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Bird’s Eye View 
 

Well begun is half done. 

      Old Proverb 

1.0 Purpose of the Chapter 

Before starting on any journey, thoughtful people study a map of where they will be going. This 
allows them to maintain their bearings as they progress, and not get lost en route. This chapter is 
like such a map, a schematic overview of the terrain of quantum field theory (QFT) without the 
complication of details. You, the student, can get a feeling for the theory, and be somewhat at home 
with it, even before delving into the “nitty-gritty” mathematics. Hopefully, this will allow you to 
keep sight of the “big picture”, and minimize confusion, as you make your way, step-by-step, 
through this book.  

1.1 This Book’s Approach to QFT 

There are two main branches to (ways to do) quantum field theory called 

 the canonical quantization approach, and 

 the path integral (many paths, sum over histories, or functional quantization) approach. 

The first of these is considered by many, and certainly by me, as the easiest way to be introduced 
to the subject, since it treats particles as objects that one can visualize as evolving along a particular 
path in spacetime, much as we commonly think of them doing. The path integral approach (which 
goes by several names), on the other hand, treats particles and fields as if they were simultaneously 

traveling all possible paths, a difficult concept with even more difficult mathematics behind it. 

This book is primarily devoted to the canonical quantization approach, though I have provided a 
simplified, brief introduction to the path integral approach in Chap. 18$near the end. Students 
wishing to make a career in field theory will eventually need to become well versed in both. 

1.2 Why Quantum Field Theory? 

The quantum mechanics (QM) courses students take prior to QFT generally treat a single 
particle such as an electron in a potential (e.g., square well, harmonic oscillator, etc.), and the 
particle retains its integrity (e.g., an electron remains an electron throughout the interaction.) There 
is no general way to treat transmutations of particles, such as that of a particle and its antiparticle 

annihilating one another to yield neutral particles such as photons (e.g., e – + e +  2) Nor is there 

any way to describe the decay of an elementary particle such as a muon into other particles (e.g. –

e – +  +  , where the latter two symbols represent neutrino and antineutrino, respectively). 

Here is where QFT comes to the rescue. It provides a means whereby particles can be 
annihilated, created, and transmigrated from one type to another. In so doing, its utility surpasses 

that provided by ordinary QM. 

There are other reasons why QFT supersedes ordinary QM. For one, it is a relativistic theory, 
and thus more all encompassing. Further, as we will discuss more fully later on, the straightforward 
extrapolation of non-relativistic quantum mechanics (NRQM) to relativistic quantum mechanics 
(RQM) results in states with negative energies, and in the early days of quantum theory, these were 

quite problematic. We will see in subsequent chapters how QFT resolved this issue quite nicely. 

1.3 How Quantum Field Theory? 

As an example of the type of problem QFT handles well, consider the interaction between an 

electron and a positron that produces a muon and anti-muon, i.e., e – + e +   – +  +, as shown in 
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Fig. 1-1. At event x2, the electron and positron annihilate one another to produce a photon. At event 
x1, this photon is transmuted into a muon and an anti-muon. Antiparticles like positrons and anti-
muons are represented by lines with arrows pointing opposite their direction of travel through time. 
The seemingly strange, reverse order of numbering here, i.e., 2 → 1, is standard in QFT.  

 Note that we can think of this interaction as an 
annihilation (destruction) of the electron and the positron 
at x2 accompanied with creation of a photon, and that 
followed by the destruction of the photon accompanied by 
creation of an muon and anti-muon at x1. Unlike the 
incoming and outgoing particles in this example, the 
photon here is not a “real” particle, but transitory, short-
lived, and undetectable, and is called a virtual particle 
(which mediates the interaction between real particles.) 

What we seek and what, as students eventually see, 
QFT delivers, is a mathematical relationship, called a 
transition amplitude, describing a transition from an 
initial set of particles to a final set (i.e., an interaction) of 

the sort shown pictorially via the Feynman diagram of Fig. 1-1. It turns out that the square of the 
absolute value of the transition amplitude equals the probability of finding (upon measurement) that 
the interaction occurred. This is similar to the square of the absolute value of the wave function in 
NRQM equaling the probability density of finding the particle. 

QFT employs creation and destruction operators acting on states (i.e., kets), and these 
creation/destruction operators are part of the transition amplitude. We illustrate the general idea 
with the following grossly oversimplified transition amplitude, reflecting the interaction process of 
Fig. 1-1. Be cautioned that we have omitted, and even distorted a bit, some ultimately essential 
ingredients in the following, to make it simpler, and easier, to grasp the fundamental concept. 
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The ket |e.+e.–.〉 represents the incoming e.– and e.+ ; the bra ..–.|, the outgoing muon and anti-

muon. K is a constant determined by theory. e
d


is an operator that destroys the e.– in the ket; e
d


, 

an operator that destroys the e.+. c



creates an anti-muon in the ket. c



creates a muon. cA  is an 

operator that creates a virtual photon, and dA  is an operator that destroys that virtual photon, with 

the lines underneath indicating that the photon is virtual and propagates (in Fig. 1-1 from x2 to x1).  

The mathematical procedure and symbolism (lines underneath) representing this virtual particle 
(photon here) process, as shown in (1-1), is called a contraction. When the virtual particle is 
represented as a mathematical function, it is known as the Feynman propagator or simply, the 
propagator, because it represents the propagation of a virtual particle from one event to another. 

Note what happens to the ket part of the transition amplitude as we proceed, step-by-step, 
through the interaction process. First, the incoming particles (in the ket) are destroyed by the 

destruction operators, so at an intermediate point, we have 

    2Fig. 1-1 transition amplitude 0
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where the destruction operators have acted on the original ket to leave the vacuum ket |.0. (no 

particles left) with a purely numeric factor K2 in front of it. The value of this factor is determined by 

the formal mathematics of QFT. 

In the next step after (1-2), the virtual photon propagator, due to the creation operator cA , creates 

a virtual photon (at x2 in Fig. 1-1) that then propagates (from x2 to x1 in the figure) and then, via dA , 

is annihilated. This process leaves the vacuum ket still on the right along with an additional numeric 

factor, which comes out of the formal mathematics, and which we designate below as K . 
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 The remaining creation operators then create a muon and anti-muon out of the vacuum. This 

leaves us with the newly created ket | +–〉 times a numeric factor K1 in front. The ket and the bra 

now represent the same multi-particle state (same particles in the same states), so their inner product 
(the bracket) is not zero (as it would be if they were different states). Nor are there any operators 

left, but only numeric quantities, so we can move them outside the bracket without changing 

anything. Thus,  
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, (1-4) 

where we note the important point that in QFT the bracket of a multiparticle state (inner product of 
multiparticle state with itself) such as that shown in (1-4) is defined so it always equals unity. Note, 

that if we had ended up with a ket different than the bra, the inner product would be zero, because 
the two (different) states, represented by the bra and ket, would be orthogonal. Examples are 
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. (1-5) 

Further, the inner product of any bra and ket with the same particle types but different states (e.g., 

different momentum for at least one particle in the bra from the ket) equals zero. 

The whole process of Fig. 1-1 can be pictured as simply an evolution, or progression, of the 
original state, represented by the ket, to the final state, represented by the bra. At each step along the 
way, the operators act on the ket to change it into the next part of the progression. When we get to 

the point where the ket is the same as the bra, the full transition has been made, and the bracket then 

equals unity. What is left is our transition amplitude for the scattering of Fig. 1-1. 
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The quantity K.K1K K2 = SFig1-1 arising in (1-4) depends on particle momenta, spins, and 

masses, as well as the inherent strength of the electromagnetic interaction, all of which one would 

rightly expect to play a role in the probability of an interaction taking place. There are other 

subtleties, including some integration over x1 and x2, that have been suppressed, and even distorted 

a bit, above in order to convey the essence of the transition amplitude as simply as possible. 

From the interaction probability, scattering cross sections can be calculated. 

1.4 From Whence Creation and Destruction Operators? 

In NRQM, the solutions to the relevant wave equation, the Schrödinger equation, are states 
(particles or kets.) Surprisingly, the solutions to the relevant wave equations in QFT are not states 

(not particles.) In QFT, it turns out that these solutions are actually operators that create and 

destroy states. (The operators used in relations like (1-1) are actually just such solutions.) Different 
solutions exist that create or destroy every type of particle and antiparticle. In this unexpected (and, 

for students, often strange at first) twist lies the power of QFT. 

1.5 Overview: The Structure of Physics and QFT’s Place Therein 

Students are often confused over the difference (and whether or not there is a difference) 

between relativistic quantum mechanics (RQM) and QFT. The following discussion, summarized 

below in Wholeness Chart 1-1, should help to distinguish them. 

1.5.1 Background: Poisson Brackets and Quantization 

Classical particle theories contain rarely used entities called Poisson brackets, which, though it 
would be nice, are not necessary for you to completely understand at this point. (We will show their 
precise mathematical form in Chap. 2.) What you should realize now is that Poisson brackets are 

mathematical manipulations of certain pairs of properties (dynamical variables like position and 
momentum) that bear a striking resemblance to commutators in quantum theories. For example, the 
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Poisson bracket for position X (capital letters will designate Cartesian coordinates in this book) and 
momentum pX, symbolically expressed herein as {X, pX}, is non-zero (and equal to one), but the 

Poisson bracket for Y and pX equals zero. 

Shortly after NRQM theory had been worked out, theorists, led by Paul Dirac, realized that for 
each pair of quantum operators that had non-zero (zero) commutators, the corresponding pair of 
classical dynamical variables also had non-zero (zero) Poisson brackets. They had originally arrived 

at NRQM by taking classical dynamical variables as operators, and that led, in turn, to the non-zero 
commutation relations for certain operators (which result in other quantum phenomena such as 
uncertainty.) But it was soon recognized that one could do the reverse. One could, instead, take the 

classical Poisson brackets over into quantum commutation relations first, and because of that, the 
dynamical variables turn into operators. (Take my word for this now, but after reading the next 

section, do Prob. 6 at the end of this chapter, and you should understand it better.) 

The process of extrapolating from classical theory to quantum theory became known as 
quantization. Apparently, for many, the specific process of starting with Poisson brackets and 

converting them to commutators was considered the more elegant way to quantize. 

1.5.2 First vs. Second Quantization 

Classical mechanics has both a non-relativistic and a relativistic side, and each contains a theory 

of particles (localized entities, typically point-like objects) and a theory of fields (entities extended 
over space). All of these are represented in the first row of Wholeness Chart 1-1. Properties 
(dynamical variables) of entities in classical particle theories are total values, such as object mass, 

charge, energy, momentum, etc. Properties in classical field theories are density values, such as 
mass and charge density, or field amplitude at a point, etc. that generally vary from point to point. 
Poisson brackets in field theories are similar to those for particle theories, except they entail 

densities of the respective dynamical variables, instead of total values. 

With the success of quantization in NRQM, people soon thought of applying it to relativistic 

particle theory and found they could deduce RQM in the same way. Shortly thereafter they tried 
applying it to relativistic field theory, the result being QFT. The term first quantization came to be 
associated with particle theories (and is sometimes call particle quantization). The term second 

quantization became associated with field theories (and is sometimes called field quantization). 

In quantizing, we also assume the classical Hamiltonian (total or density value) has the same 

quantum form. We can summarize all of this as follows. 

 

First Quantization (Particle Theories) 

1) Assume the quantum particle Hamiltonian has the same form as the classical particle 

Hamiltonian. 

2) Replace the classical Poisson brackets for conjugate properties with commutator 

brackets (divided by iℏ),e.g., 

 {Xi, pj} = ij     [Xi , pj] = Xi pj – pj Xi = iℏij  . (1-7) 

In doing (1-7), the classical properties (dynamical variables) of position and its conjugate 3-
momentum become quantum non-commuting operators. 

 
Second Quantization (Field Theories) 

1) Assume the quantum field Hamiltonian density has the same form as the classical field 

Hamiltonian density. 

2) Replace the classical Poisson brackets for conjugate property densities with 

commutator brackets (divided by iℏ), e.g. 

             r s rs r s rs,t , ,t ,t , ,t i             x y x y x y x yℏ , (1-8) 

where s is the conjugate momentum density of the field s, different values for r and s 

mean different fields, and x and y represent different 3D position vectors. In doing (1-8), 

the classical field dynamical variables become quantum field non-commuting operators 
(and this, as we will see, has major ramifications for QFT.) 
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Note that the specific quantization we are talking about here (both first and second) is called 

canonical quantization, because, in both the Poisson brackets and the commutators, we are using (in 

classical mechanics terminology) canonical variables. For example, px is called the canonical 

momentum of X. (It is sometimes also called the conjugate momentum, as we did above, or the 

generalized momentum  of X.)  

This differs from the form of quantization used in the path integral approach (see Sect. 1.1 on 
page 1) to QFT, which is known as functional quantization, because the path integral approach 
employs mathematical quantities known as functionals (See Chap. 18$near the end of the book for a 

brief introduction to this alternative method of doing QFT.) 

1.5.3 The Whole Physics Enchilada 

All of the above two sections is summarized in Wholeness Chart 1-1. In using it, the reader 

should be aware that, depending on context, the term quantum mechanics (QM) can mean i) only 
non-relativistic (“ordinary”) quantum mechanics (NRQM), or ii) the entire realm of quantum 
theories including NRQM, RQM, and QFT. In the leftmost column of the chart, we employ the 

second of these. 

Note that because quantum field applications usually involve photons or other relativistic 

particles, non-relativistic quantum field theory (NRQFT) is not widely applicable and thus rarely 
taught, at least not at elementary levels. However, in some areas where non-relativistic 
approximations can suffice, such as condensed matter physics, NRQFT can be useful because 

calculations are simpler. The term “quantum field theory” (QFT) as used in the physics community 

generally means “relativistic QFT”, and our study in this book is restricted to that. 

 

                          Wholeness Chart 1-1. The Overall Structure of Physics 

 Non-relativistic Relativistic 

 Particle Field Particle Field 

Classical mechanics 

   (non-quantum) 

Newtonian 
particle theory 

Newtonian field 
theory (continuum 

mechanics + gravity), 
e/m (quasi-static) 

Relativistic 
macro particle 

theory 

Relativistic macro field 
theory (continuum 

mechanics + e/m + 
gravity) 

Properties         
(Dynamical variables) 



Operators 



1st quantization 

 



2nd quantization  

 



1st quantization 

 



2nd quantization 

 

Quantum mechanics NRQM NRQFT rarely taught. RQM 
QFT 

(not gravity) 

 

As an aside, quantum theories of gravity, such as superstring theory and loop quantum gravity, 
are not included in the chart, as QFT in its standard model form cannot accommodate gravity. Thus, 

the relativity in QFT is special, but not general, relativity. 

Conclusions:  RQM is similar to NRQM in that both are particle theories. They differ in that 
RQM is relativistic. RQM and QFT are similar in that both are relativistic theories. They differ in 

that QFT is a field theory and RQM is a particle theory. 

1.6 Comparison of Three Quantum Theories 

NRQM employs the (non-relativistic) Schrödinger equation, whereas RQM and QFT must 
employ relativistic counterparts sometimes called relativistic Schrödinger equations. Students of 
QFT soon learn that each spin type (spin 0, spin ½, and spin 1) has a different relativistic 
Schrödinger equation. For a given spin type, that equation is the same in RQM and in QFT, and 

hence, both theories have the same form for the solutions to those equations. 
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The difference between RQM and QFT is in the meaning of those solutions. In RQM, the 
solutions are interpreted as states (particles, such as an electron), just as in NRQM. In QFT, though 
it may be initially disorienting to students previously acclimated to NRQM, the solutions turn out 

not to be states, but rather operators that create and destroy states. Thus, QFT can handle 
transmutation of particles from one kind into another (e.g., muons into electrons, by destroying the 
original muon and creating the final electron), whereas NRQM and RQM cannot. Additionally, the 
problem of negative energy state solutions in RQM does not appear in QFT, because, as we will see, 

the creation and destruction operator solutions in QFT create and destroy both particles and anti-

particles. Both of these have positive energies. 

Additionally, while RQM (and NRQM) are amenable primarily to single particle states (with  

some exceptions), QFT better, and more easily, accommodates multi-particle states. 

In spite of the above, there are some contexts in which RQM and QFT may be considered more 
or less the same theory, in the sense that QFT encompasses RQM. By way of analogy, classical 
relativistic particle theory is inherent within classical relativistic field theory. For example, one 

could consider an extended continuum of matter which is very small spatially, integrate the mass 
density to get total mass, the force/unit volume to get total force, etc., resulting in an analysis of 

particle dynamics. The field theory contains within it, the particle theory. 

In a somewhat similar way, QFT deals with relativistic states (kets), which are essentially the 
same states dealt with in RQM. QFT, however, is a more extensive theory and can be considered to 

encompass RQM within its structure. 

And in both RQM and QFT (as well as NRQM), operators act on states in similar fashion. For 

example, the expected energy measurement is determined the same way in both theories, i.e., 

 E H  , (1-9) 

with similar relations for other observables. 

These similarities and differences, as well as others, are summarized in Wholeness Chart 1-2. 

The chart is fairly self explanatory, though we augment it with a few comments. You may wish to 

follow along with the chart as you read them (below). 

The different relativistic Schrödinger equations for each spin type are named after their founders 
(see names in chart.) We will cover each in depth. At this point, you have to simply accept that in 
QFT their solutions are operators that create and destroy states (particles). We will soon see how 

this results from the commutation relation assumption of 2nd quantization (1-8). 

With regard to phenomena, I recall wondering, as a student, why some of the fundamental things 

I studied in NRQM seemed to disappear in QFT. One of these was bound state phenomena, such as 
the hydrogen atom. None of the introductory QFT texts I looked at even mentioned, let alone 
treated, it. It turns out that QFT can, indeed, handle bound states, but elementary courses typically 
don’t go there. Neither will we, as time is precious, and other areas of study will turn out to be more 

fruitful. Those other areas comprise scattering (including inelastic scattering where particles 

transmute types), deducing particular experimental results, and vacuum energy. 

I also once wondered why spherical solutions to the wave equations are not studied, as they play 
a big role in NRQM, in both scattering and bound state calculations. It turns out that scattering 
calculations in QFT can be obtained to high accuracy with the simpler plane wave solutions. So, for 

most applications in QFT, they suffice. 

Wave packets, as well, can seem nowhere to be found in QFT. Like the other things mentioned, 

they too can be incorporated into the theory, but simple sinusoids (of complex numbers) serve us 
well in almost all applications. So, wave packets, too, are generally ignored in introductory (and 

most advanced) courses. 

Wave function collapse, a much discussed topic in NRQM, is generally not a topic of focus in 
QFT texts. It does, however, play a key, commonly hidden role, which is discussed herein in 

Sects.$7.4.3 and 7.4.4, pgs.$196-197. 

The next group of blocks in the chart points out the scope of each theory with regard to the four 

fundamental forces. Nothing there should be too surprising. 

The final blocks note the similarities and differences between forces (interactions) in the 
different theories. As in classical theory, in all three quantum theories, interactions comprise forces 

that change the momentum and energy of particles. However, in QFT alone, interactions can also 
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involve changes in type of particle, such as shown in Fig. 1-1. At event x2, the electron and positron 

are changed into a photon, and in the process energy and momentum is transferred to the photon. 

 

 

Wholeness Chart 1-2. Comparison of Three Theories 

 NRQM RQM QFT 

Wave equation Schrödinger Klein-Gordon (spin 0) 
Dirac (spin ½) 
Proca (spin 1)  

Special case of Proca:   � 

  Maxwell (spin 1 massless) 

Same as RQM at left 

Solutions to wave 

equation 

States States Operators that create and 
destroy states 

Negative energy? No Yes No 

Particles per state Single* Single* Multi-particle 

Expectation values  O O  As at left, but relativistic. As at left in RQM. 

Phenomena:    

1. bound states Yes, non-relativistic Yes, relativistic Yes (usually not studied 
in introductory courses) 

2. scattering    

a. elastic a. Yes a. Yes a. Yes 

b. inelastic 
(transmutation) 

b. No  (though some 
models can estimate) 

b. Yes and no. (i.e., 
cumbersome and only for 

particle/antiparticle 
creation & destruction.) 

b. Yes 

3. decay    

a. composite 
particles 

a. Yes (tunneling) a. Yes a. Yes 

b. elementary 
particles 

b. No b. No b. Yes 

4. vacuum energy No No Yes 

Coordinates    

1. Cartesian  
   (plane waves) 

Free, 1D potentials, 
particles in “boxes” 

As at left Used primarily for free 
particles, particles in 
“boxes”, and scattering. 

2. Spherical 
  (spherical waves) 

Bound states and 
scattering. 

As at left. Not usually used in 
elementary courses. 

Wave Packets Yes Yes Yes, but rarely used. Not 
taught in intro courses. 

Wave function 

collapse 

Yes Yes Yes, but not usually noted 
and behind the scenes. 
(See Sects.$7.4.3 & 4) 
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Interaction types    

1. e/m No, though can 
pseudo model 

As at left Yes  

2. weak No No Yes  

3. strong No* No* Yes  

4. gravity No No Not as of this edition date. 

Interaction nature    

Transfers energy & 
      momentum? 

Yes Yes Yes 

Can change particle 
      type? 

No No Yes 

 
*Some caveats exist for this chart. For example, NRQM and RQM can handle certain multiparticle states 
(e.g. hydrogen atom), but QFT generally does it more easily and more extensively. And the strong force 
can be modeled in NRQM and RQM by assuming a Yukawa potential, though a truly meaningful 
handling of the interaction can only be achieved via QFT. 
 

1.7 Major Components of QFT 

There are four major components of QFT, and this book (after the first two foundational 

chapters) is divided into four major parts corresponding to them. These are: 

1. Free (non-interacting) fields/particles 

The field equations (relativistic Schrödinger equations) have no interaction terms in 

them, i.e., no forces are involved. The solutions to the equations are free field solutions.   

2. Interacting fields/particles 

In principle, one would simply add the interaction terms to the free field equations and 

find the solutions. As it turns out, however, doing this is intractable, at best (impossible, at 
least in closed form, is a more accurate word). A trick employed in interaction theory 
actually lets us use the free field solutions of 1 above, so those solutions end up being quite 

essential throughout all of QFT. 

3. Renormalization 

If you are reading this text, you have almost certainly already heard of the problem with 

infinities popping up in the early, naïve QFT calculations. The calculations referred to here 
are specifically those of the transition amplitude (1-4), where some of the numeric factors, 
if calculated straightforwardly, turn out to be infinite. Renormalization is the mathematical 

means by which these infinites are tamed, and made finite. 

4. Application to experiment 

The theory of parts 1, 2, and 3 above are put to practical use in determining interaction 

probabilities and from them, scattering cross sections, decay probabilities (half-lives, etc.), 
and certain other experimental results. Particle decay is governed by the weak force, so we 
will not do anything with that in the present volume, which is devoted solely to quantum 

electrodynamics (QED), involving only the electromagnetic force. 

1.8 Points to Keep in Mind 

When the word “field” is used classically, it refers to an entity, like fluid wave amplitude, E, or 
B, that is spread out in space, i.e., has different values at different places. By that definition, the 
wave function of ordinary QM, or even the particle state in QFT, is a field. But, it is important to 
realize that in quantum terminology, the word “field” means an operator field, which creates and 

destroys particle states. States (= particles = wave functions = kets) are not considered fields in that 

context. 

Terminology 

“field”= 

operator in 

QFT 

The four major 

parts of QFT 
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In this text, the symbol e, representing the magnitude of charge on an electron or positron, is 

always positive. The charge on an electron is – e. 

1.9 Big Picture of Our Goal 

The big picture of our goal is this. We want to understand Nature. To do so, we need to be able 
to predict the outcomes of particle accelerator scattering experiments, certain other experimental 
results, and elementary particle half-lives. To do these things, we need to be able to calculate 

probabilities for each to occur. To do that, we need to be able to calculate transition amplitudes for 
specific elementary particle interactions. And for that, we need first to master a fair amount of 

theory, based on the postulates of quantization. 

We will work through the above steps in reverse. Thus, our immediate goal is to learn some 
theory in Parts 1 and 2. Then, how to formulate transition amplitudes, also in Part 2. Necessary 

refinements will take up Part 3, with experimental application in Part 4. 

Steps to our goal 

2nd quantization postulates → QFT theory → transition amplitude calculation → probability 

→ scattering, decay, other experimental results → confirmation of QFT 

 
In this book our goal is a bit limited, as we will examine a part – an essential part – of the big 

picture. We will i) develop the fundamental principles of QFT, ii) use those principles to derive 

quantum electrodynamics (QED), the theory of electromagnetic quantum interactions, and iii) apply 
the theory of QED to electromagnetic scattering and other experiments.  We will not examine herein 
the more advanced theories of weak and strong interactions, which play essential roles in particle 
decay, most present day high energy particle accelerator experiments, and composite particle (e.g., 

proton) structure. Weak and strong interaction theories build upon the foundation laid by QED. First 

things first. 

1.10 Summary of the Chapter 

Throughout this book, we will close each chapter with a summary, emphasizing its most salient 
aspects. However, the present chapter is actually a summary (in advance) of the entire book and all 

of QFT. So, you, the reader, can simply look back in this chapter to find appropriate summaries. 
These should include Sect. 1.1 (This Book’s Approach to QFT), the transition amplitude relations of 
Eqs. (1-1) though (1-6), Sect.1.5.2 (1st and 2nd Quantization), Wholeness Chart 1-1 (The Overall 
Structure of Physics), Wholeness Chart 1-2 (Comparison of Three Theories), and Sect. 1.9 (Big 

Picture of Our Goal). 

1.11 Suggestions? 

If you have suggestions to make the material anywhere in this book easier to learn, or if you find 
any errors, please let me know via the web site address for this book posted on pg. xvi (opposite 

pg.1). Thank you. 

 

1.12  Problems 

As there is not much in the way of mathematics in this chapter, for most of it, actual problems 

are not really feasible. However, you may wish to try answering the questions in 1 to 5 below 

without looking back in the chapter. Doing Prob. 6 can help a lot in understanding first quantization. 

1. Draw a Feynman diagram for a muon and anti-muon annihilating one another to produce a 
virtual photon, which then produces an electron and a positron. Using simplified symbols to 
represent more complex mathematical quantities (that we haven’t studied yet), show how the 

transition amplitude of this interaction would be calculated. 

2. Detail the basic aspects of first quantization. Detail the basic aspects of second quantization, 
then compare and contrast it to first quantization. In second quantization, what is analogous to 

position in first quantization? What is analogous to particle 3-momentum? 

  Symbol e >0 

Our goal: predict 

scattering and 

decay seen in 

Nature 

Steps to our goal 

Our goal in this 

book: basic QFT 

principles and    

QED, theory and 

experiments 
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3. Construct a chart showing how non-relativistic theories, relativistic theories, particles, fields, 

classical theory, and quantum theory are interrelated. 

4. For NRQM, RQM, and QFT, construct a chart showing i) which have states as solutions to 
their wave equations, ii) how to calculate expectation values in each, iii) which can handle 
bound states, inelastic scattering, elementary particle decay, and vacuum fluctuations, iv) which 

can treat the following interactions: i) e/m, ii) weak, iii) strong, and iv) gravity. 

5. What are the four major areas of study making up QFT? 

6. Using the corresponding Poisson bracket relation {X, px} = 1, we deduce, from first 

quantization postulate #2, that, quantum mechanically, [X, px ] = iℏ . For this commutator acting 

on a function , i.e.,  [X, px ] = iℏ, determine, assuming px is a single term, what form px 

must have. Is this an operator? Does it look like what you started with in elementary QM, and 

from which you then derived the commutator relation above? Can we go either way? 

Then, take the eigenvalue problem HE, and use the same form of the Hamiltonian H as 

used in classical mechanics (i.e., p2/2m + V), with the operator form you found for p above. This 
last step is the other part of first quantization (see page 4). 

Did you get the time independent Schrödinger equation? (You should have.) Do you see how, by 
starting with the Poisson brackets and first quantization, you can derive the basic assumptions of 

NRQM, i.e., that dynamical variables become operators, the form of those operators, and even 
the time independent Schrödinger equation, itself? We won’t do it here, but from that point, one 
could deduce the time dependent Schrödinger equation, as well. 

 

 


