum. A particle and its anti-particle pop into existence out of the vacuum, as shown in Fig. 10-1, 
and then, quickly (presumably before they can be measured) annihilate one another. Total charge is 
conserved since there was zero charge before the pair was created, total charge zero when both 
exist, and then zero charge once again after they mutually destruct. 

Energy for the pair, which are both typically considered to have positive energy, is “borrowed” 
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from the vacuum according to the uncertainty principle for energy and time.  Similarly, 3-momenta 
of the two particles do not have to cancel one another, as total 3-momentum is also borrowed from 
the vacuum via the uncertainty principle for 3-momentum and space.1 
 

 

 

 

 

Figure 10-1. Pair Production Vacuum Fluctuation via “The Story” 

 
The fluctuation does not exist long enough to be measured, so we never can detect it using our 

instruments. That is, for energy variation E away from zero of significant enough magnitude to be 
measured, the duration of the existence of that energy (the time variation t) is unimaginably small, 
since  is so small (in everyday measuring units  = 1.0546 × 10-34 joule-sec). This is the impact of 
the uncertainty relation for energy and time, the LH relation below. 
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Similarly, for 3-momentum variation of appreciable magnitude (RH relation above), the variation 
from zero of the length measurement of the particle in the direction of the 3-momentum is 
extremely small and typically below the threshold of detection via instruments. Also, a large 3-
momentum variation entails a large energy variation, and thus an extremely short time interval for 
the existence of that variation, meaning it goes undetected. Because the particle/anti-particle pairs 
are not detectable, they are considered to be virtual, not real, particles. 

Particle/anti-particle pairs of very high energy (and 3-momenta) exist for extremely fleeting 
moments of time (in regions of extremely tiny size). The vacuum is everywhere presumed to be a 
boiling cauldron of particle/anti-particle pairs, of all possible energies and momenta, popping 
continuously in and out of existence. 

If this were true, then at very small time and distance scales, energy and 3-momenta values for 
the pairs would become so large as to exceed the mass-energy density needed to create black holes. 
Thus, microscopic black holes would be continually appearing and disappearing in the vacuum as a 
result of the creation and destruction of the most energetic pairs. One could imagine this as being 
like bubbling foam, and the phrase coined by John Wheeler2, “quantum foam”, has caught on. 

The dimensions and energy levels of the quantum foam bubbles are those corresponding to 
mass-energy, time, and distance scales at which microscopic black holes would form. This scale is 
called the Planck scale, i.e., approximately 

          tP = 5.39 × 10−44 sec         mP = 2.18 × 10−8 kg           lP = 1.62 × 10−35 m. 

Renditions of the pair production/quantum foam story are often accompanied with comments 
that all of this is a result of QFT. So, let’s review what we have learned so far in QFT about particle 
creation and destruction, and the properties of the vacuum. 

10.1.2 Quantum Field Theory Phenomena that May be Relevant 

The question we would like to answer is “where in QFT, if anywhere, can the vacuum 
fluctuation pair production phenomenon be found?” To start our quest for that answer, let’s 
delineate the phenomena we have learned about that relate either to the vacuum or to virtual particle 
creation and destruction. 

Free Fields Half Quanta in the Vacuum 

In Chap.$3, Sects.$3.4.1 to 3.4.3 on pgs.$53-55, we found our theory predicts that for scalar 
fields, the vacuum is filled with free scalar particles and antiparticles, one for each possible energy 
level. Each particle’s energy level is ½k (= ½k in natural units), i.e., they are half quanta in the 
sense of what we normally consider quanta to be. In principle, the fields range in energy from zero 

 
1 This process is not to be confused with strong field pair production, which is not a purely vacuum 
process, but entails a virtual photon from a strong e/m field turning into an electron/positron pair. 
2 J.A. Wheeler, On the Nature of Quantum Geometrodynamics, Annal. Phys. 2, 604-614 (1957). For a lay 
person rendition, see J.A. Wheeler, Geons, Black Holes, and Quantum Foam, Norton (1998). 
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to infinity, although many consider the Planck energy to be a realistic upper limit cutoff. The energy 
from these half quanta is commonly called “zero-point energy” (ZPE). 

In Chap.$4, we saw similar ½ quanta for fermions, but those had negative energies. In Chap.$5, 
we obtained similar results for photons as for scalars, i.e., an energy of ½k for each k and r 

polarization state. These fermion and photon energies are also encompassed by the term ZPE. 

Interacting Fields Vacuum Bubbles 

In Chap.$8, we saw how the interaction part of the theory predicts vacuum bubbles of a lepton, 
anti-lepton, and photon, such as that in Fig.$8-8, repeated below as Fig. 10-2. 

   
 

 

 

 

 

Figure 10-2. Vacuum Bubble for Interacting Fields 
 

Interacting Fields Virtual Particle Higher Order Corrections 

Any interaction has a simple, first order in , version, and higher order corrections. For example, 

in Fig.$9-4, pg.$259, we show Feynman diagrams for the lowest order term (upper left, order) and 

eleven second order (2 order) terms. In the second order diagrams, the extra virtual particles are 
sometimes called vacuum fluctuations. For examples, the photon loop (or closed fermion loop) in 

the middle of the 
 4

1 1BS   diagram, the positron loop (virtual positron and virtual photon) of 
 4

1 2BS  , 

and the longer virtual photon in 
 4

1 11BS   would all, in this context, be considered vacuum 

fluctuations. Higher order (3, 4, ..) corrections would result in a plethora of such virtual particles. 

Use of the Term “Vacuum Fluctuations” 

The term “vacuum fluctuations” can be used to describe each of the above phenomena. That is, it 
can mean i) the story of pair production/annihilation and quantum foam, ii) half quanta fields, iii) 
three virtual particles vacuum bubbles, and iv) virtual particles in interactions. Our overriding 
question is whether i) is the same as any of ii), iii), or iv). 

Comparing Each QFT Phenomenon with The Story 

We will now take a separate section to compare each of the above phenomena found in QFT to 
the story and determine which, if any, of them corresponds to the vacuum pair production scenario 
of Sect. 10.1.1. 

Please note carefully that I have not seen elsewhere the material presented below in Sects. 10.1.3 
to 10.1.6. Neither have I seen a complete summary of related experimental evidence as shown in 
Sect.10.2. The conclusions drawn in these sections are my own, arrived at after many years of 
pondering the vacuum fluctuation issue and searching for relevant analyses/reviews. 

Given this, I ask two things. 1) Please consider that the views expressed are not embraced by 
many physicists (I don’t believe they have been considered by many), and you must formulate your 
own position on the matter. 2) If any reader knows of other suitable summaries of this material, 
either agreeing or disagreeing with the material/position presented herein, please notify me via the 
website for this book. (See URL on pg. xvi, opposite pg. 1.) 

10.1.3 Free Field Half Quanta (ZPE) 

The reader should now re-read Sect.$3.4.3 Zero Point (Vacuum) Energy, pgs.$55-56, and Sect. 
3.6.6 Normal Ordering, pgs.$60-61, to review key concepts regarding the free field ½ quanta. 

First, we note that the ZPE quanta are derived from free field theory and therefore no 
interactions are involved. In the story of Fig. 10-1, however, a particle and antiparticle are created 
via a vertex interaction and then destroyed via an interaction at a second vertex. It does not seem, 
therefore, that the free ZPE fields can form particle/anti-particle vacuum bubbles because they don’t 
interact with one another. They are free, not interacting, particles. There are no Feynman diagrams 
associated with them. 
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Second, we re-iterate what was noted in Sect. 3.4.3. In the QFT derivation of half quanta 

vacuum energy, those half quanta appear to simply be steadily “sitting” in the vacuum, and not 
“popping in and out” of it. There is no apparent mechanism whereby they exist part of the time, but 
not all of the time. In fact, the free Hamiltonian operating on the vacuum state (see$(3-61), pg.$55) 
shows that the vacuum quanta are eigenstates of energy. Energy eigenstates have the same energy 
no matter when they are measured. They exist continually. 

Third, ZPE is not borrowed according to QFT, it just exists in the vacuum. 

Fourth, fermions have negative energy vacuum ½ quanta, as we saw in Chap.$4. There is no 
uncertainty principle for negative energy (although one could probably consider postulating one). 
And how would mini black holes form from negative energy? And if one posits (see pg.$61) we can 
simply use the infinite vacuum energy as a baseline and deal with E = E – ∞, then in interactions, 
we have one baseline (+∞) for bosons and another (–∞) for fermions1. Does that make sense? 

Finally, there are more known fermions than bosons in nature, so according to QFT, the total 
ZPE should be negative, the opposite of that promoted in the pair popping story. In this light, tales 
of a vacuum filled with (positive) energy seem, to put it kindly, strange. 

10.1.4 Interacting Fields Vacuum Bubbles 

In QED we only have vertices with three particles. There are no two particle vertices as 
proposed in the pair production scenario of Fig. 10-1. 

The pair production scenario entails a temporary “borrowing” of energy (and momentum) from 
the vacuum via the uncertainty principle, meaning a net non-zero sum of the virtual pair particles’ 
energies. But we learned in interaction theory that the sum of all incoming energy (and 3-
momentum) at any vertex equals the total outgoing energy (and 3-momentum). In Fig. 10-1 there is 
zero incoming 4-momentum, so the total 4-momentum of the pair must also be zero. Thus, the story 
of vacuum pair production appears to be in conflict with QFT. 

Quantum foam presumably results from large energies being found over short time and distance 
scales, resulting in the formation of myriads of tiny black holes. But, via QFT vertex conservation, 
there must be no net energy resulting from the pair production of Fig. 10-1, and so it does not seem 
it could be a source of the energy needed to form the black holes. 

Further, the three particle vertices of Fig. 10-2 result in no net energy for the three virtual 
particles, so they can not result in tiny black holes. 

Thus, the vacuum bubbles of Fig. 10-2 cannot, via standard QFT, play a role in the vacuum pair 
production story. Nor can they interact with other particles, since, they have no external legs. 

10.1.5 Interacting Fields Virtual Particles 

The virtual particles in higher order contributions to interactions, such as depicted in Fig.$9-4, 
pg.$259, have nothing to do with the vacuum per se, but with the particles (both real and virtual) off 
of which they “hang”. They are manifestations springing from entities other than the vacuum. 

Nevertheless, agreement between certain experiments (see below) and QFT predictions using 
higher order corrections (also called “radiative corrections”) are sometimes cited as demonstrative 
of vacuum fluctuations. This would not seem appropriate. 

By any measure, virtual particles participating in interactions between real particles cannot be 
considered the mechanism for vacuum fluctuation pair production. 

10.1.6 Conclusion: Theory and Vacuum Fluctuations 

The story of vacuum pair production/destruction commonly called “vacuum fluctuations” is not 
consonant with the fundamental theory of QFT/QED, in particular, not with ZPE quanta, vacuum 
bubbles, nor higher order correction virtual particles. 

Bottom line: There are no Feynman diagrams like Fig. 10-1, and none for the ½ quanta. 

10.2 Vacuum Fluctuations and Experiment 

In this section, we describe certain experiments that are used to justify the existence of vacuum 
fluctuations and how they relate to the theoretical side of QFT, as we understand it. 

 
1 Pointed out to the author in 2015 by Anna Pearson, then an Oxford University PhD candidate. 
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10.2.1 Casimir Plates 

Two flat plates brought close together experience a small attractive force at very small 
separation distances. This effect was first predicted by Dutch physicists Hendrik B. G. Casimir and 
Dirk Polder in 1948. The attractive force has been attributed to ZPE, in heuristic and very simple 
terms, because the vacuum quantum waves outside the plates presumably exert greater force than 
the vacuum quantum waves between the plates. However, there are other interpretations. 

… the Casimir effect is often invoked as decisive evidence that the zero point 

energies of quantum fields are “real”. On the contrary, Casimir effects can be 

formulated and Casimir forces can be computed without reference to zero point 

energies…. The Casimir force is simply the (relativistic, retarded) van der Waals 

force between the metal plates…. So, the concept of zero point fluctuations is a 

heuristic and calculational aid in the description of the Casimir effect, but not a 

necessity…. No known phenomenon, including the Casimir effect, demonstrates 

that zero point energies are “real”.1 

There are two key things to note. 

1) While the Casimir effect can be calculated by assuming ZPE half quanta, the same result can 
also be calculated another way without using them at all. It thus does not prove their 
existence, contrary to what is often claimed. 

2) In the Casimir calculation that does employ ZPE, the quanta are assumed to be continuously 
existing standing waves, not particle pairs popping in and out of existence. 

Conclusions: Casimir plate experiments do not provide proof of the existence of ZPE ½ quanta in 
any form. Even if one were, nevertheless, to consider such quanta responsible for the Casimir 
effect, there is no evidence those quanta are paired and evanescent (pop in and out of existence). 

10.2.2 Lamb Shift 

The Lamb shift is a small difference between the two energy levels 2S1/2 and 2P1/2 of the 
hydrogen atom, which according to RQM, should have the same energies. QFT, in its QED form, 
predicts this shift, and that prediction was one of the great early successes of the theory. 

The Lamb shift calculation is long and difficult2. It is often described as taking vacuum 
fluctuations into account in order to obtain the correct result. However, in actuality, these “vacuum 
fluctuations” are really the radiative, or higher order, corrections (extra virtual particles in Feynman 
diagrams) of Sect. 10.1.5. These corrections to the Coulomb potential of the hydrogen atom (in 
diagrams, extra virtual photons, electrons, and positrons) yield the correct energy levels. 

Conclusion: The Lamb shift does not prove vacuum pair production/destruction. 

10.2.3 Anomalous Magnetic Moment of the Electron 

The Dirac equation in RQM leads to a prediction of the magnetic dipole moment of the electron 
that is slightly different from that measured in experiment. The measured value was called the 
anomalous magnetic moment. 

Using QED with radiative corrections, the anomalous magnetic moment value was accurately 
calculated3. This, too, is sometimes attributed to vacuum fluctuations. However, here again, it is 
higher order (radiative) corrections having nothing to do with the vacuum that are invoked. 

Conclusion: The anomalous magnetic moment does not prove vacuum pair production/destruction. 

10.2.4 The Fulling-Davies-Unruh Effect 

If the vacuum is filled with ZPE, then as Stephen Fulling (1973), Paul Davies (1975) and Bill 
Unruh (1976) described, an accelerating observer would find the ZPE to look like black-body 

 
1 R. L. Jaffe, “Casimir Effect and the Quantum Vacuum”, Phys. Rev. D72 021301(R) (2005) 
http://arxiv.org/abs/hep-th/0503158 . 

2 C. Itzykson and J.B. Zuber, Quantum Field Theory (McGraw-Hill 1985). Sect. 7-3-2, 358-365. 

3 See Chap.$16 of this book. 
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radiation, whereas the non-accelerating observer would not1. This effect became commonly known 
as the Unruh effect, though it is more appropriate to use all three names when referring to it. 

The Fulling-Davies-Unruh effect is not directly related to vacuum ½ quanta, vacuum bubbles, or 
radiative corrections, but to the difference between vacua in inertial and non-inertial frames2. The 
accelerated observer measuring the inertial vacuum detects particles not observed by the inertial 
observer. From this perspective, the effect seems quite unrelated to any concepts considered herein. 

Some experimenters believe they have detected the Fulling–Davies–Unruh effect, but as of the 
date of this book, the claimed observations are controversial and under dispute. (See cited 
Wikipedia URL for the latest on this controversy.) 

Conclusions: There is no incontrovertible proof that Fulling–Davies–Unruh radiation exists. Even if 
it is confirmed, it would not prove pair popping or that ZPE quanta exist. 

10.2.5 Measured Vacuum Energy 

As noted in Chap.$3, ZPE calculations3, assuming a Planck scale maximum allowable value 
(rather than infinity) for the ½ quanta, predict a positive vacuum energy density for bosons on the 

order of 1074 GeV4 (natural units), whereas the observed value is ≤ 10–47 GeV. (See Appendix A.) 

This is the famous largest discrepancy between theory and experiment in the history of science. 

Usually going unmentioned in such discussions is that the total vacuum energy for all known 
bosons and fermions would be negative and of this order, as discussed at the end of Sect. 10.1.3 

Conclusion: The observed vacuum energy density does not support the existence of ZPE or any 
other form of vacuum fluctuations. 

10.2.6 Experimental Evidence Conclusion 

At the time of this text version, there is no experimental evidence irrefutably demonstrating the 
existence of virtual particle/anti-particle pairs popping in and out of the vacuum and unrelated to 
interactions between real particles. Further, there is no such irrefutable evidence for ZPE ½ quanta 
in any form, including continuously existing waves. (See Appendix F, added in 2018 text version.) 

Bottom line: No known experiment proves vacuum particle/anti-particle pair production. 

10.3 Further Considerations of Uncertainty Principle 

10.3.1 Uncertainty Principle and Commutation Relations 

Non-relativistic Quantum Mechanics 

Recall from NRQM that the uncertainty principle is a direct result of non-commutation of certain 
operator pairs. In short, most elementary quantum mechanics courses prove that for any operators P 
and Q, the relation (10-2) below, where the < > brackets indicate expectation value and  indicates 
standard deviation, holds. Note that P and Q are not operators, so we can switch their order. 

     1
2

P Q i P,Q   . (10-2) 

For position and momentum, we know that 

 , ,i j j i
ij ijx p i p x i         ℏ ℏ . (10-3) 

Taking Q = xi and P = p 

j, (10-3) into (10-2) yields the position/momentum uncertainty principle, 

      equivalent to
2 2

j i i j
ij ijp x x p      

ℏ ℏ
. (10-4) 

So non-commutation of operators means an uncertainty principle exists for those operators. 

The LHS of (10-4) is generally equal to, or only a little larger than, the RHS. For Gaussian wave 
packets, for example, the RHS equals the LHS. 

 
1 See http://en.wikipedia.org/wiki/Unruh_effect. 
2 See V.F. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity, Cambridge (2010), Chap. 8. 
3 S. Weinberg, “The Cosmological Constant Problem”, Reviews of Modern Physics, 61, 1, 1-23 (Jan 1989). See 

also, Appendix A of this chapter. 
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Relativistic Quantum Mechanics 

Similar logic results in a similar relation as (10-4) for RQM. 

Quantum Field Theory 

For 1st quantization (particles), we used (10-3). (See Chap. 1, pg.$4.) For 2nd quantization (fields), 

      r s rs,t , ,t i       x y x yℏ , (10-5) 

where r represents a (bosonic) field, and s represents the field conjugate momentum. Substituting 
Q = r and P = s in (10-2), we get 

        
2

r s rs,t ,t      x y x y
ℏ

, (10-6) 

an uncertainty principle for fields. 

Recall from Chap.$3 (or the Wholeness Chart at the end of Chap.$5) that (10-5) gives rise to the 

commutation relations for creation and destruction operators, such as [a(k),a†(k′)] = kk′. Those 

commutation relations are used in the derivation of H0 in terms of number operators (Chap. 3,$(3-
54) to (3-56), pgs.$54-55) and in so doing, give rise to the ½ quanta energy terms in H0. 

So, in QFT, the commutation relation (10-5) gives rise to i) the uncertainty principle for fields 
(10-6) and also to ii) the ½ quanta in the vacuum. This is one reason why the ½ quanta are often 
said to be the result of the quantum uncertainty principle. 

10.3.2 Uncertainty Principle for Fields and Measurement 

As we noted at the end of Chap. 3 in Wholeness Chart$3-4, pg.$79 and also showed in Chap.$7 
pgs.$189-190, fields are not observable. They have zero expectation values. The same is true of their 
conjugate momenta. This might lead us to believe that (10-6) is essentially meaningless with regard 
to measurement in the real world, since we can’t measure the quantities it describes. 

10.3.3 Uncertainty Principle for Particles and Measurement 

Almost the entirety of this book, like almost all introductory texts on QFT, deals with particles 
in pure momentum eigenstates, represented by k or p. Recall we have noted that the 3-momentum 
eigenstates are good enough approximations to real particles (which are invariably wave packets 
and not momentum eigenstates) to yield highly accurate answers for scattering problems. 

Pure k (or p) particle states extend across the entire region of 3D space in which measurements 
could take place (which could be the entire universe). Whenever a given such particle momentum 
(or energy) is measured, it will have the same value each time. That is, there is no variation in 
momentum (or energy). 

This applies not simply to real particles, but also to the presumed ½ quanta of the vacuum. Each 
such quantum has definite k value and is an eigenstate, not a general state (not a superposition of 
eigenstates.) Thus, there would be no variation in its energy or momentum upon measurement 
(assuming it could ever be measured.) 

Further, both large and small |k| values would be comprised by waves that extend spatially to 
infinity. Each would have definite momentum and completely indefinite location. But microscopic 
black holes need highly energetic particles to be packed into small regions. The ½ quanta do not 
seem to satisfy this requirement. 

10.3.4 Uncertainty Principle and Ground States 

In NRQM, you probably saw how the ground state of a system such as the hydrogen atom, or the 
harmonic oscillator, could be deduced, approximately, from the uncertainty principle.1 In such 
cases, the estimated ground state energy (lowest possible energy state of the system) was found to 
be non-zero. This seems to be the source for referencing the uncertainty principle in the pair 
popping and the vacuum ½ quanta cases. 

However, the hydrogen atom and harmonic oscillator are bound state systems, i.e., particles 
experience a force via a potential. They are not free systems. Free systems in NRQM do not have to 
have a non-zero energy ground state. Free particle energy ground states can be zero (for zero 

 
1 See, for examples, R.G. Winter, Quantum Physics (Wadsworth, 1979), pgs. 18-19, or S. Gasiororwicz, 
Quantum Physics (Wiley, 1974), pgs. 37-40. 
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velocity, where we ignore the mass-energy equivalence in NRQM, and have wave functions of form 
e –ikx, which have x  ). That is, the lowest energy eigenstate for free particles has zero energy. 

Both the pair popping of lay literature and the ½ quanta of QFT represent free systems. If the 
uncertainty principle does not lead to a specific, discrete non-zero ground state for free systems of 
energy eigenstate particles in NRQM, then how can one use that particular argument to support non-
zero ground state free particles in QFT?1 

In fact, the usual treatment of uncertainty in state energy and momentum to determine the 
ground state gives one a zero ground state for free particles in any quantum theory, including QFT. 
Significantly, the vacuum states in NRQM and RQM have zero energy. 

For a free particle wave packet (see Sect. 10.4 below for more), the uncertainty principle implies 
that any of a range of values for energy could be found upon measurement. But this range is 
continuous. That is, there is no specific, discrete ground state energy, such as ½k, for free wave 
packets. So, again, why should we expect the uncertainty principle to provide one in the pair 
popping scenario or QFT, if it doesn’t in NRQM or RQM? Its use in the latter two theories is the 
supposed justification for applying it in the former one. 

Specifically, the vacuum has ix   .    2i ix p /   ℏ , so we can have   0ip  , and ip   
= exactly 0. One might surmise from this that a zero energy vacuum does not violate uncertainty. 

10.3.5 Uncertainty Principle Conclusions 

Bottom line: In standard QFT, particularly with particles in k eigenstates, vacuum 

fluctuations do not appear to arise from an uncertainty principle for fields or particles. 
 

10.4 Wave Packets 

One could counter much of the foregoing Sect. 10.3 with the argument that definite k states are 
not precise representatives of real world particles, which are really wave packets, and so our entire 
development of QFT is simply an approximation. That is, the ½ quanta are more probably wave 
packets of indefinite k, with an expectation (mean) value for k of k  and a standard deviation k 
about that mean. Then, all this talk of uncertainty in k and x would start to have meaning. 

To examine this, we would need to re-develop our entire theory for the continuous solutions, 
rather than discrete solutions, to the QFT wave equations. (See Chap.$3,$(3-36) and (3-37) on 
pg.$50.) This would take an entire chapter, or more, and would lead us astray from more immediate 
goals. However, in Appendix C, I summarize important steps in this development and reference the 
book website, where detailed development of continuous solutions is presented. I do not recommend 
study of that appendix on one’s first sojourn into QFT. I do recommend it once one has gained a 
solid footing in the theory of the discrete eigen solutions, which comprise almost the entire book. 

The Hamiltonian operator for discrete solutions of the scalar field is 
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k k  (10-7) 

The corresponding Hamiltonian operator for continuous solutions of the scalar field is (where we 

write 3
d k [which is the same as d k ] as 3

d k  to save space yet make clear we mean triple 

integration over momentum space; and use (0) as a short form for 3(0)) 
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 (10-8) 

 
1 Those wishing to counter with the argument that free states in QFT are harmonic oscillators should see 
Chap. 3, Sect.$3.12, pgs.$69-70. 
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The units in the parenthetical part of the integrand of (10-8) are natural units with momentum cubed 
in the denominator. Momentum, in natural units, has the dimension of mass since velocity in those 
units is dimensionless. Na (k) and Nb (k) for the continuous solutions are number density operators, 
rather than just number operators as in the discrete case. 

The mathematical form in position space of a scalar wave packet ket of a particle (not anti-
particle) in QFT is 

 
 

 
3

3
2

ik x
A e

d k



 

k
, (10-9) 

Where A(k′) is a coefficient (not an operator) that defines the shape of the wave packet. Typically, 

 A k  has a Gaussian shape as in Fig. 10-3a 

 

 

 
 
 

 

 

 

 
 

Figure 10-3. Shape of |A(k′)| 
2
 Coefficient in k Space 

 
|A(k′)|2 represents the wave packet density per unit volume in k′ space at a given k′ for a single 
particle wave packet. By doing Prob. 1, you can show that for |  having unit norm, then 

  
2 3 1A d k   k . (10-10) 

Wholeness Chart$10-2 in Appendix C, by comparison with discrete solutions, may make this a bit 
clearer. 

The expectation value of the number density operator (10-8) for the wave packet state (10-9) is 

    
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k k kN N  (10-11) 

At each k′ inside the ket, the number operator Na(k) will pick up the number density of particles 
at that value of k = k′. Had our ket state comprised two wave packet particles of exactly the same 
particle state (same A(k′) distribution function), we would have obtained 

     2
2 2 2  a Ak kN  (10-12) 

However, for simplicity, we are not going to consider multiparticle states anymore, just single 
particle ones. 

We now ask “what is the expectation value of energy for the single particle wave packet state of 
(10-11)?” The answer is 
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We get two parts to our answer. One is the expectation value of the wave packet particle energy  . 
The other is the energy of the vacuum, infinite and reminiscent of the discrete solutions states 
summation, which we repeat below for a single particle state for comparison. 
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 (10-14) 

10.4.1 An Important Point 

Note in (10-13) that the particle state, being a wave packet, has an envelope A(k), which is 
effectively only non-zero over a limited range of k values. And the integral (10-10) means its 
amplitude even over that range is finite. 

On the other hand, the two vacuum energy contributions of (10-13) (last two terms) have no 
such limiting envelope. In fact, the amplitude of the effective coefficient for each of those terms is 
1 2 per unit x space volume, over the entire range of k. For the vacuum, we have A(k) = 1 2  
in the next to last term of (10-13), and coefficient B(k) = 1 2 in the last term. See Fig. 10-3b. 

So, according to (10-13), we can think of the vacuum as two single particle wave packets 
(particle and anti-particle) in every x space unit volume, each with constant amplitude = 1 2  over 
all k in k space. But such a constant amplitude cannot be normalized like (10-10), and each vacuum 
particle then has a numerical probability of being measured of infinity. (Recall, |A(k)|2 is probability 
density per unit k.) This is clearly mathematically inconsistent. 

In other words, there appears to be no interpretation whereby the vacuum is comprised, in a 
meaningful way, of individual wave packet particle states. Without wave packet states, we have no 
uncertainty principle, no greater energy/momentum expectation value for shorter time and distance 
scales. 

10.4.2 If the Vacuum Had Wave Packet ½ Quanta 

If the vacuum were filled with ½ quanta wave packets having 
k

/2 energy expectation values, 

then each such wave packet would need its own envelope Aj(k), where j labels the wave packet. In 

other words, our expected energy would, instead of (10-13), look like 

      
2 220 3 3 31 1
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 (10-15) 

The vacuum contribution, for wave packet ½ quanta, would look like the RHS of (10-15), rather 
than the RHS of the last row of (10-13). If we have ½ quanta wave packets in the vacuum, then each 
such ½ quantum needs a wave packet form, and that means an envelope Aj(k) ≠ constant for all k. It 
would need Aj(k) obeying (10-10). 
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10.4.3 Wave Packet Conclusions:  

1. QFT does not appear to predict separate wave packets in the vacuum, but a seeming single 
particle packet (and a similar single anti-particle packet) per unit x space volume of 
envelope Aj(k) = 1 2 . 

2. Thus, the uncertainty principles for energy/time and momentum/position do not appear 
applicable to the vacuum as described by standard QFT. 

Bottom line: QFT wave packet analysis does not appear to support vacuum fluctuations. 

10.5 Further Considerations 

10.5.1 Vacuum Fluctuations May Yet Exist 

Of course, all of the above does not mean that vacuum fluctuations do not exist. The uncertainty 
principle leads one to think that they may well proliferate in the vacuum. Many of the world’s top 
physicists are, in fact, convinced that they do in some form. But, the precise mechanism by which it 
would occur, if it does, is not obvious in standard QFT. 

10.5.2 More Advanced Theories 

As of the date of this text, we have no viable theory of quantum gravity. Perhaps, in that theory, 
when it is finally developed, there will be vacuum fluctuations, driven by the uncertainty principle. 
Further, superstring (more properly M-theory) theorists regularly consider vacuum fluctuations of 
the strings. The competing theory of loop quantum gravity considers spacetime comprised of small 
“quanta” of geometry linked in ways that lead to microscopic behavior similar to that of spacetime 
foam. So, perhaps one of these theories, or a third known as “twistor theory”, will one day put a 
firm foundation under vacuum fluctuations. 

Bottom line: It is possible more advanced theories can prescribe vacuum fluctuations. 
 

10.6 Chapter Summary 

Wholeness Chart 10-1, along with the following bottom line statement, summarize the present 
chapter. See also, Appendix F, which was added to the 2018 version of the text. 

 

Bottom line for this chapter: According to standard QFT, only three particle virtual 
bubbles can truly be called “vacuum fluctuations”, and they have zero net energy 
so cannot contribute to vacuum energy. 

 

10.7 Addenda 

10.7.1 Hidden in the Theory is a Way for ½ Quanta to Disappear 

I noted in Chap. 3 (footnote on pg.$50) that there are little recognized alternative solutions to the 
QFT field equations that are not used in the standard renditions of the theory. The traditional 
solutions have the familiar  i (k t – k.x) form in the exponent. The alternative solutions to the 
field equations have form  i (k t + k.x). I call these supplemental solutions. 

When the supplemental solutions are included in the theory (see footnote citation), one finds 
boson energy terms –k/2 arising in the vacuum that cancel the contributions from the traditional 
solutions, leaving a net vacuum expectation energy of zero. A similar cancellation effect occurs for 
fermions. This, of course, is closer to the observed value. 

10.7.2 Caveats Again 

As I said earlier, much in this chapter comprises my own ruminations on the vacuum 
fluctuations subject. The reader should consider this in drawing her/his own conclusions. 
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                                           Wholeness Chart 10-1. Comparison of Vacuum Fluctuation Scenarios 
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10.8 Appendix A: Theoretical Value for Vacuum Energy Density 

10.8.1 The Cut-off Method 

Given (10-14), the vacuum energy density of the ZPE in a rectangular solid shape volume V is 
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, (10-16) 

where li is the length of the ith side of volume V inside of which the particle/waves are found, and 
we have used slightly different labeling in the last expression to suit our immediate needs. Boundary 
conditions on V give the wavelength of the nth wave (n = 1, 2,..) in the x1 direction as n 1 = l1/n, 
with similar relations for the other two directions. So, the wave number kn 1 of the nth wave is 
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Defining  1  11  1 nnk k k   we have, from (10-17), 
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Similar results hold for l2 and l3. Thus, (10-16) (with the relativistic expression for energy) is 
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For l1 very large, from (10-18), k1  dk1, with similar expressions for large l2 and l3. In the 
limit of large li (large volume V), (10-19) becomes 
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Using$(9-9) on pg.$260, we find this becomes 
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This is obviously infinite, unless we take an upper limit cutoff, typically considered the Planck scale 
mass (energy). This is because a particle with energy of the Planck mass is assumed to have an 
associated Compton wavelength (size of the particle) so small that its associated mass-energy forms 
a microscopic black hole. Such particles would instantaneously collapse, so smaller size (larger 
energy) particles may not be able to exist in our universe. Given such logic, with  = Planck mass 
>> m, we find (10-21) is 
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In natural units, the Planck mass  1.22×1019 GeV. Thus, we get the theoretical value 
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Note length in natural units is GeV–1, so an energy per unit volume would be measured in GeV4. 
The experimental value for the upper limit on energy density of the vacuum is 

 47 410 GeVv  , (10-24) 

a discrepancy between theory and experiment by a factor of more than 10120. Yikes. 

Note that in this scenario, the vacuum particles are complex sinusoidal waves extending across 
the universe from one end to the other (just like the real particles in this scenario). 

10.8.2 Other Methods of Calculating Vacuum Energy 

As pointed out by J. Martin [Everything you always wanted to know about the cosmological 
constant problem (but were afraid to ask), C. R. Physique, 13, 566–665 (2012)], the cutoff method is 
not Lorentz invariant, since the energy  is different in different frames, and therefore, though 
simple in concept, is not valid. Martin uses a Lorentz invariant evaluation of (10-20) and arrives at a 
vacuum energy density “only” 1055 times greater than that observed. 
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10.9 Appendix B: Symmetry Breaking, Mass Terms, and Vacuum Pairs 

This appendix is not for newcomers to QFT, but for veterans familiar with electroweak 
interactions and symmetry breaking. 

In QED, mass terms are part of the free Hamiltonian. So, their effect shows up when we 
determine the energy expectation value for the Hamiltonian for any given state, including the 
vacuum state (VEV of the Hamiltonian). Thus, the mass terms end up contributing as part of the ½ 
energy quanta of the vacuum and, as we saw, do not have Feynman diagram type interactions. 

In electro-weak theory with symmetry breaking, however, mass terms arise from coupling of the 
Bose and Fermi fields with the Higgs field. When the Higgs field symmetry breaks, the Higgs field 
gets a VEV, and massless fields get masses. Since these mass terms, such as 

 m  (10-25) 

arise in the interaction (not the free) part of H and L, they result in interactions of the type shown in 
the Feynman diagrams of Fig. 10-4. 

 

 

 

 

 

 

Figure 10-4. Three Types of Interactions from Symmetry Breaking Mass Terms 

 

For Fig. 10-4b 

One could then posit that we do indeed have pairs of particles “popping out” of the vacuum, as 
in Fig. 10-4b, which represents the first order term in the amplitude. Similarly, there would be 
destructions of fermion and anti-fermion pairs as well (not shown). Key points to be made in this 
regard are 

 The energies and momenta of the particles in Fig. 10-4b must still sum to zero, so there is no 
vacuum energy contribution.  

 The pairs of Fig. 10-4b are real, not virtual. Real particles cannot have negative energy. But 
since total energy should sum to zero, one of the particles must have negative energy. Hence, we 
can conclude that Fig. 10-4b does not represent a real physical process and cannot occur. 

 The particle pairs so produced presumably would not yield the Casimir plate quantitative 
result. The ½ quanta generating that result had different mathematical factors than would result 
from the particles of Fig. 10-4b. 

 The pairs do not arise in the vacuum alone, but as a result of the Higgs field. In essence, Fig. 
10-4b really has a Higgs field source (which might be visualized as a pre-symmetry breaking 
Higgs particle coming in from the left.) These pairs are not pure vacuum pairs. 

 At high energy, particles are massless and terms of form (10-25) do not exist. That is, they are 
replaced by a Higgs field interacting with the fermion and anti-fermion as discussed in the prior 
point. In other words, there are no interactions like that of Fig. 10-4b at high energy, so no tiny 
black holes (posited to result from high energy vacuum particles) could form. 

 The probability of interaction occurring (pair formation) is not a function of e/m coupling , 
nor weak coupling, nor strong coupling, but of the Higgs coupling. 

 

For Fig. 10-4c 

Using the Dyson-Wick expansion for the amplitude, we would find second order terms of form 

    
| |_______| |
|____________|

2 4 4
1 2 1 2x xm d x d x N   

 
 

  (10-26) 

represented by Fig. 10-4c. 
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 The energies and momenta of the particles in Fig. 10-4c must still sum to zero, so the total 
loop energy is zero, and there is no vacuum energy contribution.  

 One of the virtual particles must have negative energy. If one insisted on applying an 
uncertainty principle, then it must be applied for negative energy as well. Hence, any “borrowed 
energy” fluctuations about zero employed to produce Fig. 10-4c must be both positive and 
negative. The sum of all such fluctuations must be zero, and that means zero vacuum energy. 

 The last four bullets for Fig. 10-4b apply here as well. 
 

These points lead to the conclusions that neither of the pair productions of Fig. 10-4b and c is the 
vacuum pair popping production commonly referred to in the literature, and they make no 
contribution to vacuum energy. 
 

For Higgs Vacuum Energy Remnant 

To be complete in our discussion of vacuum energy, we need to consider the vacuum energy 
generated by the spontaneous breaking of the electroweak symmetry via the Higgs mechanism. That 
process leaves an energy density remnant in the vacuum, known as the Higgs condensate energy 
density. 

But the Higgs condensate energy simply sits (essentially statically) in the vacuum unconnected 
to other particles. It is not related to particle-antiparticle pair popping in and out of existence via the 
uncertainty principle. 
 

10.10 Appendix C: Comparison of QFT for Discrete vs Continuous Solutions 

The overview in Wholeness Chart 10-2 (below and on the following pages) is presented without 
explanatory text (which can be found at the website for this book listed on pg. xvi, opposite pg. 1). 
Extensive study of it may be warranted for QFT veterans but is not recommended for newcomers. 
 
 

                 Wholeness Chart 10-2. Discrete vs Continuous Versions of QFT 

           (Only Scalars Shown) 

 Discrete Continuous 

Field 

Equations 

Solutions 

  †1
( ) ( )

2
( )ikx ikx

x a e b e
V



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( )ikx ikx

x b e a e
V


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3
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
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d k


 
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k

k k  

Coefficient 

commutators 
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a ,a b ,b           kkk k k k           † †
a ,a b ,b           k k k k k k  

0
0H   00 0 † † † † 2 †

0 0 0              ɺ ɺ ɺ ɺL  
as at left, and in terms of number operators 

      31 1
2 2

0a b

V V
d k V    k

kk NN
  

0
0H  

      1 1
2 2a bN N    k

k

k k  

     Na(k) = a†(k) a(k), Nb(k) = b†(k) b(k) 

         31 1
2 2

0 0a b d k     k k kN N  

Na(k) = a†(k) a(k), Nb(k) = b†(k) b(k) 

Operator 

Units 

Na(k), number of real particles, unitless, M 0 

     ½ , number of vacuum particles, unitless 

a(k), a†(k), unitless 

Similar for Nb(k), b(k), b†(k), 

Na(k), (num real particles)/(k space vol), M –3 

    ½ , (num vac particles)/(k vol) /(x vol), M –6 

a(k), a†(k), M  –3/2 

Similar for Nb(k), b(k), b†(k), 
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Single Particle (No Anti-particle) State Relations 

Eigenstate 

Creation 
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Multi-particle (without Anti-particles) State Relations 
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Note  

In the energy expectation derivation for the 
continuous case, one finds a Dirac delta function 
squared in the vacuum energy part. This is 
undefined mathematically. By some perspectives, 

its evaluation leaves a vacuum term of energy 

(k=0) which equals  (one particle mass). An 

alternative perspective is shown above. 

 
 
 
 

10.11 Appendix D: Free Fields and “Pair Popping” Re-visited 

One possible issue some might raise with this chapter needs to be addressed. That is, by using 
the Interaction Picture (I.P.), where operator fields are free and particle behavior is described by the 
interaction Hamiltonian, are we somehow obscuring some physics? Recall we derived Feynman 
diagrams from only the interaction term in the Hamiltonian. If we included the free Hamiltonian in 
such a derivation, would we possibly find Feynman diagrams producing and destroying 
particle/antiparticle pairs? 

Specifically, H0 has creation and destruction operators paired together in the same terms. For 
scalar fields, in the Heisenberg Picture (H.P.), we found 

    00 0 0 † † † † 2 † 0 † 0 † 2 †
0 0 0 0 00                          ɺ ɺ ɺ ɺH L  (10-27) 

    †1
with ( ) ( )

2

ikx ikxx a e b e
V




 
kk

k k . (10-28) 

So, we might end up with a creation (a†(k) or b†(k)) and a destruction (a(k) or b(k)) operator in the 
same term in H0

0. In particular, if we had terms containing factors of a†(k)b†(k) or a†(k)b†(–k), we 
might expect creation of a particle and an antiparticle at the same event in the vacuum. 

To see how states might change, let’s use the Schrödinger picture (S.P.), in which operators do 
not change in time, but states do. In the S.P. for free fields, scalar states are governed by 

 0
0

d
i H

dt
   , (10-29) 

where | is in general a multi-scalar particle state and H0
0 is the same in the H.P. as the S.P. (See 

Wholeness Chart$2-4, pg.$28.) Using H0
0, specifically the RHS of (10-27), along with (10-28) and 

its associated quantities, we can follow the same steps as we did in Chap.$8 to determine the 
evolution of the state |. (See Wholeness Chart$8-4, pgs.$248-251.) This leads us to 

  
0
0

( ) ( ) ( ) ( )f i i fi f i

i H dt
t S t e t S t S t f S i





         . (10-30) 

With the Dyson expansion, we find 
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1
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S I i x d x T x x d x d x
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  
     

��������� �����������������
H H H . (10-31) 

For the S(1) term, the integration over all space was carried out in Chap.$3,$Sect. 3.4.1, pgs.$53-
54. In that derivation, we saw all terms containing factors a†(k)b†(–k), a†(k)b†(k), a(k)b(–k), and 
a(k)b(k) dropped out. That is, no terms remain that create a particle/anti-particle pair at the same 
event in the vacuum. Ditto for destruction of such a pair. 

For the S(2) term, at any given point in time, we can integrate H0
0(x1) over d 3x1 without regard 

to the integration of H0
0(x2) over d 3x2. For that integration, we would get the same result as for S(1), 

i.e., no terms with factors creating or destroying a particle/anti-particle pair. The same result would 
hold for S

(n)
 for any n. 

The transition amplitude Sfi would, therefore, not contain any terms creating/destroying such 

pairs. And so, we would have no Feynman diagrams representing such a thing. 

Further, by reviewing the above cited section of Chap.$3, one can see that the ½ quanta terms, 
commonly considered “vacuum fluctuations” come from the a(k)a†(k) and b(k)b†(k) terms and the 
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coefficient commutation relations. Even if we chose to use these terms directly, without employing 
the commutation relations, the a(k)a†(k) term is not coupled to the b(k)b†(k)term so both terms 
together would not represent a vertex in a Feynman diagram. In that interpretation, one might think 
of the a(k)a†(k) as representing creation of a particle and destruction of the same particle at the 
same event, i.e., nothing would happen as time evolves. No evanescence. No pair popping. 

In summary, for free fields 

 Terms in the free Hamiltonian density containing two creation operators that might create a 
particle/antiparticle pair at an event drop out of the full (not density) Hamiltonian. 

 The only terms surviving in the full Hamiltonian have creation and destruction operators 
paired. These would create and destroy the same particle at the same event, i.e., nothing would 

effectively happen. 

We conclude that the free field components of the Hamiltonian do not lead to 
particle/antiparticle pairs popping in and out of the vacuum. 

10.12 Appendix E: Considerations for Finite Volume Interactions 

All of the foregoing material in this chapter related to “standard” QFT, in which fields/particles 
are considered to extend over infinite volume V and infinite time T. That assumption, as we will see 
in Part 4 of this book, leads to accurate real-world predictions for real world fields/particles of finite 
extensions in V and T.  

In developing our theory, this assumption gave rise to Dirac delta functions (see (8-30), pg.$222) 
because we integrated over unbounded space and time. These Dirac delta functions, arising in each 
transition amplitude, led to strict conservation of 4-momentum at every vertex. Had V and T been 
finite instead of unbounded, integration would not have led to Dirac delta functions, and so one 
might question if, with finite V and T, the resulting relation would lead to uncertainty in outgoing 4-
momentum. Presumably, for large V and T, the relation would approximate a Dirac delta function 
implying approximate, but not exact, conservation of 4-momenta. And thus, smaller V and T would 
mean 4-momenta would be less constrained to be conserved. 

This would give rise to an uncertainty in outgoing 4-momentum at any vertex for which the 
fields did not have infinite extension in V and T. Smaller V and T means greater uncertainty in 3-
momentum and energy, respectively, and this correlates with the familiar uncertainty principle. 

To examine this more closely, consider the Dirac delta function shown in (8-30), pg.$222, where 

k = Pf is the 4-momentum leaving the vertex and Pi = p1 + p2 is the incoming 4-momentum, 
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Now consider the RHS of (10-32) integrated over finite, instead of infinite, V and T, where, to 
keep things simple, we use the 1D correlate of the 4D integral, and represent that with the symbol I, 
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The integral is easy to evaluate, and I is found to be 
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In the development of NRQM, RQM, and QFT (see (3-24)$to (3-25), pg. 46 and Sect.$3.4.1, pgs. 
53-54), we typically assume 
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because (10-35) results in orthogonal functions of eiPx and zero values for quantities like probability 
density in NRQM for particles at L/2 and – L/2, as well as certain terms in the probability of RQM 
and in the Hamiltonian of QFT that must be zero. (See above references.) 
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ni and nf as integers 

For (10-35) in (10-34), we find 
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Due to the numerator, this is zero except for nf  = ni. Then 
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So, I is zero, except when nf  = ni, i.e., when Pf  = Pi. That behaves like a Dirac delta function for 

argument Pf   ≠ Pi. However when Pf  = Pi., I is not , as a delta function is, as long as L is finite.  

Looking again at our transition amplitude calculation in (8-30), pg.$222, we see that the finite L 

(V there for 3D case; V and T, for 4D) will still leave us with a zero value unless Pf  = Pi (k = p1 + p2 

there.) The value of the transition amplitude will change because we now have L (V for 3D, VT for 

4D) finite when Pf =Pi, but other values for Pf  are prohibited (have zero probability of occurring.)1 

Bottom line: For nf and ni as integers, and finite volume and time, we still must have strict 4-

momentum conservation at a vertex. That is, there is no uncertainty principle at play giving rise to 
evanescent energy and 3-momentum “popping in and out” of the vacuum. 
 

nf and ni as non-integers 

If, however, nf and ni could be non-integers, then I of (10-36) can have non zero values when nf   

≠ ni (and thus when Pf  ≠ Pi). Analogous results hold for 4D, so for finite V and T, we could have 

non-zero probability (due to a non-zero value in the RHS of (10-32)) for Pf  ≠ Pi and not have strict 

conservation of 4-momentum2. 
 
Bottom line: For nf and ni as non-integers, and finite volume and time, we do not have strict 4-
momentum conservation at a vertex. That is, there would be an uncertainty principle of sorts at play, 
which could give rise to evanescent energy and 3-momentum “popping in and out” of the vacuum. 
For infinite volume and time, strict conservation exists. 
 

Impact of nf and ni as non-integers on various kinds of “vacuum fluctuations” 

If non-integer values for nf and ni manifest in nature, then the following may be surmised for 

each type of “vacuum fluctuation” in QFT. 
 
“Pair Popping” 

The functional form of the transition amplitude and thus questions involving the Dirac delta 
function found therein are not relevant to the pair popping story, as there are no transition 
amplitudes having vertices with only two (not three, as for vacuum bubbles) particles. (See “Virtual 
Bubbles” section below.) 
 
Zero Point Energy 

The non-integer nf and ni condition would not modify anything we have said herein about the 

ZPE ½ quanta, as they represent free fields, with no vertices, i.e., no interactions. However, it does 
relate to virtual vacuum bubbles and radiative corrections, which are manifestations of interacting 

fields. (See Wholeness Chart 10-1, pg. 278, and below.) 

 
1 In the limit where L  , (10-37) becomes 2 (Pf  ‒ Pi.). When V  , we get the 3D Dirac delta 

function, and for T, V  , the 4D relation. 

2 Additional analysis, which we mention but not do here, leads to the conclusion that for ni and nf as non-

integers, we do get a Dirac delta function in (10-33) (and (10-32) as L   (V,T  ). 
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Virtual Bubbles 

A 3-particle virtual bubble has zero initial 4-momentum, but as noted above for finite V and T, it 

could then, after the first vertex, have a non-zero total 4-momentum (solely for non-integer nf and 

ni). And this then starts to look like the pair popping scenario (even though there are three, not two 

particles.)  

However, we have seen that negative energy virtual particles are as likely as positive energy 
ones. So, the sum total energy of the bubble could be positive or negative. The sum over large 
numbers of such bubbles would be effectively zero energy. In other words, even for small values of 
V and T, there would be no net global contribution to the energy of the vacuum from virtual 
bubbles. It is conceivable, however, that tiny black holes could exist for positive energy bubbles, 
and possibly “white holes”, we could call them, for the negative ones. We could have quantum 
foam, but zero total vacuum energy. 
 
Radiative Corrections 

As noted, radiative corrections do not arise alone in the vacuum and make no direct contribution 
to vacuum energy. This is true for finite, or infinite, V and T. Additionally, variations in energy from 
uncertainty at each vertex would go in both directions (positive and negative) and cancel globally, 
over many interactions. 
 
BUT remember 

Integer values for nf and ni in (10-35) seem to be required by nature. If this were not true, we 

would not have orthogonal functions as our solutions to the RQM/QFT wave equations and certain 

derivations, such as that for the number operator form of the Hamiltonian, would no longer be valid. 
 
Bottom line: 

Thus, vacuum energy, carried by particles popping in and out of the vacuum (for virtual 3 
particle bubbles), appears inconsistent with the rest of our theory. To my knowledge, this issue 

(regarding non-integer nf and ni in transition amplitudes) has not been explored in great depth and 

might make a good research topic for someone. If any reader does pursue this, please apprise me of 
the results (via the website for this book, the address of which is found on pg.$xvi, opposite pg. 1.) 
 

10.13 Appendix F: Vacuum Fluctuations Update (Added in 2018 Text Revision)  

There are several experimental results and two theoretical papers related to vacuum fluctuations, 
as well as another well-known phenomenon often linked to the vacuum, that were not originally 
covered in this chapter. One of the experiments (actually a cosmological observation) was done in 
2012, and I was unaware of it when I wrote the book (2013, 1st edition). The others and the 
theoretical articles have only been made public in the three years before the 2018 revision of the 
text. I review these in chronological order below and supply links to the original articles. I then 
briefly address spontaneous radiation emission, often linked in the past to vacuum fluctuations. 

Note that this appendix is posted on the book website (see pg. xvi, opposite pg. 1 for URL) with 
live links for websites cited below. 

10.13.1 Cosmological Observations of Photons and Neutrinos (2012-2018) 

Tiny scattering effects from Planck-scale quantum foam on photons propagating over billions of 
light-years should be cumulative and lead to detectable dispersion of those photons when they arrive 
on Earth. Lack of such dispersion would support the notion that vacuum fluctuations do not exist. A 
2012 analysis of gamma ray bursts (GRBs) by Nemiroff et al1 implied no Planck-scale quantum 
foam. Popular accounts include "Cosmic race ends in a tie" by R. Cowen, Nature. (10 January 2012) 
and “Spacetime: A smoother brew than we knew” (January 2013) 2. Other research, such as that by 
Vasileiou et al3 also indicate smooth spacetime at the Planck-scale. 

 
1 R. J. Nemiroff, R. Connolly, J. Holmes, and A. B. Kostinski1, “Bounds on Spectral Dispersion from Fermi-detected Gamma 
Ray Bursts” Phys. Rev. Lett. 108 (23): 231103 (2012). https://arxiv.org/abs/1109.5191. 
2 www.nature.com/news/cosmic-race-ends-in-a-tie-1.9768; https://phys.org/news/2013-01-spacetime-smoother-brew-knew.html . 
3 Vasileiou, V., Granot, J., Piran, T. and Amelino-Camelia, G., “A Planck-scale limit on spacetime fuzziness and stochastic 
Lorentz invariance violation”, Nat. Phys. Lett. 11, 344-346, April 2015 www.nature.com/articles/nphys3270 . 
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However, later work by Xu and Ma1 and Amelino-Camelia et al2 seem to contradict this, as they 

suggest evidence that cosmological photons and neutrinos may disperse. However, none of these 
results, either for or against spacetime foam, is statistically ironclad. 

10.13.2 Usual Analysis of Casimir Plate Effect May be Faulty (2016 - 2017) 

Nikolić3 notes, among other points, that typical analyses of the Casimir effect use a Hamiltonian 
that has implicit dependence on matter fields and illegitimately treat it as if the dependence were 
explicit. He contends the true origin of the Casimir force is the van der Waals force. 

10.13.3 Vacuum Fluctuations Experiment (2017) 

An experimental group at the University of Konstanz4 claimed the first direct detection of ZPE 
fluctuations in a laboratory experiment. Their technical article is quite difficult for a non-specialist 
in nonlinear optics to understand, so I have written a pedagogic introduction5 to their work on the 
book website. Note that in that article I question whether ZPE fluctuations have really been detected 
and provide reasons why they may not have been. The result is controversial. 

10.13.4 Vacuum Fluctuation Experiment (2021) – added in September 2022 revision 

Since 2017, some other researchers have claimed detection of ZPE, but for those unfamiliar with 
their apparatuses and complex techniques, it is difficult to decipher what they have done, and the 
reported results are controversial. It is noteworthy that experiments at Fermilab have been reported 
as showing no vacuum fluctuations at the Planck scale6. 

10.13.5 Spontaneous Emission 

As early as 1913, A. Einstein and O. Stern7 noted that a zero-point energy term had to be added 
to the classical theory to obtain the Planck radiation spectrum formula. Subsequent research, cited 
and summarized by P. W. Milonni8, extended that perspective to spontaneous emission of radiation 
from an atom. It appeared that a vacuum contribution was needed to help “jiggle” an orbiting 
electron and “stimulate” it to jump down an energy level, thereby emitting e/m radiation. 

However, Milonni, probably the leading expert on the subject, has noted that, similar to the 
Casimir plates case, there are different ways to carry out the calculations, and in at least one of 
them, no vacuum contribution is needed. He says (Milonni 1988), “ .. the effects usually attributed 
to vacuum field fluctuations may instead be attributed to radiation reaction.” 

He goes on to say 

 
1 Xu, H. and Ma, B.Q., “Light Speed Variation from GRB 160509A”, Phys. Lett. B 760 (2016) 602 
https://arxiv.org/abs/1607.08043 
2 Amelino-Camelia, G., D’Amico, G., Rosati, G. and Loret, N., “In vacuo-dispersion features for GRB neutrinos and photons”, 
Nat. Astron. 1, 0139 (2017) https://arxiv.org/abs/1612.02765. 
3 H. Nikolić, “Proof that Casimir forces do not originate from vacuum energy”, Phys. Lett. B 761 (2016) 197-202. 
https://arxiv.org/abs/1605.04143, and “Is zero-point energy physical?  A toy model for Casimir-like effect”, Ann. of Phys, 383 
(2017) 181-195  https://arxiv.org/abs/1702.03291. 
4 Riek, C., Sulzer, P., Seeger, M., Moskalenko, A.S., Burkard, G., Seletskiy, D.V., and Leitenstorfer, A.. “Subcycle quantum 
electrodynamics”, Nature 541, 376-379 (19 Jan 2017) https://arxiv.org/abs/1611.06773.   Popular accounts include “Traffic Jam in 
Empty Space” http://www.uni-konstanz.de/en/university/news-and-media/current-announcements/news/news-in-
detail/verkehrsstau-im-nichts/ and “Physicists observe weird quantum fluctuations of empty space – maybe” 
www.sciencemag.org/news/2015/10/physicists-observe-weird-quantum-fluctuations-empty-space-maybe. 
5 Klauber, R., “Vacuum Fluctuations Detection: A Pedagogic Overview of the University of Konstanz Experiment” (Nov 2017) 
www.quantumfieldtheory.info/pedagog_U_Konstanz.pdf . 
6 Hogan, H., “Random twists of place: How quite is quantum space-time at the Planck scale?”, https://news.fnal.gov/2021/02/ 

random-twists-of-place-how-quiet-is-quantum-space-time-at-the-planck-scale/; Richardson, J. W. et al, “Interferometric 
Constraints on Spacelike Coherent Rotational Fluctuations”, https://arxiv.org/abs/2012.06939  
7 Einstein, A., and Stern, O. Ann. Phys. 40, 551. 
8 Milonni. P./W., “Different Ways of Looking at the Electromagnetic Vacuum”, Physica Scripta, T21, 102-109 (1988) and The 

Quantum Vacuum: An Introduction to Quantum Electrodynamics, (Academic Press, 1994). 
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 “..radiation reaction nevertheless offers a valid basis for understanding 

spontaneous emission, provided the radiation reaction field is handled properly as a 

quantum-mechanical operator. 

.. It was shown in the case of spontaneous emission that the physical interpretation 

suggested by quantum electrodynamics is more or less a consequence of the way we 

choose to order commuting (underlining added) atomic and field operators. 

.. The level shifts and widths can be attributed exclusively to radiation reaction ..., or 

to linear combinations of the two. 

.. There is no ordering that attributes the radiative decay of a level entirely to the 

vacuum field. 

..Furthermore this picture (of the vacuum contribution) offers no explanation as to 

why there is no spontaneous absorption (underlining added) from the vacuum field.” 
 
 

Note that it is the order of operators that commute which changes the relative contributions of 
the ZPE and radiation reaction. In all the work we have done, the order of commuting operators is 
unimportant. It is the order of non-commuting operators that impacts our results, and about which 
we need to take special care. Here, Milonni tells us, the order of commuting operators affects the 
degree to which we can attribute spontaneous emission to ZPE or radiation reaction effects. For a 
certain order, there is no vacuum contribution. For another order, the ZPE quanta play a part, and 
the radiation reaction plays a part. There is no ordering for which the effect is entirely attributable to 
the vacuum. For all orderings, the final result is the same. But the attribution of cause varies. 

Hence, like we have seen in other cases, most notably the Casimir effect, the experimentally 
verified result can be determined theoretically without recourse to vacuum fluctuations. 

Still further, if the vacuum plays a role in spontaneous emission, why is there no spontaneous 
absorption by it? 

10.13.6 ZPE and Experimental Measurement 

If ZPE fluctuations really impact the physical world, we should be able to detect them directly. 
Yet, a detector picks up the non-vacuum contribution, but nothing from the vacuum.  

As noted by Jaynes1 

“It seems to me that, if you say radiation is “real,” you ought to mean by that, that it 

can be detected by a real detector. But an optical pyrometer sees only the Planck term, 

and not the zero-point term, in black body-radiation.    

It is a supple ontology which supposes that vacuum fluctuations are just real enough 

to shift the hydrogen 2s level by 4 microvolts; but not real enough to be seen by our eyes, 

although in the optical band they correspond to a flux of over 100 kilowatts/cm2. 

Nevertheless, the dark-adapted eye, looking for example at a faint star, can see real 

radiation of the order of 10−15 watts/cm2.” 

 

10.14 Problem 

1. Show that for the single particle state  , which can be expressed in function form as 
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1 Jaynes, E. T., Coherence and Quantum Optics IV, edited by L. Mandel and E. Wolf (Plenum Press, New York, 1978), 
http://bayes.wustl.edu/etj/articles/electrodynamics.today.pdf , pgs. 5-6. 
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