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Symmetry, Invariance, and Conservation 
for Free Fields 

 
“The time has come”, the walrus said, “to speak of many things, 

of symmetries, Lagrangians, and changeless transformings.” 

Re-rendering of Lewis Carroll 
by R. Klauber 

6.0 Preliminaries 
My apologies to Lewis Carroll for the liberties taken with his great work, but the Jabberwockian, 

oxymoron-like phrase “changeless transforming” will come to have deep significance for us. We 
will find it central to our understanding of symmetry in general, and more specifically, in our study 
of quantum field theory. 

6.0.1 Background 
Symmetry is one of the most aesthetically captivating and philosophically meaningful concepts 

known to mankind. Rooted originally in the arts, it has evolved and re-emerged in our modern age 
as a unified and holistic structural basis for all of science. 

But if so, what then, particularly in mathematical terms, is it? If, in a work of art, it is a quality, 
perhaps somewhat abstract and related closely to feeling and emotion, how does it relate to physics? 
Can it be defined precisely? 

We begin our answer to these questions after the chapter preview below.  

6.0.2 Chapter Overview 
First, an introduction to symmetry, 

where we will look at  
• a simple definition of symmetry without math, 
• examples of symmetry, and 
• a mathematical definition of symmetry. 

Then, symmetry in classical physics, including 
• laws of nature symmetric under Lorentz transformation, i.e., laws are invariant in spacetime 

(same for all inertial observers) 
• symmetry in the Lagrangian L→ a related quantity is conserved 

Then, symmetry in quantum field theory, including 

• field equations symmetric under Lorentz transformation, i.e., they are invariant in spacetime 
(same for all inertial observers) 

• symmetry in the Lagrangian density L → a related quantity is conserved 

• symmetry, gauges, and gauge theories 

A simple 
definition of 
symmetry with 
examples 

Symmetry 
in QFT 

Symmetry in   
classical 
mechanics 
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Free vs interacting fields 

We will deal primarily with free particles and fields in this chapter, but the principles will apply 
in general, as we shall see when we investigate interactions. 

6.1 Introduction to Symmetry 

6.1.1 Symmetry Simplified 
Each of us has some intuitive feel for what symmetry is, though most might, at least at first, have 

some difficulty coming up with a very precise definition. Certainly snowflakes have symmetry, and 
so do cylinders and beach balls. A map of New York probably does not. Just what exactly is it that 
we sense about an object that causes us to deem it symmetric? 

To see what that certain something is, imagine yourself looking at a real life version of the 
cylinder depicted in the figure below. Then imagine closing your eyes for a moment, and during the 
time you can't see, someone else rotates the cylinder about the vertical axis shown in the figure. 
When you open your eyes is there any way you could tell that the rotation had taken place? The 
answer, of course, is no, but what does that mean? 

It means that even though something changed (the rotational position of the cylinder), something 
else remained unchanged. The form we perceive, the wholeness that is the cylinder, looks exactly 
the same. The act of moving or "transforming" the cylinder simultaneously exhibits the qualities of 
both change (transformation) and non-change (invariance). 

 
 

Figure 6-1. Symmetry of a Cylinder 
 
So what then is symmetry? It is simply the propensity for non-change with change, for 

invariance under transformation. In many cases, such as this one, it is a relationship between the 
whole and the parts in which the whole can exhibit changelessness while the component parts 
change. In virtually every case, it involves superficial change with more profound non-change. 

Symmetry manifests to greater or lesser degrees. A sphere, for instance, has more symmetry than 
a cylinder because it possesses innumerable (rather than only one) possible axes about which it 
could be rotated and still appear the same. A snowflake has even less symmetry than a cylinder, 
since there are only six discrete positions into which it could be rotated where no change could be 
discerned. A baseball glove has no symmetry whatever. There are absolutely no ways it could be 
rotated (not counting multiples of 360

o.) without looking distinctly different. 
Symmetry extends beyond rotation. Consider an infinite length horizontal line. Translate it 10 

meters to the right. It still looks the same. It has translational symmetry. Consider the human body 
where the right half is reflected to the left, and the left half reflected to the right. It still looks the 
same (to good approximation.) To high degree, our bodies have mirror, or reflection, symmetry. 

There are continuous symmetries, like the cylinder of Fig. 6-1, a sphere, or the infinite straight 
line discussed above. For these, transformation is continuous. And there are discrete symmetries, 

Symmetry 
principles apply 
to free and 
interacting cases, 
but only free in 
this chapter 
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like the snowflake, an infinite picket fence, or any reflection symmetry. For these, the 
transformation only maintains an invariant quality in certain discrete positions. 

Extrapolating these ideas beyond mere geometry and rotation, we can begin to understand why 
symmetry is considered so meaningful and fascinating. Non-change with change permeates many 
diverse phenomena. In many works of visual art, such as those of Escher or Indian mandalas, this 
principle is evident. In architecture, it has been pervasive throughout the ages. In music, the refrain, 
typically the essence of a song, remains the same, while other lyrics change. And that certain 
something we sense in the work of a great master is typically there throughout all of his or her 
individual pieces. We know that a Bach sonata, even if we have never heard it before, is by Bach. 
We know a Picasso painting, even if we have never seen it before, is by Picasso. We sense 
symmetry. 

6.1.2 Symmetry Mathematically 
In mathematical terms, the rotations, translations, and reflections we discussed in the previous 

section are known as transformations. Any transformation, by definition, is a change of something. 
If the transformation is symmetric, something else remains unchanged, or in math terms, invariant. 
Not all transformations are symmetric, of course. We will look at some mathematical examples 
below, but first we need to note one more thing. 

The transformation depicted in Fig. 6-1 can be understood either as a rotation of the cylinder in 
one direction while we remain fixed (an active transformation, by name), or alternatively, as a 
rotation of our viewing frame of reference in the other direction while the cylinder remains fixed (a 
passive transformation). The same thing is true for snowflakes, the translation of a straight line, and 
more. Transformations typically involve a change of perspective, a change in the relationship 
between the observer and the thing being observed. 

Mathematically, when we change our position of observation, it is equivalent to using a new, 
different reference frame and coordinate system, oriented differently from, and/or displaced relative 
to, the original. So a transformation can be viewed simply as a change of coordinate system, and 
this is often represented as a shifting from unprimed to primed coordinates. We will focus on this 
(passive transformation) interpretation, the most common one in physics, and most relevant to QFT. 

 Example #1 
So how about some simple examples? For starters, see Fig. 6-2, where on the left hand side we 

show the function 

 ( ) ( ) ( )2 21 2 1 2f x ,x x x= + . (6-1) 

          
 

      Figure 6-2. Example of a Function Symmetric Under Coordinate Transformation 
 
 

Symmetries can 
be continuous or 
discrete 

Symmetry plays 
a major role in 
the arts and 
elsewhere 

Mathematically, 
symmetry 
comprises 
invariance under 
transformation 

Transformation 
is change of 
object with 
observer fixed 
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function 
symmetric 
under rotation 
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Original, Unrotated 
Coordinate System

New, Rotated 
Coordinate System

f (x  ,x  )1     2

x 1

x 2

f (x  ,x  ) = (    )   + (    )x 1 x 22 21     2 2

x' 1

f ' (x' ,x'  )1       2

x' 2

f '  (x'   , x'   ) = (     )   + (     )x' 1 x' 21       2 2

θ
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We then change to a coordinate system rotated relative to the first, where our transformation 

from the first set of coordinates to the second is  

 1 1 2 2 1 2x x cos x sin x x sin x cosθ θ θ θ′ ′= + = − + , (6-2) 

with the inverse transformation being 

 1 1 2 2 1 2x x cos x sin x x sin x cosθ θ θ θ′ ′ ′ ′= − = + . (6-3) 

In matrix form, these are 

 
1 1 1 1

2 2 2 2

1 TT

x cos sin x x cos sin x

sin cos sin cosx x x x
T T

θ θ θ θ
θ θ θ θ

− =

       ′ ′−   
= =          −       ′ ′          1442443 1442443

, (6-4) 

where we designate the transformation by T, whose inverse is its own transpose. 
Substituting (6-3) into (6-1) to express our function in the new system primed coordinates yields 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 21 2 1 2

2 21 2 1 2 1 2

2 2 2 21 2 2 2 2 2 1 2 1 2

f x ,x x x

f x ,x x cos x sin x sin x cos

x cos sin x cos sin x x f x ,x .

θ θ θ θ

θ θ θ θ

= + =

′ ′ ′ ′ ′ ′ ′= − + +

′ ′ ′ ′ ′ ′= + + + = + =

(6-5) 

The function has exactly the same form in both coordinate systems, exactly the same form whether 
we express it in terms of the unprimed or primed coordinates. Given Fig. 6-2, this should not be 
much of a surprise. 

The prime on f′ is used to indicate it has, in general, different functional form from f, which is 
the case for non-symmetric functions. But since the function f here is symmetric under the 
transformation, the functional form of f and f′ is the same, so we drop the prime. This can be more 
easily understood with the following example. 

 Example #2 
Consider the function 

 ( ) ( )21 2 2g x ,x x= . (6-6) 

Express (6-6) in the primed coordinate system by substituting (6-3) into it, and we get 

 ( ) ( ) ( ) ( ) ( )2 2 2 2 22 1 2 1 2 2 2 1 2 22g x x sin x cos x sin x cos x x sin cos x .θ θ θ θ θ θ′ ′ ′ ′ ′ ′ ′= = + = + + ≠  (6-7) 

Thus, g has different form in the two systems and is not symmetric under the transformation T. 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 2butg x ,x g x ,x g x ,x f x ,x f x ,x f x ,x′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ≠ = = . (6-8) 

The transformed form of g, represented by g′, has the same value at the same physical point, but 
it is not the same form in terms of the primed coordinates as g was in terms of the unprimed 
coordinates. But f′, the transformed form of f, did have the same form in terms of both sets of 
coordinates, and thus, we dropped the prime on f on the RHS of (6-8). 

In spite of its non-symmetry under rotation, g is symmetric under a different kind of 
transformation, the translation to a coordinate system which is displaced relative to the first along 
the x1 axis, i.e., x1 →  x′1 =  x1 + constant, or 

 
1 1

2 2
 = constant

0

x x K
K

x x

   ′  
= +     

   ′     

. (6-9) 

Substitution of (6-9) into (6-6) yields g′
 ( x′ 

1
, x′ 

2
) = (x′ 

2
)
2
, having the same form in both systems. 

Lessons from the Examples 
From Example #2, we can deduce the general rule that if a coordinate is missing in a given 

function, that function is invariant under a transformation solely in the direction of that coordinate 

2D rotation 
transformation 

Function has 
same form in 
original or 
primed 
coordinates → it 
is symmetric 
under the 
transformation 

Example of 
function not 
symmetric 
under rotation 
transformation 

But same 
function is 
symmetric 
under a 
translation 
transformation 

If a coordinate is 
missing from f, 
then f is 
symmetric with 
respect to change 
of that coordinate 
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All of above 
true for 4D and 
other spaces,   
as well 

Vector 
transformation 
symmetric if 
components 
unchanged 

(and also under multiplication of the coordinate by a constant, which will be less important for us.) 
The function is symmetric with respect to that transformation. 

In both examples and in general, the value of a particular function at a given physical point in 
space is the same under any transformation, symmetric or not. The new coordinates are simply a 
new way to designate that particular point with different numbers, but it is the same point in space, 
and hence must have the same numeric value for functional there. If f or g were a physical entity, 
like pressure, simply changing our coordinates would not change the value of the pressure at any 
given point in space, even though the numbers describing that point’s location are different. 

So under any transformation of coordinate axes, the value at a physical point of every possible 
scalar function is invariant. Under a symmetry transformation the form of the function also is 
invariant. Under a non-symmetry transformation, the form of the function looks different in terms of 
the new coordinates, and we represent that functional difference with a prime on the function label. 

Scalars are Invariant, Vectors are Covariant 
Consider a 2D position vector in physical space represented in the unprimed coordinates of 

Example #1 by x.i = (x1, x2). Under the rotation transformation T, this becomes x′ i = (x′ 1, x′ 2) ≠ 
(x1, x2). A different (i.e., non-invariant) set of coordinates represents the exact same vector. But it is 
the same vector at the same physical location, and in fact, has the same length in each coordinate 
system equal to 

 ( ) ( ) ( ) ( )2 2 2 21 2 1 2i ix x x x x x .′ ′ ′= = + = + =x  (6-10) 

So the scalar value at the point (equal to the length of the position vector at that point) is the 
same in both systems, but the coordinate values are not. 

It is generally true of every vector v, not just the position vector shown here, that its physical, 
measurable length (a scalar value) remains unchanged under any coordinate transformation, but its 
component values change. This is called covariance. Scalar values are invariant under coordinate 
transformation; vector components are covariant. (Don’t confuse this use of the word “covariant” 
with our use of the terms covariant and contravariant coordinates.) 

Parallel to scalars, if the vector components remain unchanged under a given transformation, 
then that transformation is a symmetry transformation, i.e., v ′ j (x′ i ) = v j (x′ i ). One example is the 
E field around a point charge, which points radially outward from the point, described in a 
coordinate system with origin at the point. Rotating to a new coordinate system, we find the same 
functional dependence of the E field on the new coordinates. See Prob. 7. 

All of these conclusions are valid for any dimension space, and in particular for our purposes, 
the 4D spacetime of relativity theory. They are also valid for systems of generalized coordinates, not 
just Cartesian like those shown here, and for both particles and fields. Probs. 1 through 6 and 
Wholeness Chart 6-1 can help you gain more comfort with these concepts.  
 

               Wholeness Chart 6-1. Symmetry Summary 

 Non-Symmetric Transformation Symmetric Transformation 

Coordinate values change? Yes Yes 

Scalar value at a physical point the same? Yes Yes 

Form of function invariant? No Yes 

Vector magnitude and direction at a 
physical point the same? 

Yes Yes 

Vector components invariant? No Yes 

Vector components vary covariantly? Yes  No, invariant 

General rule: If a function h is not a function of the jth coordinate x j , then h is symmetric under 
the transformation x j → x j + constant 

Value of a scalar 
function at a 
physical point stays 
same under any 
transformation 

But vector length 
& direction in 
physical space 
unchanged for 
any coord system 

Vector 
components 
change under 
transformation 

Vectors are 
covariant under 
coordinate 
transformation 

Form of a scalar 
function stays 
same under a 
symmetry 
transformation 


