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Foundations

Tiger got to hunt. Bird got to fly.
Man got to ask himself “why, why, why?".
Tiger got to rest. Bird got to land.
Man got to tell himself he understand.
The Book of Bonkonon in
Cat’s Cradleby Kurt Vonnegut

2.0 Chapter Overview

In this chapter, we will cover the mathematical and physicaldations underlying quantum
field theory to be sure you, the reader, are prepared and tiglerto traverse the rest of the book.
The first cornerstone of these foundations is a new sysfamits, called natural units, which is
common to QFT, and once learned, simplifies mathematical retadiiod calculations.

Topics covered after that comprise the notation used in dlok, la comparison of classical and
guantum waves, variational methods, classical mechanics in helhuwdifferent “pictures” in
guantum mechanics, and quantum theories in a nutshell. WherapsIXOwas strictly an overview
of what you will study, much of this chapter is an ovewiof what you have already studied,
structured to make its role in our work more transparerd.réht is material you will need to know
before we leap into the formal development of quantum figldrih beginning in Chap 3.

2.1 Natural Units and Dimensions
The Gaussian system (an extension of cgs devised for wdecinomagnetism that takes the
vacuum permittivitys, and permeabilitys, values as unity) has been common in NRQM, although
standard international units (SI) [essentially, MKS for etenaignetism] are also used. Another is
the Heaviside-Lorentz system, which is similar to the Ganssystem except it is structured to
eliminate factors of # found in the Gaussian form of Maxwell's equations. (Se&pC5.)
Natural units are another set of units that arise "naturatlyelativistic elementary particl Natural units are

physics. QFT uses them almost exclusively, they are thewaitsmploy in this book, and we w  «natural” and
see how they arise below. used in QFT

2.1.1Deducing a System of Units

Convenient systems of units start with arbitrary debnii for units of certain fundament
guantities and derive the remaining units from laws of naflmesee how this works, assume
know three basic laws of nature and we want to devise a sy$tenitofrom scratch. We will di
this first for the cgs system and then for natural units.

The three laws are:
1. The distancé traveled by a photon is the speed of light multipliedt®¥time of travelL = ct.
2. The energy of a particle of mass is equal to its matsses the speed of light squaré&dk mé.

3. The energy of a photon is proportional to its frequehcyhe constant of proportionality is
Planck's constamit E = hf or re-expressed &= hw.

Any system of units:
defined units +

laws of nature

— additional
derived units

2.1.2Deducing the cgs System
The cgs system takes its fundamental dimensions to be leng#s, and time. It then defines
standard units of each of these dimensions to be the centirttegegram, and the second,
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respectively. With these standards and the laws of nature, glonerand units are then derived for
all other quantities science deals with.

For example, from law number one above, the speed of ligheings system is known to ha~
dimensions of length/time and units of centimeters/secamthét, by measuring the time it tak ©9S-¢M. g, S
for light to travel a certain distance we can get a numerical valBie 0L cm/s. defined. Other

From law number two, the dimensions of energy are mass-fimgt and the units are ¢ ;Jrgltn? Igensvﬁg
cm¥/s?. We use shorthand by calling this an erg. W

From number thred; has dimensions of energy-time and units of gfsnor for short, erg-s. | nature
like the speed of light, can be measured by experiment aadrid fo be 1.054% 1027 erg-s.

The point is this. We started with three pre-defined questiiength, mass, and time) and
derived the rest using the laws of nature. Of course, other ¢awld be used to derive other
guantities F=ma for force, etc.). We only use three laws here for simpletig brevity.

2.1.3Deducing Natural Units

With natural units we do much the same thing as was daontadocgs system. We start with
three pre-defined quantities and derive the rest. The trick fithatiwe choose different quantities
and definéboththeir dimensions and their units in a way that suitgpouposes best.

Instead of starting with length, mass, and time, we stdintayh: , and energy. We then get ev~~ ]
trickier. We take botle and/ to have numerical values of one. In other words, justmesoe once Natural units:
took an arbitrary distance to call a centimeter and gave it a numealoal of one, or an arbitral h=c=1 ar_1d
interval of time to call a second and gave it a value of oneyometake whatever amount nate  €nergy defined.
gives us for the speed of light and call it one in our Bgstem. We do the same thing for(This, Other units
in fact, is why the system is calledtural,i.e., because we usature'samounts for these things derived from
use as our basic units of measure and not some amount dyhitnagen by us.) laws of nature.

We then get even trickier still. We takeand” to be dimensionless, as well. Sincéor any
velocity) is distance divided by time, we find, in developmg new system, that length and time
must therefore have the same units.

Note that the founders of the cgs system could have donaie type of thing if they had
wanted to. If they had started with velocity as dimensisniesy would have derived length and
time as having the same dimensions, and we might now be sgeakitime as measured in
centimeters rather than seconds. Alternatively, they could hestedécided instead that time and
space would be measured in the same units and then derivedyvatoeitdimensionless quantity.
The only difference in these two alternative approaches wouldbeare in choice of which units
were considered fundamental and which were derived. In any eventakinot done, not because
it was invalid, but because it was simply not convenient.

In particle physics, however, it does become convenient, and esodefine c=1 and
dimensionless. It is also convenient to defirrel dimensionless for similar reasons.

With energy, our third fundamental quantity, we stay nooreventional. We give it a dimensic Energy in
(energy), and we give it units of mega-electron-volts, Mgy = 1 million eV. (We know from atural units:
other work "how much" an electron-volt is just as the desisd the metric system knew "hC  gjectron volts
much” one second was.) As with everything else, we do thtsuse it will turn out to b (MeV
advantageous. convenient

Note now what happens with our three fundamental entitiesediefn this way. From law c
nature number two witlt=1 dimensionless, mass has the same units as energy and th
numerical value as well. So an electron with 0.511 MeV resggraso has 0.511 MeV rest mass.

Because mass and energy are exactly the same thing in naturahisiidénension has come to be
referred to commonly as "mass" (i.kl) rather than "energy" even though the units remain as MeV.

From law of nature number three with=1 dimensionless, the dimensions éoareM (instead
of s as in cgs), and hence time has dimendibrt and units of (MeV}. Similarly, from law
number one, length has inverse mass dimensions and inverseuMtsvas well. Units and
dimensions for all other quantities can be derived from d#ves of nature, just as was done in the
cgs system.

So, by starting with different fundamental quantities amdedisions, we derive a different (more
convenient for particle physics) system of units. Because aveedtwith only one of our three
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fundamental entities having a dimension, the entire range aftitjgs we will deal with will be
expressible in terms of that one dimension or various paersof.

2.1.4The Hybrid Units System

When doing theoretical work, natural units are the mosiasiltined, and thus, usually t-
quickest and easiest. They are certainly the most common. Wheingaoit experiments ¢
making calculations that relate to the real world, however,aften necessary to convert to ur
which can be measured most readily. In particle physics apptisatione typically use
centimeters, seconds, and MeNote this is a hybrid system and is not quite the samegss
(Energy is expressed in ergs in cgs.) It is convenient thasigce energy in natural units is Me
and no conversion is needed for it. Converting other qiesit necessary, however, and there I1s a
little trick for doing it.

Hybrid units used
in experiments:
cm, s, MeV

2.1.5Converting from One System to Another

To do the conversion trick alluded to above, we first taveote two things: i) in natural units
any quantity can be multiplied or divided bwr 2 any number of times without changing either its
numerical value or its dimensions, and ii) a quantity & $ame thing, the same total amount,
regardless of what system it is expressed in terms of.

To illustrate, suppose we determine a theoretical value for 8oraanterval in natural units to
be 10% (MeV)1. What is its measurable value in seconds? To find outrebshat

t=10% (MeV)1x n =106 (MeV)! wherefi =1, and all quantities are in natural units.

But the above relation can be expressed in terms of the hyleilicm-s system also. The
actual amount of time will stay the same, only the ursed to express it, and the numerical value it
has in those units, will change. So let's simply change its value in the hybrid syster, = 6.58
x 10?2 Mev-s. Then,

t=10% (MeV)1x i =106 (MeV)1x 6.58x 1022 MeV-s = 6.58« 106 s.
The same time interval is described as eithéf M@eV)! or 6.58x 106 seconds depending ¢ .
: units by powers
our system of units.
. . . - ) _ L of 4 and/or c to

The moral here is that we can simply multiply or dividg guantity we like (which is expressi get hybrid units
in natural units) by and/ori (expressed in MeV-cm-s units) as many times as is necessgey
the units we know that quantity should have in the MeV-apstem.

Multiply natural

2.1.6Mass and Energy in the Hybrid and Natural Systems

As mentioned, the hybrid system is not the same as theystgns even though both u~~ ) ]
centimeters and seconds. In the cgs system, energy is measergd and mass in grams. In{ Massis MeViin
hybrid system, energy is measured in MeV and mass in uiggnand never used, units. (S hatural units.
Wholeness Chart 2-1 below.) It may be confusing, but vexg@erimentalists talk of mass, enerr  Commonly
length, and time, they like to use the hybrid systgenthey commonly refer to mass in MeV. F  expressed the
example, in high energy physics, the mass of the electron isianiy referred to as 0.511 Me' Same way even
rather than hybrid (unfamiliar) or cgs (gram) mass unitspefully, Wholeness Chart 2-1 will he When other system
to keep all of this straight. of units used.

Though we have used MeV (1 million eV) for energy in iytand natural units throughout tr
chapter, energy is also commonly expressed in keV (kilo electits), GeV (giga electron volts =
1 billion eV), and TeV (tera electron volts = 1 trillion W is, of course, simple to convert any of
these to, and from, MeV.
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Wholeness Chart 2-1. Conversions between Natyrelybrid, and cgs Numeric Quantities

Natural Units Hybrid Units cgs Units
c = 2.99x 10 cm/s .
c=h=1 b = 6.58x 102 MeV-s conversion factor
b e = 1.973 101 MeV-cm F =1.602x 107° ergs/MeV
Quantity, Multiply « value in Multiply « value in
units of (MeV) M by | to get= MeV-cm-s by ! to get= cgs
energy 1 1 MeV F ergs
massm 1 1/c? MeV-s7cm’ F erg-§/cm2 =gs
length -1 hc cm 1 cm
time -1 h S 1 S
velocity 0 C cm/s 1 cm/s
accelerationa 1 cih cm/$ 1 cm/é
force 2 | mafactors = 1¢h MeV/cm F ergs/cm = dynes
h(=1) 0 h MeV-s F erg-s
Hamiltonian 1 1 MeV F ergs
Hamiltonian density 4 1/(fic)® MeV/cnt F ergs/crit
Lagrangian 1 1 MeV F ergs
Lagrangian density 4 1/(hc)® MeV/cm® F ergs/cr
actionS 0 h MeV-s F erg-s
fine structure constant 0 1 unitless 1 unitless
cross section -2 (ic)? cnt 1 e’

2.1.7Summary of Natural, Hybrid, and cgs Units
To summarize the three systems of units we have discussed.
cgs: cm,s,g fundamental, other quantities derived from l&watare
hybrid: cm,s,MeV fundamental, other quantities derived flans of nature
natural: c,h,MeV fundamentald and  unitless and unit magnitude; 1 MeV = an amount
we know from other work), other quantities derived fromdaif/nature
Conversion of algebraic relations
cgs or hybrid to natural: Pat=%=1. e.g.E = mé — m pc=hke — ky.
natural to cgs or hybrid: Easiest just to remember,ak up, relations. e.g = m— mé.
Can instead insert factors ofand 2 needed on each side to balance units. e.g.,
E(energy units) =|:n(energy—§/cm2 units)x ?, where ? must 8.
Conversion of numeric quantities

natural to hybrid to cgs: go from left to right in Wéaoess Chart 2-1.
cgs to hybrid to natural: go from right to left, divid rather than multiplying.
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Note in the chart, that the Lagrangian and Hamiltonian densitiegs have energy/(lengt)
dimensions. In natural units these become (entmyjmass). The action is the integral of the
Lagrangian density over space and time. In cgs this is eniargyih natural units it i$1°,

2.1.8QFT Approach to Units

QFT starts with familiar relations for quantities frone tbgs system, e.gox = & kx, and then
expresses them in terms of natural units, g kx.. The theory is then derived, and predictions
for scattering and decay interactions made, in terms of nattal Einally, before comparing these
predictions to experiment, they are converted to the hybrigtesy which is the system
experimentalists use for measurement.

In summary:

relations in cgs— same relations in natural units develop theory in natural units How QFT uses

predict experiment in natural unitss same predictions in hybrid (MeV-cm-s) units. g:cﬁjr:ﬁgt systems

The first arrow above is easy. Justeseth = 1. For the last arrow, use Wholeness Chart 2-1. Al
of the other arrows are what the remainder of this book &ballt.

You may wonder if this conversion to natural units islyeall that worthwhile, as its primary
value seems to be in saving the extra effort of writingcoamd 7 in all our equations (which do
occur with monotonous regularity.) You may have a pointhath. More importantly, the essential
mathematical structure of the resulting equations, and thaifuentals of the underlying physics, is
more clearly seen without the clutter of relatively unimportanitt scaling factors.

Regardless, natural units are what everyone working in Q&3, e you should resign yourself
to getting used to them

2.2 Notation
We shall use a notation defining contravariant componéhts the 4D position vector as 3

Cartesian coordinate$ plusct (see the appendix if you are not comfortable with this), i Sgn;gas\i/t?éfnt
X0 ot components for us
o X = 3D Cartesian
x¢=| " =] ti=[et,%]", w=0123 i=123 c= lin natural uni. (2-1) coordinates plus
x| | X2 time
3 X,

Contravariant components, and their siblings dbedrbelow, are essential to relativity theory, and
QFT is grounded in special relativity. To avoid fiion, whenever we want to raise a component
to a power, we will use parenthesis, e.g., the ramatiantz component of the position vector
squared is 2 From henceforth, we will use natural units, antwirite c.

From special relativity, we know the differentiabper time passed on an object (Watl) is

(d7)* =(dt)® - dx dx — dX% d%—- dx dy. (2-2)
If we define_covariant components of the 4D positiector as Covariant
X t components have
-X negative 3D
X, = o] T =[t,- X i (2-3) Cartesian
X | =X, coordinates
X X3
then (2-2) becomes
(dr)’ = d¥dy + dk dy+ dk dxr dk g Hx g, (2-4)
—
summat_lon
convention
where on the RHS, we have introduce the shorthandtdin summation convention, in whi Repeated

repeated indices are summed, and which we wiltluseighout the book. If we do not wish to si indices means

when repeated indices appear, we will underlindrttiees, e.g. gx dx, means no summation. summation
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We can obtain (2-3) by means of a matrix operatiori2-1), i.e.,

Getting
1 0 0 O0fX 1 0 0 O]t covariant
0 -1 0 Of|x| [0-10 o0fX components
Xy = QX = L= , (2-5) from
0 0 -1 0)x 0 0 -1 0X, contravariant
0 0 0 -1y 0 0 0 -1 X, ones
Ouv
where the matrixg,, is known as the metric tensor. Its inveig€, has the exact same form, Contravariant

and covariant

1 0 0 01 o O O forms of the
0 -1 0 0/|l0-1 0 O metric tensor
% = 0au 9" = : 2-6
o = aud 0 0 -1 0|0 0 -1 0 (2-6)
0 O

0 -1/0 0 0 -
%/—/
gt¥

is the_Kronecker delta. With the metric tensor aséhverse, we can re-write (2-4) as

(dr)’ = g, d¥ d¥ = ¢ dy dx. (2-7)
Partial derivatives with respectxg andx,,, often designated by, ¢ = ¢, andd” Q= qa’ﬂ , are

where 9,

Contravariant
T T T T and covariant
0 _0 0 0 = i ,a_ and ¥ _6_ = i 4 = i ,_6_ . (2-8) derivatives
HT ok ot Tan at ' X; ox, | 0t'dx at’ X
Note the spatial parts af’ and 0¥ have opposite signs. Raising and
In general (see Prob. 4), we can raise or lowdcésdof any 4D vecton” using the (covariant lowering
metric tensor and its inverse, the contravariarttimeensor, viav” = g’ w, andwy, = g, w". indices

For a matrix (a tensor using two indices), rath@nta column quantity (vector with one index),
we can usg’” to raise (o, to lower) either index or usg” twice for both indices. For example,

for the matrix (tensory 45 we would havev’” -g g BM apB -

Quantities for a single particle will be written lower case, e.gp, is the 4-momentum for a
particle; for a collection of particles, in uppease, e.g.P, is 4-momentum for a collection «
particles. Density values will be in script formg e for Hamiltonian density.

Further, as one repeatedly sums and x* in QFT relations, we will employ the comm:
streamlined notatlopﬂ = px (the 4D inner product of 4 momentum and 4D positiectors.)

Script » density
pu X = px

2.3 Classical vs Quantum Plane Waves
As we will be dealing throughout the book with quan plane waves, the following quick
review of them is provided.

Fig. 2-1 illustrates the analogy between classacal quantum waves. Pressure plane waves, for
example, can be represented as planes of congtanhumbers (pressures) propagating through
space. Particle wave function plane waves can pessented as planes of constanmplex
numbers (thus, constant phase angle) propagatinggh space. Theoretically, the planes exten

Real vs.
infinity in the y andz directions. The lower parts of Fig. 2-1 plot themerical values of the wave complex
on each plane vs. spatial position at a given imsiatime. The complex wave has two compone (quantur)
to plot; the real wave, only one. Plane wave pacf@tboth pressure and wave function waves plane waves

be built up by superposition of many pure sinusolt® those shown. (Though, as we will s
QFT rarely has need for wave packets.)
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Pressure Plane Waves
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Wave Function Plane Waves
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Figure 2-1. Classical vs Quantum Plane Waves

2.4 Review of Variational Methods

2.4.1Classical Particle Theory Definition of
Recall, from classical mechanics, that, given tagrangiarlL for a particle, which is the kineti classical
mechanics

energy minus the potential energy,

Lagrangian L

3
- N1 o § _ P
L—T—V—le?m(*) v(% % %)_—m (2-9)
we can find the 3D equations of motion for the iplertby the Euler-Lagrange equation, i.e., Goveming
d(oL) oL equation =
a(&) TN =0. (2-10) Euler-Lagrange
This, with (2-9), readily reduces to Newton’s 2ral (with conservative force),:i = _OVIoX equation

=mx'.

For a system of particles, we need only add araekitretic and potential energy term to (2-9)
for each additional particle. For relativistic pelgs, we merely need to use relativistic kineticl a
potential energy terms in (2-9), instead of Newdorierms.

Recall also, that given the Lagrangian, we coufdl fthe HamiltoniarH, via the _Legendrt Legendre
transformation (employing a Cartesian system wkerex; andp' = p; [see Prob. 8]), transformation
He L

H=pX-L, where p :%: mx (: b for Cartesian systér. (2-11)
X
pi is the conjugate, or canonical, momentumxiof(Note that a contravariant component in the

denominator is effectively equivalent to a covariemmponent in the entire entity, and vice versa.)

It is an_important point that by knowing any oneHyfL, or the equations of motion, we ¢ L. H. and
readily deduce the other two using (2-9) througil1® That is, each completely describes

particle(s) and its (their) motion. equations of

) - motion all tell
Equivalent entities us the same
LagrangiarL < equations of motion— HamiltonianH thing

17
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Hence, when we defined first quantization in CHaps i) keeping the classical Hamiltonian and
ii) changing Poisson brackets to commutators, wedcjust as readily have used the Lagrandian
or the equations of mation [fot (t)] for i) instead. (Note that Poisson bracketsdiseussed on pg.
24 and summarized in Wholeness Chart 2-2 on pgand®1.)

2.4.2Pure Mathematics

We can apply the mathematical structure of therm@ztion to any kind of system, even some
having nothing to do with physics. That is, if asystem has a differential equation of motion ( Variational
example, an economic model), then one can findLagrangian for that system, as well as math can be
Hamiltonian, the conjugate momentum, and more hBartathematics derived for classical partic applied to many
can be extrapolated and used to advantage in nthey areas. Of course, one must then be ca diverse areas in
in interpretation of the Hamiltonian, and similaramtities. The Hamiltonian, for example, will nc  physics and
in general, represent energy, though many behdwao@ogies (like conservation of, etc.) will elsewhere
exist that can greatly aid in analyses of theseratiistems.

2.4.3Classical Field Theory

Classical field theory is analogous in many waysclassical particle theory. Instead of the
LagrangianL, we have the Lagrang|an densify Instead of timd as an independent variable, we
havex# = x°, X7, x2, x>=t, X as md&ependent variables. Instead of a particierdeed byx'(t), we
have a field value descrlbed (<) [or ¢ (x*), wherer designates different field types, or
possibly, different spatial components of the sapwor field (likeE or B in electromagnetism).]

Particle Theory— Field Theorv Analogous
LH, etc— £ 7 etc. t— %! X() — ¢ () entities in
particle and

From these correspondences in variables, we cait the analogous forms of (2-9) throu fie|d theories
(2-11) [though we will derive the Euler-Lagrangeuation afterwards] for fields. Thus, tl
Lagrangian density, in terms of kinetic energy dgrend potential energy densities of the field, 1s

L£=7-). (2-12)

(Digressing here into the expressions 7oand) in terms of the classical fielgwould divert us Intuitivg
away from our main purpose. In the next chaptemilesee the form of these for a quantum fielc deduction of

The Euler-Lagrange equation for fields becomes field relations
from patrticle
ones

0 [oc | oz _,| 2-13)
‘| od , | of

The Legendre transformation for the Hamiltonian gign with 77, being the conjugate
momentum density of the field', is

(2-14)

#=m¢ -£, wherern = 64;
0p

To see a real world example using (2-13), workulgtoProb. 6.

Compare (2-12) through (2-14) to (2-9) through 3;-and note, that similar to particle theo 4 7% and eqgs
if we know any one of, H or the equations of motion, we can readily find tiher two. That is of motion all tell
they are equivalent, and in our first assumptiosexfond quantization (see Chap. 1), we could us the same
any one of the three (not just as we did in Chap. 1) as having the same formuentum field thing
theory as it did in classical field theory.

Derivation of Euler-Lagrange Equation for Fields
The fundamental assumption behind (2-13) is thatattion of the field over an arbitrary ¢ Egrmal
regionQ, derivation of
S= J J. (qzmy) ofx dt—J. [((p qo/,) d (2-15) E;E;rtilc-)i%gnge
fields
whered?x = d3dt is an element of 4D volume, is stationary. Morecgsely, consider a virtual
variation ingof

o) - o)+ ). 21
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where the variation vanishes on the surfE¢@) bounding the regio®, i.e., dp= 0 onl". The

“surface” here is actually three dimensional (rattian 2D), because it bounds a 4D region. This

restriction ondgis reasonable for a regi@hlarge enough so the fielgvanishes at its boundary.
For Sto be stationary under the variation, we must have

0S=0. (2-17)
Using (2-17) in (2-15), we have
az az 0L 0
oS= d x= = ——05p| d 2-18
j { aqqﬂ 540’”} J.Q g an 09, ox* ¥ (2-18)
%,_/
termZ
With the last term on the RHS of (2-18), which abél ‘Z” here, re-written using
0 (oL 0 dL 0L 0
= 2-19
ox* (aqpﬂ ij (ax" OQ#JJ(p 0@, ox! . (2:19)
R e ———

termZz
we can express (2-18) as

_rJoc . (8 oc 9 [oc ]
JS_JQ{w (6x/’ o, jdqo} d* x+ QW(E@J d . (2-20)

[ S5 o0

The last term in the above relation can, via the vélBsion of Gauss’s divergence theorem, be
converted into an integral over the 3D “surfade”as we show under the downward pointing
bracket. In that integrai, is the unit length 4D vector normal to the 3D aadl at every point on

the surface, and it forms an inner product with dbantity in brackets by virtue of the summation
over i Since we stipulated at the outset tB@t= 0 on this surface, the last term in (2-20) must

equal zero.
From (2-17), the first integral in (2-20),

jg{g—; (ZX# Z; j}dqzd“x 0, (2-21)

must=0

for any possible variation af; i.e., for any possiblégeverywhere withirQ. The only way this can
happen is if the quantity inside the brackets exjzaro. But this is just (2-13) for one field. A

similar derivation can be made for each additiagpk of field, i.e., for different values ofin
(2-13), and thus, we have proven (2-13).

End of derivation

2.4.4Real vs. Complex Fields

In classical theory we typically deal with reallfie, such as the displacement at every point
solid or fluid, or the value of th field in electrostatics. However, given our expade in NRQM,
where complex wave functions were everywhere, dbwe find that in QFT, quantum fields a
commonly complex. Nothing in the above limited alerivation to real fields, so all of tt
relationships in this Sect. 2.4 are valid for coaxgdiields, as well.

2.5 Classical Mechanics: An Overview

Wholeness Chart 2-2 is a summary of the key relatia all of classical physical theory (fro
the variational viewpoint.) The chart is intendednarily as an overview of past courses and
lead in to quantum field theory, so a detailed gtoidit is not really warranted at this time. Wevha

Classical field
real; quantum
fields usually
complex

Variational
classical
mechanics
overview in
Wholeness
Chart2-2

19



20

Chapter 2. Foundations

Wholeness Chart 2-2.

Mathematically

Non-relativistic Particle

Independent variable(s)

t

t

Coordinates

gi=q(t), i=1,.n (generalized)

X =x (t), i=1,2,3 (contravariant)

Lagrangian density

see Fields columns

not applicable for particle

Lagrangian

l_=L(q,q,0

L=L(x ,t):zi:%n('k)z—v( x )

Action

s=ij

as at left

Euler- Lagrange equation
(Fromdés=0.)

i i —E:O
dt{og ) 0dq

i(i) _oL _,
dtl ox' ) ox

Equations of motion
for chosen coordinates

use explicit form fol in Euler-Lagrange
equation

mX = —% usuallyV not function ot
X

Conjugate momentum
density ; total

see Fields columns p, =g__L

nfa; p _oL
P

mx (: P for Cartesiar)

Physical momentum
density ; total

not relevant, purely math

n/a ; same as conjugat@entum

Alternative formulation

G, pi andL=L(q,pi,t)

xi, pi andL = p2/ 2m—V(>3,t)

Hamiltonian density; total

see FieldsH = pq — L(pure math)

nfa; H=pxX -L=p? /2m+ V

Hamiltonian’s Equations
of Motion
for conjugate variables

_OH
9=

COH _ v

ax X

foru=u(q,pi,t), v=v(g,pi.t)

foru=u(xi,pi,t), v=v(>3, pi,t)

Poisson Brackets, definition {u _0u dgv _du v {u \4 _0u dv_Qdu adv
'Y 0g dp dpaq "1 ox ap, ap ox
. du ou : du ou
Equations of motion in terms of i) forv=H a:{UvH}"‘E i) forv=H EZ{U,H}"'E
Poisson brackets .
i) any variable i) for i) plus u = g; or p; ii) for i) plus u = X orp;
i) conjugate variables dH dH H : 9H
= Hi=——: g = H=— N = JHy =—: X = *,H =—
p={nH ==t aslad=0 | a={n=-Tn Rk =0

Poisson Brackets for

conjugate variables

{a.n}=4 {a.q}={p.p}=0




Section 2.5 Classical Mechanics: An Overview

Summary of Classical (Variational) Mechanics

Non-relativistic Fields

Relativistic Particle

Relatvistic Fields

Xt i=1,23

t

¥ u=0123

@' (X, t) r=field type =1, ...n

X=xX(t), i=1,2 3

@ ) r=fieldtype=1, ...n

c=2(d ¢ 04 X

not applicable for particle

4’=[(¢I,aﬂ¢,xﬂ)

L:jzd3x L(xi,\) ,t):- 1- ¥ -V L:jzd3x
S=| Ldt=[£ & xdi s={ Ldt S=[ Ldt=[ £ & xdi
dfoc ), dfoc |_oc_g i(ij_izo 0 [a£ | o _,
dt\ 0¢ ) dX|og ;) o¢ dtlov ) ox ox‘og , | og
: | d(oL ov | P : :
£ above in Euler-Lagrange equatlana Y =—a7, V()é ,\}) £ above in Euler-Lagrange equation
v
0L 3 o _ mv _adv 0L 3
m=——; N =|md>x na ;p=—=——-— | m=—; N,=|md’x
r 6qd r J- T p oV \/m dv r a¢ r J. T
i :nrﬂ . P, =I,éid3x n/a ; = conjugate momentum 4, =77;% ;P IJ-,é,de‘x
ox ox'
c=c(gmad 2 L=L(x'p"t) c=2(d .00 XY

H=ng -L ; H =j7fd3x

na; H=p'v -L=T+V

H=mrg -L ; H=j7fd3x

same form as Relativistic Fields

G OH__av

_ _ A oH
ox' ox

op

LV A i

oy o,

o _ 0 0 [0
where—=——+ ——| ——
o o oxX (6¢ij

same form as Relativistic Fields

same form as Non-relativistic
Particle, but different meaning
forp'

foru=u(g', m,t), v=v (¢, m,t)

{u’v}:[o'u v JuﬂJd(x_y)

same form as Relativistic Fields

same form as Non-relativistic
Particle

o o on op
i) forv=H u:%:{u,H}+@
dt ot
i) for i) plus u =¢' or 77
L __OH _OH
77,—{72;,H}— 5¢r’ @ _{w’H}_Jﬂr

same form as Relativistic Fields

same form as Non-relativistic

Particle

(¢ m}=0 B(x-y)i{d &} ={m.m}=0

21
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other fish to fry. | did say in the preface that weuld focus on the essentials, and this chart is
provided solely as i) a reference (which may aithewseaders in studying for graduate oral exams),

and ii) a lead in to technical details regardingsBan brackets and second quantization.

The full theory behind Wholeness Chart 2-2 candaand in Goldstein (see Preface). The most
important points regarding field theory, as repnéseé in the chart, and which we will need to

understand, are listed below.

Note that, due to subtleties in the theory, noatrektic chart relationships are most easily, and

best considered at this point, expressed in Cartasiordinates, whesé— X; andp; = p'.

2.5.1Key Concepts in Field Theory

1. Generalized coordinates do not have to be indepgradeeach other, and the Lagranglacan
have second and/or higher coordinate derivativesvéver, in most cases, including those
Wholeness Chart 2-2, the coordinates are indep¢agelh only contains first derivatives.

2.The X (t) for particles are not quite the same thing asXhéor fields. The former are nc
independent variables, but functions of tittkat represent the particle position at any given

The latter are independent variables, and not iomgtof time, but fixed locations in space ug
which the value for the field (and other thingsli&nergy density) depends. The field and rel
density type quantity values also depend on therottdependent variable, time.

3. Different values for the label for fields can represent
i) completely different fields, as well as
i) different components in spacetime of the sametor field.

4.1n general, the Hamiltonian does not have to regesenergy, and can be simply a quan
which obeys all of the mathematical relations shawthe chart. However, in the application
analytical mechanics, it proves immensely usefuhd& Hamiltonian is, in fact, energy (or

For us: c are
independent of
each other and
only I derivatives

inL, £

Xi(t) for particles;
x independent of
time for field:

r label = different
field types or
different
components of
field

energy operator.) Similarly, in general, the Lagian does not have to equal kinetic energy

minus potential energy (i.eT, - V), and can simply be a quantity which gives risa the
Lagrange equation to the correct equation(s) ofandtalled field equations for fields.)

Fortunately, in field theory, the Lagrangian densian be represented as kinetic energy del
minus potential energy density, and the Hamiltordansity turns out to be total energy dens
These correspondences carry over to quantum fieloky.
5. For fields,
op _do_

o a7

This is generally not true for other quantitiest &o explanation of this, see Box 2-1.

(2-22)

In our work,
always
L=T-V;
H=T+V

For fields,
partial and total
time derivatives
are the same
thing

Box 2-1. Time Derivatives and Fields

representing a coordinate (non-moving) point incepapon which field quantities depend.
Note that the total time derivative is
dp 0 dX , 09 dt

dt  ox dt ot dt

derivative above is zero. Thus,
dg_d¢_,
dt ot

both are designated with a dot over the field.

or partial derivative with respect to time.
The conclusions reached here apply in both théivistic and non-relativistic field cases.

Any field, sayg is a function of space and time, i.@.5 @(xt), wherex is an independent variable

But sincex is an independent variable like time, and hencaads a function of time, its time

So the partial time derivative and the total tinezivhtive of a field are one and the same thing, an

Note that quantities other than fields do not, émeyal, have this property. (See the Poisson bracke
blocks in the fields section of Wholeness Chart)2H2is necessary, therefore, when talking abouoét
derivatives of quantities other than the fieldankelves, to specify precisely whether we meandted {




6. There are two kinds of momenta, conjugate and phidin some cases these are the same, t
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2 kinds of momenta.

general they are not. For fields, each of these lmrither total momentum or momentt Each kind can be
density. Box 2-2 derives the relations betweenwgatie and physical momentum densities.  total or density

7. Key difference between the particle and field apples.

For a single particle, particle position coordirsatee the generalized coordinates and par
momentum components are its conjugate momentafid¢ids, each field is itself a generaliz
coordinate and each field has its own conjugate emtom (density). As noted, this fie r
conjugate momentum (density) is different from piiysical momentum (density) that the fie Field: @
possesses.

Particle: X

Generalized coords

Box 2-2. Conjugate and Physical Momentum Densities

The relationship between physical momentum derssity conjugate momentum density for fields is not
intuitive. It can be derived by assuming our phgsB-momentum densit¥ obeys the classical field variation
relation of the RHS of (B2-2.1). (This can be itddi from: (2-11), except that there we used a Cartesianray.
wherep; = p', and here we use the relativistic Minkowski mesystem, wherg; = —p'.) If we divide the particle
relation by volume, we get a density relation.

= OHFREERLEE A= B2:21)

For continuous media like a flui' is the velocity of the medium (field) at the pointiereg; is measured. Wg
note carefully that oux' here is the position coordinate of a point fixethtive to the field (fluid particle in ou
example) and thus is time dependent. (It is diffefeom the same' symbol we use in field theory, which is g
independent variable that does not depend on tifwther, the total derivative' = dx/dt equals the partia
derivative with respect to tim@' /ot, sincex'(t) in the present case is only a function of time.

Now take the conjugate momentum density relationdtativistic fields(2-14),
_os

TT, —, (B2-2.2)
o¢
and divide the RHS of (B2-2.1) by (B2-2.2),
A _OLIOC 09 _0¢ 10t _09 ,4:;;% - ,éi=—;;%. (B2-2.3)
mo ALldg  ox' oX [ot  o% X X

The partial derivative ofp" with respect to either of our definitions xf(time dependent as the moving positi
of a point fixed to the field, or time independestcoordinates fixed in space) is the same bedaudefinition,
partial derivative means we hold everything elgg¢sically time here) constant. Thus, the abovatien holds

SO

ste

L

1

DN

in field theory when we consider tieas independent variables (coordinates fixed icepa

.Note that it is common in QFT to refer to the figldnjugate momentum density as simply  The word
conjugate momentum, the Hamiltonian density as Ineéhe Hamiltonian, and the Lagrangii “density” ofte

n

density as the Lagrangian. This may be unforturiateyou will learn to live with gleaning tr  dropped in field

exact sense of these terms from context. theory

9. (See the Appendix if you do not feel comfortableéhwthe material discussed in this paragrap.)

The relativistic particle summary, as outlined irhdleness Chart 2-2, is not, in the strict-—*

sense, formulated covariantly. It describes refgtity behavior, but position and momentum ~ Several ways to

(non-Lorentz covariant) three vectors, and the &agian and Hamiltonian are not world scal formulate
(world scalars are invariant under Lorentz tramsfation.) Alternative approaches are poss Variational
using proper time for the independent variable amuld vector (four vector) quantities f¢ relativistic
generalized coordinates and conjugate momentadéBmh and Jackson [see Preface] show theory
different ways to do this.) In those treatmentslthgrangian and Hamiltonian are world scal

though the Hamiltonian does not turn out to belteteergy. The approach taken here has been
chosen because, in it, we have the advantage ohdia Hamiltonian that represents total

energy. Further, the parallel between relativipticticles and the usual treatment of relativistic

fields becomes much more transparent.
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. Some comment is needed on the several differeratigms of motion that one runs into.

A differential equation of motion is generally aguation that contains derivative(s) with resp
to time of some entity, and has as its solution ¢mdity expressed as an explicit function of ti
(and for fields, space, as well.) For examgdfe,=mX is the equation of motion for a partic
with X'(t) as its solution. There are in general two kinfisrtities for which we have equatio
of motion. One is the generalized coordinates tiedves. The other is any function of thc
coordinates, generally expresseduas v in the next to last row of Wholeness Chart 2-2hg’
first class is really a special case of the secomdere, for exampleuy might equal the
generalized coordinate itself.)

In Wholeness Chart 2-2, the equations of motiongeneralized coordinates are expressed in
three different but equivalent ways: the Lagranggia¢éions formulation, the Hamilton's

equations formulation, and the Poisson bracket didation. These are all different expressions
for describing the same behavior of the generala@mutdinates of a given system via different
differential equations. For any particular appliicat one of these formulations may have some

Eqgs of motion
exist for

i) generalized
coordinates, and
i) functions of
those coordinates

advantage over the others.

The other class of equation of motion for a functad generalized coordinates, saycan be
expressed for the purely mathematical case (therotire analogous) as

d L) 7
du(q.p g _ou, ou,  ou (2-23)
dt 0q oR ot
Using Hamilton’s equations for the time derivativés); andp; yields
%: OudH _dudH +@={U,H} +6_u, (2-24)
dt oqadp dpog Ot ot

Possion bracket
definition for u and H

which is effectively the same equation of motionz23), for the same coordinatgeexpresseu

Poisson bracket
definition used
in equation of
motion

instead in terms of a Poisson bracket. See thdifiesof the next to last row block in Wholeness

Chart 2-2.
Summary of Forms of Differential Equations of Matio

For generalized coordinates (all three below arévatent)
1. Lagrangian into Euler-Lagrange equation
2. Hamilton’s equations of motion
3. Poisson bracket notation for 2 above
For a function of those generalized coordinateth(below are equivalent)

1. Total time derivative expressed as partial deineat(see (2-23), not shown in Wholeness

Chart 2-2.)

2. Total time derivative expressed in terms of Paidsacket notation (see (2-24), also
shown in Wholeness Chart 2-2.)

11. (See the Appendix Sects. 2.9.3 and 2.9.4, if youalofeel at home with the concepts of t
paragraph.) The field equations (equations of mitfor relativistic fields keep the exact sal
form in any inertial frame of referenice.e., they are Lorentz invariant. Components afri
vectors in any of the equations can change fromnédrgo frame, but the relationship betwe
these components expressed in the field equatiat remain inviolate. Four vectors transfo
via the Lorentz transformation of course, and arened_Lorentz covariant. Four scalars (wc
scalars) are invariant under a Lorentz transfoiwnagéind look exactly the same to any obser
(e.g., Rest masm [or simply masan as it is more commonly called in relativity] offeee

Forms for
differential
equations of
motion

Lorentz
invariance
(scalars and form
of equationyand
covariance
(vectors and
tensor$

! To be completely accurate, this is true strictly Einstein synchronization, the synchronization

convention of Lorentz transformations. If you a@ a relativity expert, please don't worry abouisth

fine point.
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particle is a four scalar, whene® = p"p,, Another observer in a different (prlmed) frameilco
measure a different four momentup) , but would find the same mass Vit P, = m-.

Note the result of demanding that the Euler-Lageagguation (i.e., the field equation) (2-13)
Lorentz invariant. We know that, within that eqoatix”, ¢, and derivatives of” are Lorentz ° i
covariant or invariant. So, in order for the whaguation to be Lorentz invariant, t nvariant
Lagrangian densitf must be invariant, i.e., a world scalar. scalar

Sinced“x is also a Lorentz (world or four-) scalar (i.eauf volume is the same in any Lorer

coordinate system, just as 3D volume is the sameninCartesian system), the actiBr{see L, H, and7/
Chart 2-2) must be a Lorentz scalar as well. Noteigh that the total Lagrangi&ris nota four are not Lorentz
scalar sincal>x is not a four scalar. Neither is the Hamiltoniartree Hamiltonian density. T scalars

see this, do Prob. 9.

End of Key Concepts in Field Theory points

Lis a Lorentz

2.6 Schrodinger vs Heisenberg Pictures

In quantum theory, there are different methods twctv one can describe state and operator
behavior that all result in the same measurablatifyaThat is, the underlying math differs, bueth
predictions one would make for experimentally mealsie dynamical variables remain the same.

These different, but equivalent, ways are calldfbdint pictures and apply in the same way
all branches of quantum theory (NRQM, RQM, QFT.)d¥IQM courses more elementary than 1
one use what is known as the Schrédinger picturd,that is, no doubt, what you unconsciot
thought in terms of, when you did NRQM. We will rew that, and then introduce what is cal
the Heisenberg picture, which helps immensely inTQFth developing theory and doing
calculations. Note carefully, before we start, tthegtse termslo notrefer to the Schrédinger wave
approach vs the Heisenberg matrix approach to Qi&njEhing we do will comprise the wave
approach, not the matrix approach, but there apedigtinct pictures within that approach, i.e.,

Different pictures
in quantum theory

Schrédinger Wave Approach Heisenberg Matrix Applo

1. Schradinger picture
2. Heisenberg picture.

We will review the Schrodinger picture and devellbp Heisenberg picture in terms of NRQM,
though the final results will be applicable to dmgnch of QM, including QFT.

2.6.1The Schrodinger Picture

In QM, one has i) states (wave functions, partickess, state vectors), and ii) operators (suc Operator
momentum, the Hamiltonian, and the like), which act those states. The real world va €xpectation value
corresponding to any such operator that one woui@ to measure in an experiment, i.e., = expected” or
average value over many trials, is called the espien value. The expectation value for ¢ Mean measurement
operator is typically designated with a bar ovee thperator and is found via the statisti....
relationship (with normalized wave functig)

_ . 5 Calculating
O = [y opd®x=(p|o|y). (2-25) expectation value

The time derivative of the expectation value (2-@ing what we would expect to measure in
experiment for the rate of change of the correspmndynamical variable) is

Eq of motion of
d(7 z// 00 oy :
+{wy|— |y )+ 2-26) expectation value
o avlol)= < 4”> <””‘ ot ‘w> <w ot > 220 e
In the Schrédinger plctur: the solutions to thkr8dinger equation In S.P., NRQM eq
. 0Ys .0 of motion of state
:H — =H 2'27
[ at Ys or 'at|¢/>s |‘/’>s ( ) (Schrodinger e)y

are the stategs (or |@)s), which are time dependent. The subsc8phdicates the Schrodinger
picture (S.P.). In that picture Sthe operlatorsuamally not tlme dependent. For example, using the
familiar momentum operatqp;” = 10 /0x” for the S.P. in the" direction, with

An example
W= A EPly) Aaes (2-28) P
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(2-25) is

=J-ATei(Et—p‘>é)(i§_X1) Ae—i(Et—[U()d;X:J AéEHPk)(%j A—e(E& p) Y x 15#‘//>s’(2'29)

where the state is time dependent, but the opep@slfds not. That is, since the latter hastnio it,
In S.P., NRQM eq

d_p-l-s :a_p-lS =0 (2_30) of motion of
dt ot ' momentum .
Equation (2-26) fopy is then operator(i.., p1
B d oS 5 constant in time
SEgwlely)= <64t” P w> +s<wﬁw> +s<w B %> . @
S S S

where we leave in the zero quantity of (2-30), beeawe will want to generalize this result to all
operators, including those rare cases where S.Bratgps are time dependent (such as the
Hamiltonian wherV = V(t).) Using the Schrddinger equation (2-27) and @splex conjugate for

the ket and bra time derivatives, respectively{2131), we get .
Eq of motion of

dp, _ (1//|[| Hpy +aa—Iol Ilej|¢/> <¢’|‘i[pls,HJ|¢’> 5<¢,| |~’//> (2-32) momentum

dt expectation value
0

Recall the old NRQM adage that the expectation evadli any operator without explicit time
dependence that commutes with the Hamiltonian iseed (its time derivative is zero.) Note t’
(2-27), (2-30), and (2-31)/(2-32) are equationgraftion for the state, momentum operator, |
momentum expectation value, respectively, in ther&tinger picture. These are generalized to
state and operator in Wholeness Chart 2-4.

Note further that the partial time derivati@&t in the Schrodinger equation (2-27) acting on the
ket is equivalent to the full time derivatidédt by the same logic as that in Box 2-1. That is ke
or wave function, here is mathematically the sama alassical field, functionally dependent on the
independent variables{ andt. So we can write the equation of motion for aestéite., the
Schrédinger equation) with either a partial or lttitae derivative.

(2-32)generalized
to any operator in
Chart2-4

2.6.2The Heisenberg Picture

The Schrodinger picture states and operators cdarahsformed to states and operators having
different form via what is known as_a unitary trmmation (see Box 2-3). The particular unitary
transformation (wher# is a_unitary operator) for this is

Transforming

U =gt (= e"Y" in non-natural unit)s, (2-33) between
where states and operators transform as ﬁg?gggi)ne%:r and
U'lw)s =lw), u'osu =ot pictures
(2-34)
Ule), =lw)s  vo"uT=0°.
Note the effect of the first relation in (2-34) oar sample ket (2-28),
UT|I//> IH'( Ae Et plﬂ gt Et plﬂ) ié& :|¢/>H ) (2_35)
We find that the state, which was time dependetténS.P., isime independerih the Heisenberg
picture (H.P.). This statement is generally true day state. (Think through it, if you like, for a
more general wave function state of several terms.)
Thus, the equation of motion for a state in the R7), becomes, in the H.P,
In H.P., eq of
M =0. (2-36) motion of state
dt (state is constant

Now take the time derivative of the second relatiothe top row of (2-34), we have in time)
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S
%(UT(QSU):( ) et SgHt 4 éHt[aa(tQJ gHty BtHS |Ht( ”a

oM o"
—_—
defined a® O /ot
. efined a ‘ (2-37) In H.P., eq of
:d(7 :—i[(QH H] . 90 | motion of
—dt ot operator

-
=0 in this book

We will not be considering any operators that aretdependent in the S.P., so for us, the last
term in (2-37) will always be zero. Nonethelesserevn this case, we see that in the H.P., an
operator time derivative can be non-zero, and ttigspperator, time dependent.

Box 2-3. Unitary Transformations in Quantum Theories

A unitary transformations called unitary because its operation on (tramsétion of) a state vector leaves
the magnitude of the state vector unchanged,the.state vector magnitude is multiplied by unityis the
complex space analogue of arthogonal transformatiorin Cartesian coordinate space, which, when aaing
a (real number) vector in that space, rotates tbetov but does not stretch or compact it. A unitary
transformation can be thought of as “rotating” anfplex number) state vector in Hilbert space (tbemlex
space where each coordinate axis is an eigenveetiyut changing the “length” (magnitude) of thector. In
NRQM, the square of the absolute value of the stator is the square of its “length”, and thisthe
probability density for measuring the particle. §iieans a unitary transformation of a state vdetores the
probability of detecting the particle unchangediritary transformation multiplies probability byityn

Recall, from classical mechanics, that an orthog(raalsformatlon represented by a real ma&ihas an
inverse equal to the transpose of that matrix, Ae. Y= AT In the complex space of state vectors, a unifary
transformatlorU has an analogous form for its inverse, the comptmjugate transpose, i.&l, t=u"and so
uu=1. The following example may make this clearer.

ConsiderU = e“Ht whereH is the (hermitian) Hamiltonian operator. By insfi@t one knows its magnitud

in complex space is unity and so its action onaaESVector would not change the length of thatestaictor
(though phase would change kit Also by inspectionlJ Tu=1. SoU performs a unitary transformation.

11%

Wholeness Chart 2-3. Unitary vs Orthagnal Transformations

3D Cartesian Space Hilbert Space

(Real) (Complex)
Magnitude conserving Orthogonal Unita_r)%/
transformation A = matrix U=¢€

Effect on vector

rotates in real space

“rotates” in complex sp3

Physical effect

vector length unchanged

probability unchanged

-1 T
Inverse U =uU

How an exponential operator works
Do a Taylor expansion &f = e~ Ht above about, whenU is operating on an energy eigenstate., i.e

Ulge) =™ |ye) = ( ~ itH —%t2H2+...)|¢/E>=(1— itE - ..)|1//E>= &% |ye)

So an operator in the exponent has the same effdtte exponent as it would if acting in the usnah-
exponential way on an eigenstate. This conclusiaeadily generalized to any state.

Note: Although it is common to writd = e~ Ht it is implied thatH (if you think of it asié/ot) does not act]
ont. To be proper, theshould be placed before tht as we did in the expansion above, but it usuallyot
done that way.

1422
1P2E2+
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S BecausdH (= HS by definition) commutes with itsel) and U’ commute withH, so using@S =
H”=H in the second relation on the top line of (2-34),

H=HS=H". (2-38)
Finally, for (2-32) expressed in terms of a genegrator |()1S —>(95), we find, after inserting

UU" =1 where needed, that
4o _ o3
e = wluu'(<[o%H Juu ) + dwluu *a LAy TS
- (2-39)
= wll (<[ A )l + el o),

From which we see that the expectation value obperator has exactly the same form in b
pictures. This means that whichever picture we shdo work in, although the states and opere
will be different, the predictions for quantitieevwan measure (dynamical variables) will be
same. So we can choose whichever system is easirk with mathematically. For NRQM, th

Hamiltonian H
has same form
in S.P. and H.P.

Eq of motion of
expectation value
has same form in
S.P.nd H.P

was the S.P. For QFT, as we will see, itis the.H.P

Wholeness Chart 2-&806dinger vs. Heisenberg Picture Equations of Motin

States Operators Expectation Values
Time dependent Usually time independent d(? H a(ys
Schrodinger i|¥/> = H|y) doS 90 “dt =5 - [ ] |‘//>
Picture dit'” /s S " = o =
—_— . . S . .
(Schrodinger eq) usually |¢)s changes in time) ~ usually const in time
Transform via
u=et" Utle)s =|w),, utosu =o" 99 i variant under the transformation
U
o Often time dependent
Time independen Same as Schrédinger picture above
E_eisenberg d[y) do" =_i|:(9H H ] N 00" with sub and superscrigt— H
icture _"/H —¢ dt L H -
dt Ts_@ | constin time® " often changes in time
Hamiltonian HY=H%=H
Key Relation InS.P., the InH.P., the In both pictures, expectation value and its
state eq of motion operator eq of motion equation of motion are the same, equally key.

Continuation of Wholeness Chatt-2. Comparison of Three Quantum Theories

NROM ROM QFT
Most advantageous L . . . L . .
picture to use Schrédinger picture Schrédinger picture Heisenlpéture

2.6.3Visualizing Schroédinger and Heisenberg Pictures

One can think of the S.P. as quantum waves (wawetifins, states, or kets) moving and
evolving in time, but operators as constant (gdhgia time. The H.P., by contrast, can be thought
of as quantum waves frozen in time (static wavetions or time independent kets), with operators
being what move and evolve. Either way, the expiectavalue (2-40) (what we would measure on
average over many measurements) is the same, asdtsequation of motion.
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O = | Plg)s = |07 |w),,- (2-40)

The philosophical lesson to be learned from thith& we can have different models of rea
predicting the same real world phenomena. In thgecin one model the states are waves that r
and evolve. In the other model, the states nevangé. But, both are valid predictors of the law:
nature we observe in the physical universe. Hameeshould be wary of accepting any given mc
of reality as a “true” picture of what nature igwadly doing.

2.7 Quantum Theory: An Overview

Wholeness Chart 2-5, Summary of Quantum Mechaniesyiews the fundamental branches
guantum theory in much the same way that Wholer@dsart 2-2 overviews the fundamen
branches of classical theory. These correspondirid, elaborate on, the bottom and top ps

respectively, of Wholeness Chart 1-1 in Chap. 1e (Wl temporarily leave: in our relations evel.

though, in our units, it equals one, so that ybe, treader, can see precisely where it comes
those, rather key, relations.)

Note particularly, that in Wholeness Chart 2-5,ralations and quantities are expressed in
Heisenberg picture. If it were expressed in ther&dinger picture, then many quantities (i.
operators) such &s, p;, and the like would have to be expressed as exf@ctvalues. In the H.P

S.P.: particle
waves move,
operators
(usually) do not.
H.P.: waves
frozen, operators
evolve.
Measured values
same in both.

Chart2-5
summarizes QM

into

Chart2-5isin
terms of H.P.

the equation of motion for an operator (see H.M i Wholeness Chart 2-4) has the same time
dependence as the expectation value for that apefthie bra and ket are constant in time in the
right most block in that row.) That is, in the HtRe operator equation of motion is the same as tha
of the expectation value. And the state (ket) dqoatf motion, which was quite critical in the S.P.
(it is the Schrédinger equation), becomes ratheanimgless, as the state is constant in time. So we
can ignore the states in the H.P. summary of WheglgiChart 2-5 and write the equations of motion
in terms of the operators.

2.7.1Classical vs. Quantum: Much is the Same
Note that everything in the first 12 blocks in tiRQM and RQM columns of Chart 2-5 is t

same as that in Chart 2-2, from the independeriahas used through Hamilton’s equations First 12 rows:

. S 20 . Classical NR
motion. For example, the Hamiltonikhhas the same form for a particle in quantum meickaas particlle of Chart
it does for a classical particle. (Recall from Chdap this was criterion number one for fi 5.2 same as
guantization.) NRQM of

Chart2-5

2.7.2Poisson Brackets vs. Commutators: Something is &xignt
However, note that the equation of motion for aaiyical variable, represented bychanges
from (2-24) in classical non-relativistic parti¢teeory to

du_-i ]+@

dt nt’ ot
in NRQM. Equation(2-41), which you should have sdmfore in your NRQM studies, was
discovered independently by early quantum theori&s it was striking to everyone how closely *
parallels its classical counterpart (2-24). Theyodifference is that the Poisson brackets h
become commutators (with a factor afin front.)

Similarly, the Poisson bracket relations for comjiggvariables in classical theory (last line, tt
column in Wholeness Chart 2-2) parallel the commaunsa(last line, third column of Wholene
Chart 2-5) discovered early on in the developmé&nNRQM.

So, the classical non-relativistic particle and MRQM theories mimic one another, with o
difference. All relations remain the same except the commutators of quantum theory corresp....
to Poisson brackets of classical theory (timestofeof —i/%.)

du_ -i (2-41)

Last2 rows:
Classical NR
particle has
Poisson brackets;
NRQM has
commutators

2.7.3Quantization and the Correspondence Principle

According to thecorrespondence principlén the macroscopic limit, our quantum relationssm
reduce to the usual classical relations. But in ganmg the last two blocks in the third columns
(NR particle and NRQM) of Wholeness Charts 2-2 2+%] this can only be true if
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Wholeness Chart 2-5.

Comments Non-relativistic Quantum Mechanics
Independent variables through Same form as top 12 blocks of
Hamilton’s equations of motion Wholeness Chart 2-2

foru:u(xi,pi 1), v=V(Xi, pi,t)
Commutator brackets, definition
[uv] = uv=-wu

' o , _ du _ —i ou
Equations of motion in terms of | Correspondence principle: i) forv=H at —;[U, ]+E
commutator brackets Classical— Quantum .
. . . ii) for i) plus u = X orp;
i) any dynamical variable S
ii) conjugate variables {uy — ?[u,v] B :L'[ 0 .H| __H . :1[ X H]:ﬂ
ot ox /S R o}
Uncertainty principle [Xi N ] = ihéij [i X } =[ p ,ﬁ)] =0
i —-ir Cartesian system, whe
{x,p}:d =—[%.p]. e (2-42)
] i p; = p’ = 3-momentu
— ——— ]
classical quantum
dynamic operators
variables
Classical NR

So the correspondence principle provides us wikbyapart of our method for quantization. Ti

is, in going from classical theory to NRQM, we mtzste particle theory

’ ’ becomes NRQM
{X.p}=q DRUDGEHF [*n]=hq  (Cartesiansysteh  (2-43) fPoisson

_ o _ converted to
Of course, as noted in Chap. 1, we also keep tine $arm of the Hamiltonian (or equivalently, t  commutators

Lagrangian) as we had classically.

2.7.4Extrapolation to Field Theory

Shortly after understanding this, one gets the ttaaperhaps the same thing can be done with
field theory. So we try it. We postulate the sainst twelve rows for Wholeness Chart 2-5 as we
had in Wholeness Chart 2-2 and the same sort eketraorrespondence for the other rows as in
NRQM/RQM, and see where it takes us. Does it indead to a good theory, one that predicts We guess:
phenomena we observe? Very quickly we find thatoés, and that new theory has come tc Classical
calledquantum field theoryThis means for going from our classical theoryielfls to the quantur relativistic field
theory of fields is called second quantization, i.e theory should

, become QFT if
{¢r (x.t). 7 (y,t)} =0'O(x-y) O ShirtlrZahioh [¢r (x.t) 7z (y t)] =ihd" 3(x-y)(2-44) poisson brackets

converted to

where again, we keep the same form of the Hamé#to(or equivalently, the Lagrangian) as we |
commutators

classically. That is, as we develop QFT, we wik tise same independent variables, the same !
for the Hamiltonian density as an energy densitg, same Legendre transformation, the s
Euler-Lagrange equation into which we will plug duagrangian density, the same conjugate
momenta definitions, etc.

The delta function ix —y in (2-44) ensures that we are only considering ftelel and its
conjugate momentum density at the same point itesp@/e will see the role this plays in the
mathematical development of the theory later.

Both of the processes (2-43) and (2-44) are fogymedilled _canonical quantization. They are
canonical because it is the canonically conjugaigables - the generalized coordinates and their
conjugate momenta - which are the center of atianfThe term quantization arises because the
metamorphosis of brackets, in going from the ctadsio quantum realm, changes the Poisson
bracket relation for the canonical variables irite tommutator, which is the mathematical basis of
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Summary of Quantum Mechanics (Heisenberg Picture)

Non-relativistic Quantum Fields

Relativistic QM

Quantum Field Theory

Same form as top 12 blocks ¢
Wholeness Chart 2-2

f Same form as top 12 blocks of

Wholeness Chart 2-2

No theory generally used.

Same form as Non-relativistig
Quantum Mechanics section

foru=u(g', m,t), v=v (¢, m,t)

but different meaning fap; [uv]=uv-w

i) forv=H u:ﬂ:;'[u,H]_,.ﬂ
dt 7 ot
See Non-relativistic Quantum . . _
Mechanics section ii) for i) plus u =¢ or 7
| OoH . — JH
m=—[m Hl=~—F ¢ =—|¢ H|=—
' h[ ' ] op' ¢ f [gﬂr } o,

See Non-relativistic Quantu
Mechanics section

(¢ 7]=ing S(x-y)i[¢ @ |=]m.]=0

the uncertainty principle. The uncertainty prineijg often called the quantum principle, hence the
namequantization

Quantization then, in a nutshell, is a means fatludang the governing quantum equations fr
knowledge of the classical macroscopic ones. WEbeijin to use it in the next chapter to deve
our theory.

Quantization is a
means for deducing
guantum theory
from classical

2.8 Chapter Summary theory

The bottom right hand block of Wholeness Chart ZShmmary of Quantum Mechanic
contains the essence of this chapter (enclosedxmith bold border). A quantum field and its own
conjugate momentum density do not commute, wheatagher pairings of fields and momentum
density do commute. This is one postulate at theshaf QFT (see (2-44).) The other postulate
comprises keeping the same form for the Lagranglansity (or equivalently, either the
Hamiltonian density or the field equations of majias in the classical realm. These postulates are
known as second quantization. (I guess we've $asteihough©)

Natural units and their relation to other typesunits, summarized in Wholeness Chart 2-1 and
Sect. 2.1.7, comprise another key concept in tlapteh. In natural unitg, =7 = 1 (dimensionless),
and all quantities are expressed in units of poweheV.

Other fundamental concepts include certain fielthtiens in the right most column of
Wholeness Chart 2-2, which apply in the quantunmre@hese are i) the Euler-Lagrange equation
for fields, ii) the definition of conjugate momentwlensity, and iii) the Legendre transformation for
fields. (Note that we will do virtually nothing witHamilton’s equations, so you need not worry
about them.)

Unitary transformations, designated oftenUhyare quite important in QFT and are summarized
in Box 2-3. When acting on a state vector, unitagnsformations do not change the “length”
(magnitude) in complex space of the state, theraiuhv%hich is probability density. Thus, unitary
transformations conserve probability. Importantly, =U .

Quantum theories can be expressed in two diffepctures, called the Schrédinger and
Heisenberg pictures, summarized in Wholeness Chértin the S.P., states are time dependent, but
operators usually are not. The H.P. is the oppoS§ite it, states are static (fixed in time) and
operators often time dependent. The key equatiomation in the S.P. is the state equation of
motion (the Schrédinger equation). The key equatiomotion in the H.P. is the operator equation
of motion. (There is, since the state is consteffiéctively, no H. P. state equation of motion.eTh
H.P. is closer to the classical perspective in tila¢ focus in both is on dynamical
variables/operators such Hs p;, etc., which may vary in time. (And there is natstequation of
motion in the classical world, since, for it, théseno such thing as a stat®FT is easier to develop
in the H.P., so we will be using it, rather thaa SiP.
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2.9 Appendix: Understanding Contravariant and Covaria@omponents

The concepts of contravariant and covariant compisn@resented in Sect. 2.2 should be
somewhat familiar to those who have studied theegrgsite material delineated in the preface.
However, oftentimes, even those who have already legposed to these concepts still do not feel
completely at home with them. For them, and for aeywcomers to the subject, | hope the
following brief introduction will help.

2.9.1A Trick for Conveniently Finding 4D Vector Length

Contravariant and covariant components are simijals that allow us to represent vectors (and
tensors) in a way that helps us carry out certaithematical procedures, like finding the magnitude
of a vector in curved space or the proper timeipgsm a particle in special relativity. In thisddg
we will not be dealing with curved space, so altitd applications of contravariant and covariant
component theory herein will be for the simplerecad Minkowski space (flat, 4D space with
Cartesian space coordinates plus time.) We witlsfarters, want to be able to calculate propee tim
on a particle (decay time of a particle, for ins@ndepends on proper time, not the lab time we see
as the particle whizzes by.)

Consider how we find the lengthof a vector in a 3D Cartesian system with one ehthe
vector at the origin, i.e.,

(17 = (X,)? +(X,) 2 +(Xq)* = X X (:z X X ,repeatedindices meansummatiil

See Sect.2.2

X, 10 0% (2.45)
=[X, X, X3 X [=[X X, X][0 1 0| X|= X X
X, 0 0 1 X ] Yax
J:Xi

where, with a future purpose in mind, we inseridentity matrix, represented in index notation by
the Kronecker deltdj ( = 0 if rowi # columnj; = 1 ifi = j), on the RHS.

Now, imagine a spatially 4D Cartesian system, wiieedength of a 4D vector is

(17 = (Xo)" + (X0)"+ (%) +(Xg)" = %, X,

X, 10 0 0[X,
_ X; | 01 0 O X |_ [(2-46)
—[Xo X X X3] X, ‘[Xo X% XJ 001 0|X, = %0 X

X, 00 0 1| X, Xu

Now consider the 4D spacetime of special relatititgory (SRT), and the “length” of a 4D
vector we have in mind is the proper timen an object passing by us. THR @ordinate is now
time instead of a spatial coordinate. From SRT, we know

(CT)2 = (Ct)2 -( X1)2 -( Xz)z-( >(3)2 = (how to write as summed indices

ct

X, | _ (2-47)
=[ct X, X, X3] c=1in natural units

_X2
_X3

Note that because of the minus signs in our “leéh@thproper time) calculation in (2-47), we can't
use the nice summation symbolism of the first lioe§2-45) and (2-46). That was only good if all
of the terms in the summation had the same sigme For purely spatial coordinates of any
dimension. Not possible if we have both time anatsgn the same coordinate system.

But here is a clever idea. Let's define the columatrix of the second line in (2-47) as a

different set of vector components, with minus sigmfront of theX;. We could designate it with
primes, if we like, so
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ct Xo ct X
-X -X X X
X, =| =l and X, = ‘l=| ' (2-48)
X, —-X; X, X,
_Xs -X3 Xs Xs

With this newly defined representation of our 4Ixteg, andct = Xg, we can represent our vector
“length” of (2-47) as

(or)” =(e)" = (%)= (%) "= (%) =( %) = (X)°-( %) *-( x)°= % ¥ (249)
And thus, we have a neat shorthand way to writeaougtctor length in 4D spacetime.

Unfortunately, the primed notation is used in iiglgt and elsewhere to indicate a different
coordinate system in a different frame. In reldivthis is usually a frame having velocity relativ
to the unprimed frame. In the present case, wemlseworking in a single coordinate system. So, a
different symbolism has arisen for this case (f@. finding vector lengths in the same coordinate
system). While it can take a little getting usedtih@ symbolism entails using no primes, but intea
raising the indices for one of the component se{®1i49), and keeping the indices lowered for the
other. We also generally use non-capital letters4ld position vectors, and capital letters (with
subscript indices only) for 3D Cartesian componenhiss, by the convention chosen,

x° ct X ct
X X -X
= l=x,=| 0t and  x=| tl=x,=| 0t (2-50)
X2 X, % =X,
X2 X3 X3 —X3

With the above convention, our 4D vector lengt#£3-becomes
(cr)’=x%+ ¥x+ Z %+ X x= % x. (2-51)

Of course, this can lead to some confusion, asrédfos, we have always used a superscript
solely for raising a quantity to a power. To avdiis confusion, we will have to remember to
enclose entities in parentheses when we mean pgerssuipt as a power, as we did on the LHS of
(2-51). From now on, superscripts without parerglesill designate components, not powers. Be
forewarned, however, that, unfortunately, authoesy mot always strictly adhere to this practice,
and you may have to glean the meaning of a supetr$m context. (This isn't so hamfter you
get accustomed to this notation, but it can beadiff beforeyou do.)

For reasons beyond the scope of this discussinwas designated as the contravariant
components form, ang, as the_covariant components form, of the sameigdiysector. As a
mnemonic, just remember that the raised index awatiant components are the 3D Cartesian
coordinates plust. The lowered index covariant components includa@rais sign for the 3D part.

Contravariant and covariant components also allswaureadily find the 4D length of any
vector, not just the 4D position vectef. For example, the four-velocity of relativity’ for an
object is

_d _
== [0 ¢ @ X[ 4 ), (2-52)
where

. _dx dx v , o dR dt c

u =—"= = :y\/' i U =—=C—=————=/C, (2-53)

dr 1-v?/dt V1-V /¢ dr - dr 1- ¢ /¢

u' here is the derivative of the spatial coordinaith wespect to proper time on the object' is that
with respect to coordinate timg )y is the usual Lorentz factor common in relativijwd we will

henceforth often write vectors as rows, rather tbalnmns, to save space. The 4D lengtf |s
found from




34 Chapter 2. Foundations

Uy u
W <o =y =G0 6 i ] o888 d :52 (2-54)
Uy -u®

= () (o) - () (@)= - ()7 (A (D)= @
the last part of which students of relativity magagnize as the correct expression for the sqiare o
the magnitude of the four-velocity.

The magnitude of the 4-momentyf= mu’is then found from
(p)? =‘p“‘2 =pip=ntdy=mt (= rhin natural unit%. (2-55)

(2-55) tells us that for (massless) photopé € 0, even thouglp'ugb 0. (See Prob. 13.) Note from
(2-55) thatp™ = ymc = E/g whereE is relativistic energy, anpl = relativistic 3-momentum.

For any general vectos”, with upper case letters representing 3D Cartesiamponents, we
have

woslwg WoW W w=[w W - W - (O] A= Av. (2:56)

In addition, we will often use differential elemsmf 4 vectors, such a“, and the relations (2-56)
hold for such differential 4 vectors, as well (whishould be fairly obvious, as a differential of a
vector is also a vector in its own right.)

2.9.2The Metric
Note that we can use a certain matrix to converhfcontraviant to covariant components,

x| [ct] 1 0 0 o 10 0 o)X

-X 0 -1 0 0} X 0-1 0 Ofx
)(:X]‘: 112 l: :g XV (2'57)

@]
P4

“l% | =X, 10 0 =1 0|l X,| |0 0 -1 ofx| ™
X| |[=Xs] [0 0 0 -1 X, [0 0O 0 -1
%,—/
Quv N

This matrixg,y represents what is called the metric (of the coate space, which in this case is
Minkowski coordinate space.) It lowers a raisedeidt has an inverse that turns out to have the
same form as it does.

1 0 0 0|1 0 O O 1 00
0O -1 0 0l0O-1 0 O 010
= (2-58)
0O 0 -1 0of|l0 0 -1 0 0 01
O 0 0 -1jo0 0 o0 - 0 0O
N
The inverse of the metric can be used to raise@wlii.e.,
| T2 0 0 0%
x| |0 -1 0 O
xH = = & =gy, . (2-59)
X2 0 0 -1 0fx

33 \0 0 0 -1x
S
g

When indices are repeated, they are summed, amdveven they are not, they are only dummy
indices symbolizing coordinate axes numbers. Seatly doesn't matter what particular Greek
letter we take for a summed index. Herg€, represents the same entitygdé.
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gy is sometimes called the covariant metric, aiy, the contravariant metric. The temretric
used alone usually meagg,.
Note that with the metric, we can write (2-51) as

(cr)2 =x“x, = g, X' X. (2-60)

Prove (2-60) to yourself three ways: by substigtihe RHS of (2-57) into the middle part of the
above, by writing out (2-60) in matrix form, and tdging the summation of terms implied by the
repeated indices.

Note that the particular metric form of the metric(2-57) is specific to Minkowski coordinates,
which is all we will use in this book. Other coardte systems (like 4D having time and a spherical

spatial coordinate system) would have other forongyf,. Note that in general relativity, you will
find the Minkowski metric, which is commonly desaad byg,, in QFT, to be designated by the
symbol 7,y In relativity, g, usually refers to any general metric, not necégsairform shown in
(2-57). But in this book, the symbg),, always equalg,,, the Minkowski metric.

The metric in (2-60) plays a role in 4D spacetiimailar to the role played by the identity matrix
of (2-45) and (2-46) for Cartesian spaces (whighrrely spatial, with no time axis.) In fact, for
Cartesian systems, the identity matisxthe metric, so for any vectar, V' =v;. (Do Prob. 8 for
more on this.)

The form of the metric tells us a lot, in fact uitly everything, about the coordinate space we
are dealing with. It is, in a sense, gignatureof the coordinate space.

2.9.3Invariance and Covariance

The quantitycr of (2-60) is an example of what is known as a 4Blay (or_world scalar or
Lorentz scalar.) It is the length of a vector (tiilke here) in spacetime.

In 3D space, a vector length remains the same rfanvi if we change (transform) coordinate
systems. The components of the vector are diffareat rotated (primed) coordinate system (i.e.,
X/ # X.), but the length remains the sam&=X; X; = X' X'. By definition, a scalar is measured
the same by observers using any coordinate sySealars are invariant under transformation to a
new coordinate system.

The quantitycz, or simply the proper time passed on an object, is the same for all obsgriger

invariant in 4D spacetime, and hence is a scal(m)zzx”&,zx"g,, even though

XH#xH: >§u 2 The term Lorentz invariance is commonly used4orscalars.

Other such scalars are the magnitudes of the 4&glof (2-54) [equal toc] and the 4-
momentum of (2-55) [equal tmc] Change the unprimed coordinate values in thetsions to
primed coordinates of another observer in anotherdinate frame, and the magnitudes remain the
same. We will soon encounter yet other such scalars

As noted, the components of a vector change irmifit coordinate systems. This is true in 3D
if we rotate to new coordinate axes. It is als@ tru4D spacetime for coordinate systems in retativ
motion with respect to one another (unprimed venpd coordinates). In both cases, the length of
the vector remains the same. Objects which behmtlés manner (e.g., vectors liké, u”, andpy)
are said to be covariant under transformation t@w coordinate system. For spacetime, the term
Lorentz covariance is common.

Note that the same term “covariant”, as oppos€ttdatravariant”, is also used with respect to
vector components, but the meaning there is diftere

2.9.4Invariance and the QFT Wave Equations

As we will see, beginning in Chap. 3, contravarieamiariant component notation will provide
us with a very useful way of writing the relativisivave equations of RQM and QFT (see first
block of Wholeness Chart 1-2 in Chap. 1) and teeiutions. Importantly, these forms of the wave
equations ar@variant. By this we mean that the numerical values ofvidetor components in the
equations will change as the coordinate system ggwmnbut the relations between the vector
components will remain the same. In other words whave equation has the same form (it looks the
same mathematically), whether we use unprimed ongat coordinates. The wave equation is
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invariant. This is the famous principle of relatyvknown as_Lorentz invariance of the laws of
nature. Different observers see different vectangonent values, but they find the same laws of
nature governing the behavior of those componeértiss is a fundamental principle of special
relativity theory, and since QFT is grounded incsplerelativity, it is a fundamental principle of
QFT. Any valid relativistic quantum theory must gheorentz invariance. Its governing equations
must be invariant.

Note that, with respect to equations, the t&wnentz covariance (of equations) used in the
literature interchangeably wittorentz invariance (of equationaNhile theform of the equations is
invariant, thevectorsin the equation are covariant. Hence, the pradiicesing either term.

2.9.50ther Uses for This Stuff

We have only scratched the surface of the mathemafi metrics, contravariant components,
and covariant components, formally called diffei@ngeometry (or tensor analysis, or in the old
days, Riemannian geometry.) Their enormous poweorbes more evident when one studies
curved spaces, such as the surface of a spheilee @pticetime around a black hole. However,
hopefully, this appendix provides some justificatfor their use, which is widespread in QFT.

2.10Problems

1. Pretend you are scientist in the pre MKS systensdagth knowledge of Newton’s laws.
Units of meters for length, kilograms for mass, ardonds for time have been proposed. What
units would force be measured in? Would it be appate to give the units for force the shortcut
name “newton”? Could you have, alternatively, clmosaits for other quantities than length,
mass, and seconds as fundamental, and derivedfanitBe remaining quantities? Could you
have chosen the speed of sound as one of your bakicand selected it as equal to one and
dimensionless? If so, and time in seconds was anbtsic unit, what units would length have?

2. The fine structure constantin the Gaussian system (cgs with electromagnetismy4rtic,
dimensionless, and approximately equal to 1/137&h®t doing any calculations and without
looking at Wholeness Chart 2-1, what are its algebexpression, its dimensions, and its
numerical value in natural units? Why can you fihé dimensions and numerical value so
easily? Does charge have dimensions in naturaduiitithout looking up the electron charge in
Gaussian units, calculate the charge on the efeatroatural units. (Answer303.)

3. Suppose we have a term in the Lagrangian densifyrof ngaz, wherem has dimensions of
mass. What is the dimensid in natural units, of the fielgh?

4. a) Derivex":g”'gx/;. [Hint: Use (2-5) and (2-6), or alternatively, usee matrix form of the
contravariant metric tensor along with column vestm terms of Cartesian coordinates] Note
that this relation and (2-5) hold in general foy & vector, not just the position vector.

b) Express” Oy interms of i) contravariant and covariant 4Dnponents, and ii) in terms of
time t and Cartesian coordinate$ . The operationaﬂa“ :aﬂaﬂ is called the _d’Alembertian

operator, and is the 4D Minkowski coordinates agaéo of the 3D Laplacian operator
9,0, =0'd" of Cartesian coordinates.

¢) Then find 6”8;, (xX?xa), where physical length of the interval &f is X%, , 1) by

expressing all terms ihandX;, and ii) solely using 4D component notation. (Eoe last part,
note, from a), thadx” / dx, = g?” and from (2-5)0x, / dx” = O )

5. Obtain your answer to the following question bypiestion of the final equation in Box 2-2,
and then ask yourself whether or not your conclugéels right intuitively.

If qpr were a sinusoid, how would the physical momentemsdy of a short wavelength wave
compare to that of a longer one?
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6. Consider a classical, non-relativistic field of tpsarticles in outer space that are so diluted
they do not exert any measurable pressure on ootexn There is no gravitational, or other,
potential density, i.e) (x) = 0. The density of particles is(x'), which for our purposes we can
consider constant in time. The displacement offitld (movement of each dust particle at each
point) from its initial position is designated thetfield valuep'(x'). r = 1,2,3, here, as there is a
component of displacement, measured in_length unitsach of the three spatial directiogs.
andx are both measures of length, but fhare fixed locations in space, whereas gifeare
displacements of the particles, in three spati@dations, relative to their initial positions.

What is the kinetic energy density in terms offilkll displacement’ (actually, it is in terms of
the time derivatives ofp" and ¢,)? What is the Lagrangian density for the field? 2-13) to

find the differential equation of motion for thesglacement’. You should getog =0. Is this

just Newton’s second law for a continuous mediurthwip internal or external force?

7. Without looking back in the chapter, write down theler-Lagrange equation for fields. This
is a good thing to memorize.

8. Ina 3D Cartesian coordinate system, the mejic= J, , the Kronecker delta, wherev take
on only values 1,2,3. In that case, it is bettgregsed agj; = 4; Show that, in such a system,
X =¥ , velocityv' = vj , and 3-momentump' = p; .

9. Why are the Hamiltonian and the Hamiltonian densitt Lorentz scalars? If they are to
represent energy and energy density, respectidels this make sense? (Does the energy of an
object or a system have the same value for allrgbsg? Do you measure the same kinetic
energy for a plane passing overhead as someoneawd the plane would?) Energy is the zeroth
component of the four momentupy, . Does one component of a four vector have the same
value for everyone?

10. (Do this problem only if you have extra time an@nt to understand relativity better.)
Construct a column like those shown in WholenesarCh2 for the Relativistic Particle case,
but do the entire summary in terms of relatividticaovariant relationships. (That is, start with
world (proper) timer and fill in the boxes using 4D momentum, etc.) Ké&esimple by treating
only a free particle (no potential involved.)

11. Consider the unitary operatat = e~

eigenstate kety) = Cl‘z//El> + Cz‘z//E2> . What isU |¢/) ?

whereH is the Hamiltonian, and a non-energy

12. Consider the unitary operatbl = e " (Ho)and |1,11E> :‘Ae_i(Eto_p'x)> , an energy eigenstate at

timet, What isU |¢&)? DoesU here act as a translator of the state in time? iShdoes it have
the effect of moving the state that was fixed imeiforward in time, and turning it into a
dynamic entity rather than a static one? If we afgeon this new dynamic state with, would

we turn it back into a static state? Is that noatwve do when we operate on a Schrodinger
picture state to turn it into a (static) Heisenbgigure state? (Earlier in the chapter we topk

0 to make things simpler.)

13. (Problem added in revision of%edition). Express the componelpféof 4-momentum for a
photon. Assume it is traveling in the direction. Use natural units where speed of lightL.
(Hint: Use energy expressed in terms of freﬂue‘mﬂyd 3-momentum in terms of wave length
A.) Then show that even thougﬁ;ﬁ 0, P*=p py = 0. (Hint: Use speed of light expressed in
terms of frequency and wave length.) Does this nmestese in light of (2-55), given what we
know about the photon mass? Then exppﬁjssin terms of w= 2rf and wave numbek =
2mA whereh =h/27z (= 1 in natural units).
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