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Symmetry, Invariance, and Conservation
for Free Fields

“The time has come”, the walrus said, “to speak@ny things,
of symmetries, Lagrangians, and changeless transfugs.”

Re-rendering of Lewis Carroll
by R. Klauber

6.0 Preliminaries

My apologies to Lewis Carroll for the liberties taken with great work, but the Jabberwockian,
oxymoron-like phrase “changeless transforming” will come to hdeep significance for us. We
will find it central to our understanding of symmetryganeral, and more specifically, in our study
of quantum field theory.

6.0.1Background

Symmetry is one of the most aesthetically captivating andsdphically meaningful concepts
known to mankind. Rooted originally in the arts, it haslesd and re-emerged in our modern age
as a unified and holistic structural basis for all of science.

But if so, what then, particularly in mathematical termgt?df, in a work of art, it is a quality,
perhaps somewhat abstract and related closely to feeling andenmativ does it relate to physics?
Can it be defined precisely?

We begin our answer to these questions after the chapter p e

6.0.2Chapter Overview

First, an introduction to symmetry, A simple
where we will look at definition of _
* a simple definition of symmetry without math, symmetry with
examples

» examples of symmetry, and
» a mathematical definition of symmetry.

Then, symmetry in classical physics, including

. . . . . . . Symmetry in
» laws of nature symmetric under Lorentz transformation, lagis are invariant in spacetime classical
(same for all inertial observers) mechanics

» symmetry in the Lagrangidn— a related quantity is conserved

Then, symmetry in quantum field theory, including

- field equations symmetric under Lorentz transformation, they are invariant in spacetime Symmetry
(same for all inertial observers) in QFT

« symmetry in the Lagrangian densify— a related quantity is conserved

» symmetry, gauges, and gauge theories
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Free vs interacting fields
We will deal primarily with free particles and fields in tisisapter, but the principles will apply Symmetry

in general, as we shall see when we investigate interactions. principles apply
to free and

6.1 Introduction to Symmetry Interacting cases,
but only free in

6.1.1Symmetry Simplified this chapter

Each of us has some intuitive feel for what symmetry isjghanost might, at least at first, have
some difficulty coming up with a very precise definition. @&y snowflakes have symmetry, and
so do cylinders and beach balls. A map of New York probadss not. Just what exactly is it that
we sense about an object that causes us to deem it symmetric?

To see what that certain something is, imagine yourselfiigost a real life version of the
cylinder depicted in the figure below. Then imagine closingr wyes for a moment, and during the
time you can't see, someone else rotates the cylinder about tical\eetis shown in the figure.
When you open your eyes is there any way you could tellthieatotation had taken place? The
answer, of course, is no, but what does that mean?

It means that even though something changed (the rotatiogiibpaf the cylinder), something
else remained unchanged. The form we perceive, the wholenessttiatidinder, looks exactly
the same. The act of moving or "transforming" the cylirgigultaneously exhibits the qualities of
both change (transformation) and non-change (invariance).
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Figure6-1. etry of a Cylind
igure 6-1. Symmetry of a Cylinder Symmetry is the

) o ] ) propensity for
So what then issymmetry It is simply the propensityor non-change with change, for non-change with
invariance under transformationn many cases, such as this one, it is a relationship betieen change
whole and the parts in which the whole can exhibit changelessrtales the component parts
change. In virtually every case, it involves superficial changfe mvore profound non-change.

Symmetry manifests to greater or lesser degrees. A spheirstioice, has more symmetry thai
a cylinder because it possesses innumerable (rather than onlpass#)le axes about which it
could be rotated and still appear the same. A snowflake haslessgesymmetry than a cylinder,
since there are only six discrete positions into whichulccte rotated where no change could k
discerned. A baseball glove has no symmetry whatever. There soleitely no ways it could be
rotated (not counting multiples of 3%})without looking distinctly different.

Symmetry extends beyond rotation. Consider an infinitettehgrizontal line. Translate it 10
meters to the right. It still looks the same. It has tedimtal symmetry. Consider the human bod
where the right half is reflected to the left, and the left reflected to the right. It still looks the

Different degrees
of non-change
with change mean
different degrees
of symmetry

Different kinds
of symmetry:

same (to good approximation.) To high degree, our bddies mirror, or reflection, symmetry. rotation_al,
. . . . ) o ... translational,
There are continuous symmetries, like the cylinder of Fity. &-sphere, or the infinite straight reflection

line discussed above. For these, transformation is contindoukthere are discrete symmetries
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like the snowflake, an infinite picket fence, or any reflectiommgetry. For these, the Symmetries can
transformation only maintains an invariant quality in certhscrete positions. be continuous or

Extrapolating these ideas beyond mere geometry and rotatiocarwieegin to understand why discrete
symmetry is considered so meaningful and fascinating. Non-ehaitg change permeates many
diverse phenomena. In many works of visual art, such as ¢fidsscher or Indian mandalas, this
principle is evident. In architecture, it has been pervasiaigihout the ages. In music, the refrair
typically the essence of a song, remains the same, while otlhes tyrange. And that certain
something we sense in the work of a great master is typitahg throughout all of his or her

Symmetry plays
a major role in
the arts and

individual pieces. We know that a Bach sonata, even if we have heast it before, is by Bach. elsewhere

We know a Picasso painting, even if we have never seen it béoby, Picasso. We sense

symmetry.

6.1.2Symmetry Mathematically Mathematically,

In mathematical terms, the rotations, translations, and reftectve discussed in the previou: symm_etry
section are known as transformatioAsly transformation, by definition, is a change of sorimgth  COMPrises
If the transformation is symmetric, something else remaicbanged, or in math terms, invariant Invariance gnder
Not all transformations are symmetric, of course. We wilklab some mathematical example: transformation
below, but first we need to note one more thing. )

The transformation depicted in Fig. 6-1 can be understooer itha rotation of the cylinder in | "ansformation
one direction while we remain fixed (an active transformattyn name), or alternatively, as & 'S change of
rotation of our viewing frame of reference in the other dioectvhile the cylinder remains fixed (a object W'th
passive transformatignThe same thing is true for snowflakes, the translatiansifaight line, and OPServer fixed
more. Transformations typically involve eéhange of perspectivea change in the relationship ©' VIC€ Versa.
between the observer and the thing being observed.

Mathematically, when we change our position of observatiois, éguivalent to using a new,
different reference frame and coordinate system, oriented diffefesmn, and/or displaced relative
to, the original. So a transformation can be viewed simplg elsange of coordinate system, an
this is often represented as a shifting from unprimed itogat coordinates. We will focus on this
(passive transformation) interpretation, the most commerirophysics, and most relevant to QFT

Changing
observer =
changing
coordinate
system, most
useful
Example #1 interpretation

So how about some simple examples? For starters, see Figeh@iZ on the left hand side we
show the function

f(xl,xz):(x1)2+( xz)z. (6-1) Example of a
function
symmetric
under rotation
transformation

f(xt.x3 frixlx?
2

x1

(%

x1

foxt x3= (LR +42 % fr(XL,Xx3y=(1f +x23

Original, Unrotated New, Rotated
Coordinate System Coordinate System

Figure 6-2. Example of a Function Symmetric Under Coordinate Transformation
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We then change to a coordinate system rotated relative torshewhere our transformation
from the first set of coordinates to the second is

x1=xtco+ X sid ¥=- % si+ % cd, (6-2)
with the inverse transformation being
xt = Xt co9- %% sid = % sif+ '¥ cd. (6-3)
In matrix form, these are
X cosd sird]| % X co8 - sift] 'k 2D rotation
= _ = , (6-4) transformation
X2 -singd cod || ¥2 X2 sirf  cof || ¥2
%,—/ %,—/
T T =TT

where we designate the transformationTbywhose inverse is its own transpose.
Substituting (6-3) into (6-1) to express our functiothe new system primed coordinates yields

)[4 4

f'(x’l,xz):(xlcoﬁ— 52 siﬂ)2+( % sif+ ‘% ccﬂéz (6-5) Function has
same form in
=(x’1)2(co§H+ sir?e)+( kz)z( coé6 + siﬁe):( ’>J<)2+( '>3)2= (f % % g;:gﬂizzl or

The function has exactly the same form in both coordinaterags exactly the same form whethe coordinates— it
we express it in terms of the unprimed or primed coordin@a®n Fig. 6-2, this should not be is symmetric
much of a surprise. under the

The prime orf’ is used to indicate it has, in general, different functiooahffromf, which is  transformation
the case for non-symmetric functions. But since the functidrere is symmetric under the
transformation, the functional form 6fndf’ is the same, so we drop the prime. This can be muie
easily understood with the following example.

Example #2
Consider the function

_ 2 Example of
g(xl XZ) _( Xz) ' 66) " tunction not
Express (6-6) in the primed coordinate system by substjt(-3) into it, and we get symmetric

’ ) ) 5 5 under rotation
9=(2) =(x*sig+ % cos) =( %) sifo+( ¥)" cdg+2 ¥ % @n @e( ¥ (6-7) tansformation
Thus,g has different form in the two systems anda$symmetric under the transformation
g(><1,><2): g(>’<l,)'<2)¢ g( e s@) but ( 9<,>%): ( e :>?): (f'>% ﬁ (6-8)
The transformed form df, represented bg’, has the same value at the same physical point, bu
it is not the same form in terms of the primed dowates agy was in terms of the unprimed

coordinates. Buf’, the transformed form of did have the same form in terms of both sets of
coordinates, and thus, we dropped the priméanthe RHS of (6-8).

In spite of its non-symmetry under rotatiog, is symmetric under a different kind of Butsame

transformation, the translation to a coordinateesgswhich is displaced relative to the first alon, function is
thex* axis, i.e.,xl ot xt constant, or symmetric
under a
xt | & K _ translation
X2 - 2 * 0 K = constan. (6-9)  transformation

If a coordinate is
missing from f,
Lessons from the Examples then fis

From Example #2, we can deduce the general ruleifttzacoordinate is missing in a given Symmetric with

function, that function is invariant under a trasfation solely in the direction of that coordinat "€SPect to change
of that coordinate

Substitution of (6-9) into (6-6) yieldy ( xfl, x’2) = (x/2)2, having the same form in both systems.
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(and also under multiplication of the coordinateabgonstant, which will be less important for us.)
The function is symmetric with respect to that sfanmation.
Value of a scalar

In both examples and in general, the value of &iquéar function at a given physical point in function at a
space is the same under any transformation, syritn@tmot. The new coordinates are simply
new way to designate that particular point wittfediént numbers, but it is the same point in spac same under any
and hence must have the same numeric value fotidmat there. Iff or g were a physical entity, :

. ) : . transformation
like pressure, simply changing our coordinates ot change the value of the pressure at a
given point in space, even though the numbers ih#sgrthat point’s location are different. Form of a scalar

So underany transformation of coordinate axes, the value physical point of every possible f;nction stays
scalar function is invariant. Under symmetrytransformation the form of the function also is ggme under a
invariant. Under a non-symmetry transformation, ftven of the function looks different in terms of symmetry
the new coordinates, and we represent that furaltifference with a prime on the function label. {ansformation

physical point stays

Scalars are Invariant, Vectors are Covariant

Consider a 2D position vector in physical spaceesgnted in the unprimed coordinates ¢ V&ctor
Example #1 by' = (x}, ¥%). Under the rotation transformatidh this becomes’' = (x’*, x/%) =  components
¢, %), A different (i.e., non-invariant) set of coordbes represents the exact same vector. But it change under
the same vector at the same physical location,irfact, has the same length in each coording transformatiol
system equal to But vector length
_ > > > > _ & dir(_ection in
et = 8T [ = o0, By
unchanged for
So the scalar value at the point (equal to thetlenf the position vector at that point) is the any coord system
same in both systems, but the coordinate valuesaire

It is generally true of every vector not just the position vector shown here, thaphtgsical, Vectors are
measurable length (a scalar value) remains unclklamgeer any coordinate transformation, but it covariant under
component values change. This is called covariaBcalar values are invariant under coordina coordinate
transformation; vector components are covarianan(Dconfuse this use of the word “covariant’ transformation
with our use of the terms covariant and contravagaordinates.)

Parallel to scalars, if the vector components remaichanged under a given transformation
then that transformation is a symmetry transforamti.e.,v’ I (x”') = vJ (x”'). One example is the
E field around a point charge, which points radiatlytward from the point, described in a
coordinate system with origin at the point. Rotatio a new coordinate system, we find the samgemponents
functional dependence of tiefield on the new coordinates. See Prob. 7. unchanged

All of these conclusions are valid for any dimensgpace, and in particular for our purposesa|| of above
the 4D spacetime of relativity theory. They arealalid for systems of generalized coordinates, NG}e for4D and
just Cartesian like those shown here, and for [pattticles and fields. Probs. 1 through 6 angiper spaces,
Wholeness Chart 6-1 can help you gain more comfibht these concepts. as well

Vector
transformation
symmetric if

Wholeness Chart 6-1. Symmetry Summary

Non-Symmetric Transformation Symmetric Transformation
Coordinate values change? Yes Yes
Scalar value at a physical point the same? Yes Yes
Form of function invariant? No Yes
Vector magnitude and direction at a
: g Yes Yes

physical point the same?
Vector components invariant? No Yes
Vector components vary covariantly? Yes No, irevati

General rule: If a functioh is not a function of thgh Qoordinate<j , thenh is symmetric under

the transformation’ — x! + constant




