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Summary Overviews of String Theory Topics 
     By Robert D. Klauber updated March 3, 2024 www.quantumfieldtheory.info      
This document contains the following. Pages are not numbered overall. Page numbers begin at 1 for each topic.   

Overview Intro to String Theory. A simple, snapshot two-page overview preview to quantum string theory.  

Dimensions, Branes, and Strings: The Differences. 

Energy in a Superstring. The way tension energy in a string is calculated in superstring theory differs from that of classical 

mechanics and so, can be confusing. Authors do not generally address this issue. Also includes T-duality intro. 

Simplified In-depth Intro to String Theory. A more detailed overview of string theory than the first topic above. 

From Vibrating Strings to a Unified Theory of All Interactions. By Barton Zwiebach. A nice simplified overview of string 

theory as a basis for the standard model of elementary particle theory. 

Gravity, Electrodynamics, and Planck Length in Higher Dimensions. 

Summary of Gauges Employed in String Theory. 

Graphical Visualization of the Most Common Gauge Family in String Theory. 

Symmetry on the String Worldsheet. A wholeness chart summary of symmetries comparing and contrasting internal vs 

external symmetries and what is conserved in each case.  

Point Particle vs String Solutions. A wholeness chart summary of point particle vs open string motion in the light-cone 

gauge. Augments and summarizes much of Chaps. 9, 11, and 12 of Zwiebach (A First Course in String Theory 2009). 

Generators. A wholeness chart summary of generators of translation, rotation, and boost. Points out (as shown in 

virtually no texts) how the classical generator uses Poisson brackets, which are replaced in quantum theory with 

commutators. Summarizes Sects. 11.5 and 11.6 of Zwiebach. 

Deducing D=26 and M2 Relations. An overview of how the bosonic string can only exist in 26 dimensional spacetime in 

order to satisfy Lorentz invariance plus insight into the M2 relationship for quantized strings. 

Open vs Closed Relativistic String Solutions. A one-page wholeness chart listing the key parts of the solutions for relativistic 

strings. It compares and contrasts the solutions and underlying relations for open vs closed strings. 

Summary of Lagrangians for Different Systems. Wholeness chart of different Lagrangians in different areas of physics. 

Number Operators in QFT and String Theory. The number operator in string theory is similar in some respects to, and 

different in other respects from, that of QFT. This link is a one-page wholeness chart comparing and contrasting them. 

Superstrings: Summary of Zwiebach Chapter 14 plus a simplification. Two figures not in Zwiebach are presented that 

should make the result clearer. Also, a simplified derivation of the last relation in Sect. 14.3 (pgs. 309-312). 

Branes and Open Strings: An Overview. A summary of open strings that can end on different dimension d-branes and of 

the characteristics (massive, massless, tachyon, etc.) of the resulting fields. Overview of Chap. 15 in Zwiebach. 

How Strings Give Rise to Fields Like Maxwell Fields. A summary of how we identify an oscillating string, governed by its 

field (wave) equation with a photon (Maxwell field). Essentially showing that the field equation for the string is the same 

as Maxwell’s equation. (This is pretty obscure in texts, but a foundational concept in string theory.) 

Kalb-Ramond String Charge Theory vs Electromagnetic Charge Theory. A wholeness chart comparison of the Maxwell 

field vs the K-R string field. Covers Sects. 16.1 and 16.2 in Zwiebach. 

How Maxwell Charge is Located at Endpoints of Open Strings. Missing steps in Zwiebach, Sect. 16.3, are supplied. 

Electric Charge on Compact D-Branes. A more detailed treatment than is found in string theory texts for why a compact D-

Brane can behave in spacetime external to it like an electric point charge. Parallels Zwiebach, Sect. 16.4. 

Moduli. A simplified overview of moduli and why they need to be stabilized. Parallels first part of Zwiebach, Sect. 21.6. 

Polyakov String Action. Simplified intro to a form of the action useful in the covariant formulation. 

String Interactions: An Intro. Helps with Chap. 25 of Zwiebach (and other string texts dealing with interactions). 
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Strings in Spacetime  

Whereas a particle (of zero spatial dimensions) in spacetime traces out a world path (1D, a line, generally 

curved, but possibly straight), a string (of 1 spatial dimension) traces out a world sheet (a 2D surface, 

generally curved, but possibly flat.) 

In 3D spatial space, a surface like a soap bubble automatically takes the smallest surface area. A free-

floating bubble assumes a spherical shape, which has the minimum surface area for its volume. A soap 

bubble on a planar wire loop forms a flat surface, the minimum area that touches the loop all around its 

edges. 

This is the principle of least action, where the action is the surface area. This principle is extended to 4D 

spacetime (and higher D spacetimes, as well) in the formulation of string theory. 
     
Basic Principles upon Which the Theory is Built   

1. For classical relativistic strings, minimize the area of the string world sheet (which is equivalent to minimizing the action, 

as the action in this case is the world sheet area). 

2. Quantize classical relativistic strings (parallel to QFT quantization). 

    i) Use the same form for the action (which is equivalent to using the same form for L, which is equivalent to using the 

same form for H, which is equivalent to using the same equation of motion) as in classical relativistic strings. 

    ii) Take the numerical expansion coefficients in the solution to the equation of motion as creation and destruction operators 

(which is equivalent to converting classical Poisson brackets to commutators). 
  
Things to Note    
Quantization 

A classical field could be a scalar or a vector. For a scalar, the field  could be temperature, pressure, displacement in only 

one direction, or something else. It depends on spatial location and time. When we quantize to get QFT, the scalar field becomes 

an operator field that creates and destroys states (particles) which are scalars (like the Higgs particle). 

For a vector, the classical field could represent the displacement from equilibrium in three directions in space, such as that 

of a wave moving through a medium. The displacement varies with spatial location and time. Such a wave would, in general, 

have oscillating motion in two spatial directions transverse to the wave velocity plus motion in the longitudinal direction. In 

relativity, we can think of the wave as a 4D vector, where each of the four components of the vector is a function of space and 

time as observed in a particular reference frame. When we quantize in QFT, the vector field becomes an operator field that creates 

and destroys states (particles) which are vectors (like the photon, W, Z, and gluon particles). 

In summary, where X represents the (dependent) displacement components and x represents the location in space and time 

that has displacement X. 

      quantization

operator fielde.g., displacement of field

i
X t,x X x A x
     

��������������
  (1) 

Of course, the classical vector could be something other than displacement of a fluid or solid, like the classical e/m 4-vector 

potential. 

    quantization

e.g., classical e/m 4-potential e/m operator field

A x A x
   
����� �����

                        (2) 

In classical string theory, we find the displacement of a string X (visualize a taut string attached along the x axis to a wall 

at either end, vibrating in the y [transverse] direction). It could, of course, also vibrate in the z direction, as well as longitudinally 

in the x direction. Taking x as x1 in more general notation, 

         1 1 1quantization

string displacement string operator field

generalized parameters and  used in place of  and X t,x X t,x t x
   
����� �����

. (3) 



2 
Note that in (3), like we had in (1), what we have classically as a displacement field changes in quality when we quantize, 

i.e., changes to something that no longer represents displacement, but becomes an operator. In this way, quantum string theory 

finds that vibrating strings can, in principle, represent fields found in QFT that create and destroy the particles (which are 

wavelike) found in our universe. 

Fermions vs Bosons 

Fermions do not manifest as classical fields (whereas bosons do), so we can’t quantize them in the same way as described 

above. Generally, string theory is developed as a theory of bosons (bosonic string theory) and after one gets acclimated to that, 

supersymmetry is invoked to bring in fermions. 

String Theory’s Place in Physics 

In Klauber, SFQFT, Vol. 1, pg. 5, the overall structure of physics is displayed, but as noted there, string theory is not included 

in Wholeness Chart 1-1. The chart below adds string theory to that earlier chart. 
    
                                               Wholeness Chart. The Overall Structure of Physics Including Strings 

 Non-relativistic Relativistic 

 Particle Field String: 

Special Case 

of Field 

Particle Field String: 

Special Case 

of Field 

Classical mechanics 

   (non-quantum) 
Newtonian Newtonian Newtonian Relativistic  Relativistic Relativistic 

Properties         

(Dynamical variables) 



Operators 



1st 

quantization 

 



2nd 

quantization  

 





1st 

quantization 

 



2nd 

quantization 

 



2nd 

quantization 



Quantum mechanics NRQM 
NRQFT rarely 

taught. 
N/A RQM 

QFT 

(not gravity) 

Quantum 

string theory 

 

The Usual Route to Study Quantum Strings 

In studying modern string theory, one proceeds in steps, as Zwiebach does. (Some steps, one typically has covered before 

studying strings, like 1, 2, 3, 6, and 8.) 

1. Classical non-relativistic (Newtonian) strings (which are a certain kind of field) 

2. Classical relativistic theory of particles 

                                      ↓ 

3. Classical relativistic theory of fields 

                                      ↓ 

4. Classical relativistic theory of strings (which are a certain kind of field) 

5. Quantum relativistic theory of particles (RQM, quantization of #2) 

                                      ↓ 

6. Quantum relativistic theory of fields (QFT, quantization of #3) 

                                      ↓ 

7. Quantum relativistic theory of strings (which are a certain kind of field; quantization of #4) 

                                      ↓ 

8. Quantum relativistic theory of supersymmetry (SUSY, an extension of QFT) 

                                      ↓ 

9. SUSY applied to quantum relativistic strings. 

                                      ↓ 

      10. Assorted topics like branes, how charge arises in string theory, dualities, and more.  



Dimensions, Branes, and Strings: The Differences 
      Robert D. Klauber March 10, 2024 www.quantumfieldtheory.info  

 

Three concepts are fundamental to string theory, those of dimensions, strings, and branes. These, particularly branes 

vs dimensions, can be confused, so we define them, with examples, in the following. 

1 Definitions 

1.1 Dimension 

This is nothing new, except that in string theory, we have more than the 3 spatial and 1 time dimensions we are 

familiar with. In string theory without supersymmetry (SUSY), it turns out that requiring Lorentz invariance constrains 

the number of dimensions to exactly 26 (25 spatial, 1 time). With SUSY, the constraint changes to exactly 10 (9 spatial, 

1 time). Our 4D world is a subspace of a 26 (in elementary string theory) or 10 (in superstring theory) dimensional space. 

In string theory, the spatial dimensions beyond the three of our world are considered to be compactified, i.e., curled 

up and closed upon themselves. In analyses, each such dimension is commonly taken as circular and very small, on the 

order of the Planck length in circumference. 

The symbol d is used to denote the number of spatial dimensions; the symbol D, the total number of dimensions. 

The world we are accustomed to has d = 3 and D = 4. 10D superstring theory has d = 9 and D = 10. D = d +1, in general. 

1.2 String 

A string has one spatial dimension and traces out a world sheet in spacetime. The spacetime in string theory is 26D, 

or 10D for superstrings. The strings oscillate in all spatial dimensions, the 3D of our familiar world plus in the higher 

dimensions. 

For strings as elementary particles, the oscillations in 3 spatial dimensions (d = 3) are those we associate with any 

(wavelike) particle. The string oscillates and moves, i.e., it manifests as a wave. The oscillations and boundary conditions 

of the string in higher dimensions determine what kind of elementary particle it is. 

1.3 Brane 

A brane is an object of any number of spatial dimensions, up to 25 (elementary string theory) or 9 (superstring 

theory). Although we talk of branes as having a certain number of dimensions, they themselves are not dimensions, per 

se. They are objects. The number of spatial dimension over which a brane extends is symbolized by p. 

What they are made of is not addressed. They are characterized by their impact, in string theory, on the behavior of 

strings. Strings end on branes, as shown in Fig. 1 below, where, in this example, D = 4, d = 3, and p = 2, though higher 

dimensions are analogous (branes can be of more than the two dimensions shown). 

 

 

                   Figure 1. A String with Ends on a 2d Brane in a 3d World (of 4D spacetime) 

 

Unlike Fig. 1, for which we show only part of the brane, branes generally extend throughout the p dimensional space 

they are in. In the figure, the two-dimensional brane really extends to infinity in the x1 and x2 directions. 

Boundary conditions exist for the string ends. In this example, the B.C.s allow the ends to slide sideways (without 

friction) on the 2d brane, but are fixed in the x3 direction. A sliding B.C. is called a Neumann B.C.; a fixed one, a Dirichlet 

B.C. A brane of this type is called a Dp-brane, where p is the (spatial) dimension of the brane and D here stands for 

Dirichlet, implying the brane cannot move in a direction perpendicular to its own p dimensional space. 

x2

x1

(NN)

(NN)

x3

(DD)

D=d+1

 p < d

string in all d, 
vibrates inside & 
outside Dp brane

outside 
mode 
shown
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Though the string ends are constrained to move only on the brane, the rest of the string can oscillate in all directions, 

the two of the brane shown plus the x3 direction (in which its ends cannot move). For higher dimensions, the same idea 

applies. The string endpoints can’t move off the Dp-brane (they can slide “tangentially” along it, but not normal to it). 

The rest of the string, however, can have oscillation modes in the brane (tangentially) or outside of the brane (normally). 

For higher dimensions branes beyond p = 2, “tangentially” means motion within the brane itself; “normal” means 

motion outside the brane. Typically string endpoints are restricted to tangential motion, but string oscillations are both 

tangential and normal to the brane. The “(NN)” symbol in Fig. 1 next to a coordinate axis means the first and second 

ends of the string have Neumann B.C.’s in that dimension, i.e., the ends can slide in that direction. The “(DD)” symbol 

means the string endpoint have Dirichlet B.C.’s, the ends cannot move in that direction. 

In short, string endpoint motion is limited to the brane (in p dimensions), but the rest of the string can oscillate 

throughout all space (in all d dimensions). 

Confusion can arise because sometimes strings are referred to as one dimensional branes. But, it is best to consider 

them as completely different animals, at least while one is first learning the theory. 

2 Strings Between Branes 

Strings don’t have to begin and end on the same brane. They can begin on one brane and end on another, as for two 

of the strings in Fig. 2. 
 

                     Fig. 2. Strings Can Also Begin on One Brane and End on Another 

 

Further, unlike the branes shown in Fig. 2, different branes can have different dimensions. A string might start on a 

D2-brane, for example, but end on a D1 or D6-brane, as but two examples. Further, two different branes could be 

coincident. In Fig. 2, this would mean brane 2 occupies the same space as (overlaps) brane 1, i.e., 3 3
2 1 0x x ɶ ɶ . One end 

of a string would be on one brane, and the other end, on the other brane, even though the two ends are constrained to 

move (slide) only in the same x1-x2 plane, and not normal to that plane. 

When this situation arises (commonly in string theory), diagrams often show the coincident branes in different 

places, i.e., as not coincident. This is only because one cannot distinguish visually between two coincident branes if they 

are drawn in their actual locations. So, keep this in mind when you see strings extending from one brane to another, and 

be clear on which branes are coincident and which are not. 

As one eventually learns, different branes can not only have different spatial dimensions or extend over different 

subspaces, but have different characteristics, as well, i.e., they can be of different types. The kind of elementary particle 

a string represents is determined by the type of brane it begins on and the type of brane it ends on. 

For the 6d compactified space of superstring theory, a number of different types of branes are used. Some of these 

are coincident with others; some are not. Strings reaching between different type branes represent different particles of 

the standard model. 
  

3 A Simplified Look at String Theory’s Connection to Elementary Particle Theory 

Barton Zwiebach published a nice simplified overview of string theory’s application to particle theory in the MIT 

Physics Annual 2004, which is included as a later section herein. It is a nice roadmap to the theory that can help one keep 

sight of the forest, in spite of the trees, as one progresses through learning the details of that theory. 

I believe this can also be found on the website for Zwiebach’s book A First Course in String Theory (Cambridge 

2009), 

brane 1 brane 2

x
3~
1 x

3~
2

(N)

x2
1

(N)x1
1

x3

(D)



Energy in a Superstring 
       Bob Klauber Orig: 20 June 2020 2nd rev: April 27, 2023  

1 Tension Energy: Classical Strings vs Superstrings 

The tension force as modeled in a superstring is a bit weird by classical standards, as it does not depend (as a 

classical elastic string would) on how much the string has been stretched. The tension in the superstring is the same 

constant value for any amount of stretching. It is even more weird in that the initial length of the superstring is 
considered to be zero. This means the potential energy in the string is directly proportional to the length of the string 

(unlike a classical elastic string). This is summarized in Wholeness Chart 1. 
  

Wholeness Chart 1. Tension and Stretch in Classical vs “Modern” String Theory  

 Classical String Superstring Comment 

Open    

  

Unstretched 

                          
                     Elastic string   

modeled as spring 

 

 

 

Superstring considered to have zero length 

unstretched, unlike classical elastic string. 

  Stretched 
 

 
Classical force proportional to stretch x. 

Superstring force constant for any stretch, and 

stretch is x (unlike classical string x). 

  Potential 

  Energy 
 2

2 2
1 1E V k x T x       0E V T x    

Classical tension (potential) energy                 

proportional to (x)2;  

superstring proportional to x. 

  Tension 

  Force 

dV
T k x

dx
    

(varies with x) 

0

dV
T T

dx
   

(constant) 

Classical tension grows with stretch x; 

superstring is constant with stretch x. 

    

Closed    

  

Unstretched 

   
           Radius R 

 
   Zero radius 

Superstring considered to have zero circumference 

unstretched, unlike classical rubber band. 

  Stretched 

  

               
2

T k C

C R

 

  
  

     

     
               T = T0 (constant) 

Classical force proportional to stretch C. 

Superstring force constant for any stretch, and 

stretch is C (unlike rubber band C). 

  Potential 

  Energy 
 2

2 2
1 1E V k C T C       0E V T C    

Classical tension (potential) energy                  

proportional to (C)2;  

Superstring energy proportional to C. 

  Tension 

  Force 

dV
T k C

dC
    

(varies with C) 

0

dV
T T

dC
    

(constant) 

Classical tension grows with stretch C; 

superstring is constant with stretch C. 

 

2 Mass 

Mass in relativistic string theory can arise from the internal energy the string holds, which manifests externally 

as mass via m = E/c2, where E is the internal energy. 

So, for a traditional relativistic classical string theory, we would have contributions to the mass from i) the 
string’s inherent rest mass, which we designate by m0, and ii) mass from the internal energy of the string, which for 

the simple case of a non-vibrating string would equal the energy from string tension Et divided by c2. 

k

x

T = kx
x

x + x x

T = T 0
(constant)
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  0 0 20
for constant 

l
t

t t t

E
E Tdx T T , E T l m

c
    . (1) 

So, in traditional classical relativistic string theory, the string mass for a static string would be 

 0 tm m m  . (2) 

However, “modern” relativistic string theory (both classical and quantum) take (Zwiebach, pg. 119) 

  0 0 "modern" relativistic string theorym  . (3) 

This makes analysis simpler, but one might question how valid the assumption is. The result of this and the prior 

sections are summarized in Wholeness Chart 2, where we also extrapolate mass to mass density (per unit length) 

along the string, a more relevant number for calculating things like natural frequency of the string. 
     

Wholeness Chart 2. Aspects of Various String Theories 

        
 * See Zwiebach, pgs. 120 (Sect. 6.8 2nd paragraph), 123 (2nd line under (6.87)), 124 (2nd line up from bottom),  

 

3 Superstring Loops and Tension Energy 

We define the quantity ˊ and express string energy in terms of it and the radius of a superstring circular loop. 

 1 1

1
Tension 2 2 Tensionloop loop

R
E RT T E 

 
   

 
  (4) 

ˊ reflects the amount of tension in the string. It is proportional to the inverse of the tension. For multiple wrappings 

(loops) of the string 

 Tension  number of wrappings ("wrapping, or winding, number")
mR

E m


 


. (5) 

Note the units. 

Attribute of 

Theory 

Classical                       

Newtonian 
True Classical 

Relativistic 
“Modern” Classical 

Relativistic 

“Modern” Quantum 

Relativistic 

Unstretched 

string 
Finite length Finite length Zero length (point) As at left 

Tension vs 

stretch 

Hooke’s Law T = kx 

x = displacement from zero 

stretch position 

Hooke’s Law                                        

with relativistic 

considerations 

T0 = constant 

Tension independent                  

of stretch 

As at left 

External 

mass,           

static string 

     
m = m0 ≠ 0 

 
m0 = inherent mass 

 
No contribution from T 

    
m = m0 + mT  

 
m0 = inherent mass ≠ 0 
  

Contribution from T: 

2T

T dx
m

c
    

     
m = mT  

   
m0 = 0 (no inherent mass) 

  
Contribution from T0: 

0

2T

T l
m

c
   

As at left 

Mass density  = 0 ≠ 0 
 = 0 +  T 

0 ≠ 0 

 =  T 

0 = 0 
As at left 

Label points 

on string? 
Yes Yes No* As at left 
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     2

2 2

natural
units

1
tension force  units from Newton's law    or 

ml
T M

s l
   (6) 

So, from (4), ˊ has units of M‒2 (or l2, as it is sometimes taken as cm2). 

4 Loops and Vibration Energy (= Kinetic Energy) 

Quantized energy is 

   1natural
units

2 1
Kinetic  massless  or 

c
E M

l





  ℏ ℏ . (7) 

The lowest (first or fundamental) mode of vibration has wavelength 1 equal to C = 2R in (7), giving, in natural 

units, 

 
1

1
Kinetic lowest mod e

wrapping

E
R

 . (8) 

For more wrappings with the same wavelength (one circumference), kinetic energy would not change. 

 

1

1
Kinetic lowest mod e

m wrappings.
same

E
R



 . (9) 

But, we also have higher vibration modes to consider, where the shorter wavelength means higher kinetic 

energy. 

 1 Kinetic mode numbern nthmod e
m wrappings.
same

n
E n

n R



       (10) 

So, greater wrapping number increases potential (tension) energy via (5), and higher modes increase kinetic 

(vibration) energy via (10). They both contribute to the total energy of the string, which is 

 1Tension Vibration for given fundamental mode m wrappings,
nth mod e

mR n
E E E

R



   


. (11) 

If a massless superstring has energy E with its wrapping around dimensions in a higher dimensional 

compactified space, then to us in the non-compactified 4D spacetime, it looks to have (rest) mass 

 
2

E
m

c
  (12) 

5 Ramifications 

Note that one term in (11) has R in the numerator, and one has R in the denominator. Consider one case where 

(we will drop subscripting on E) 

 
10 1

10 1
1

mR n R m
E n

R R 
     

 
. (13) 

For small R = .01 this has large kinetic energy of 100 units, but small potential energy of 0.1 units with a total 

energy of 100.1 units. 

Now, consider the case where R = 10. This has small kinetic energy 0.1 and large kinetic energy of 100, for 

the same total of 100.1 units. 

One superstring has large radius; the other, small, but the string energy is the same, and via (12), they both 

manifest in our world as having the same mass, i.e., being the same particle, at least effectively. 

Suppose one of these cases can be solved perturbatively, but the other not. We can get the same prediction for 
mass either way, so we take the easy way, the perturbative way, and the answer is good for both cases. A very large 

radius string wrapped in Calabi-Yau space has identical eigenvalues (like energy) as a very small radius string. 
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We can thus solve an intractable problem by solving a tractable equivalent problem. The answers to the easy 

problem are answers to the hard one. As one no doubt knows, this is a great boon. 

This is called a duality. There are dual systems, which are different, yet effectively the same. In this case, it is 

a T-duality, where, depending on the author, T stands for i) “target space”, whose meaning is a topic for another 

day, ii) “topological”, as compactified space is characterized by its topology, which relates to how strings can be 
wrapped around openings within it,  or iii) (probably most correct) “toroidal” (where a circle is a 1 dimensional 

toroid). 

Caveat: This treatment is simplified. There is a bit more to calculating wound string energy beyond the scope 

of this discussion. 

 



Simplified Intro to String Theory for Physics Majors 
     Robert D. Klauber www.quantumfieldtheory.info January 26, 2024 

 

One should first read the two page “Overview Intro to String Theory” by R. Klauber, which is the first section of the 

document found at http://www.quantumfieldtheory.info/string_topics_summaries.pdf. 

Equation symbols such as (24.2) [569] refer to Zwiebach, A First Course in String Theory. For this example, it is equation 

(24.2) in Zwiebach on page 569. 
 

1 String Theory Postulates 
 

1.1 Classical Relativistic String Theory Postulates 

a. String tension T0 is constant and not proportional to stretch length, i.e., not as in Hooke’s law. That is T0 ≠ k x. 

b. The string is stretched from initial length zero (unlike rubber bands with finite length when not stretched). So, from a), 

 0  string lengthtensE T a a    (1) 

c. Non-energy-related mass of string = 0. Rest mass m arises solely from stretch tension energy via m = Etens/c
2. There will 

be an additional mass contribution to the total mass M from string vibration (kinetic) energy. 

d. Assume the action is the area of the string worldsheet, and it is minimized for free strings. (One obtains the Lagrangian 

density L from the action, the Hamiltonian density from L, and the equation of motion from the action minimization.) 

1.2 Quantization Postulates 

Parallel to the two postulates of QFT: 

a. Take the classical relativistic string Hamiltonian density H as the quantum string Hamiltonian density. (This is same as 

taking the classical Lagrangian density L as the quantum L, which is equivalent to taking the classical equation of 

motion as the quantum equation of motion, which is equivalent to taking the classical solution form for string motion 

X


, the solution to the equation of motion, as the form of the quantum string field). 

b. Impose certain commutation relations (parallel to those in QFT) on the string field and its conjugate momentum density. 

This, in turn, results in commutation relations for the coefficients of the Fourier expansion terms in the solution X

. 

And this turns the coefficients into creation and destruction operators. 

Note that there is one more assumption, not unlike other such assumptions we have seen in quantum mechanics. That is, we 

cannot detect (measure) the position of internal points of the string. They cannot be labeled such that we can follow 

their motion. 

2 Adopt a Class of Gauges 

X


, the position in spacetime of points on the string, is expressed as a function of two parameters on the string worldsheet 

surface,  and . X


 = X


(,). 

                                  Figure 1. String Worldsheet Showing Lines of Constant  and . 
    

 We might tend to think of  as having the value of proper time, but it generally does not. It is more general in nature and 

just a parameter. This can be confusing, as in relativity theory,  is typically used as the symbol for proper time, but in string 

theory, it is just a parameter.  

In principle, these parameters can be virtually anything. In practice, string theory is like electromagnetism or many other 

physics theories, in that development and analysis can be greatly simplified by making a good (convenient) choice of gauge, here 

a good choice for  and . 
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Herein, we will simply assume a good choice for a family (type or class) of gauges has been made, without getting into exact 

details. In the gauge family of choice, for any possible string trajectory in spacetime (wherein all points on the string must remain 

inside the light cone, i.e., cover timelike paths),  increases as observer time t does (for any observer and for any choice of  in 

this gauge family). That is, all timelike intervals have positive change in .  

Also, in this gauge family, lines of constant  and lines of constant  are orthogonal to one another at every point (event) on 

the worldsheet. A spacelike interval moving from left to right on a spacetime diagram will always have increasing . 

In practice, this means that for this class of gauge,  is related to time, but generally is not equal to time. Similarly,  is 

related to spatial distance, but generally not equal to it.  increases monotonically with time t of any inertial observer, and  varies 

monotonically in space from one end of the string to the other for any inertial observer. For open strings (not closed in a loop), 

by convention, we take  values to extend from 0 at one end of the string to  at the other end. The center of the string is taken at 

 = /2. 

The parameters  and  are dimensionless. Note that the surface area of the string worldsheet is invariant under variations in 

 and  (under transformations to different  and ). That is, changes in the spacing and arrangement of the parameter grid lines 

on that surface leave the area of the sheet unchanged. 

3 Field Equation and Its Solution in the Chosen Gauge Class 

3.1 The Field Equation 

When using this gauge family and the requirement of Sect. 1.1(d) of minimum worldsheetarea (minimum action), after 

considerable mathematical manipulation, the equation of motion can be deduced. It turns out to take the form we have seen many 

times, that of the wave equation, 

               

2 2

2 2
0 where

X X X X
X X " X X X X

   
     

   
         
   

ɺɺ ɺ ɺɺ .                (24.2) [569] (2) 

Take care, however, that the derivative symbols using dots and primes in string theory are with respect to the parameters  and , 

which generally do not represent time (neither proper nor coordinate) or space (neither proper length nor coordinate length). This 

may take some getting used to, but it is the accepted practice. 

3.2 Solution to Field Equation in Chosen Gauge Class 

Even though the dots and primes in (2) are not generally with respect to time and space, we know the solution form for (2), 

if they were, from prior work. Here, we can just take the same solutions, but just substitute  for t and  for x. 

Hence, the solution to (2) for an open string (not closed in a loop) is, where we discuss symbols and the meaning of each 

term below, 

                         0 0
0

2

1
2 2

in
n

n
p

X , x i e cos n
n

   



       




    �����
.        (24.9)[570] (3) 

In (3), the coefficients of terms are defined in a way that will prove beneficial later on in the theory. One can check that (3) 

solves (2) by simple substitution. Note that the integer n ranges from ‒∞ to +∞, but does not include zero. 

ˊ, for reasons we won’t get into, is called the slope parameter, and where T0 is the tension force in the string, equals 

                                                
0

1
natural units

2 T



  .                           (8.76) [169] (4) 

First term 

The constant term x0
 in (3) is the position of the middle of the string for  = 0. In a sense, one might think of this as initial 

position, but to be precise, for that we would need t =  = 0 initially. x0
 is the position of the center of the string along the line on 

the worldsheet where  = 0. 

Second term 

In the second term after the equal sign in (3), 0
 is defined in terms of ˊ and the 4-momentum of the entire string p


, as 

shown in the under brackets. That term can be re-written with the slope parameter and with the tension T0 of (4) as equal to the 
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string tension energy Etens divided by the open string length a, as, where M is the mass of the string due to both tension and 

vibration energy, 

     
0

open
2

string

 mass due only to string tension

= 4-velocitytens tens

p
mp p a p a p a Mu

T E / a E m m u

    



    


 

      
 

. (5) 

Thus, the second term in (3) becomes 

 
a M

u
m




, (6) 

which effectively represents the (non-oscillating) motion of the center of the string and makes some sense, as it entails velocity 

times a time parameter. Heuristically, imagine a special case where  represents proper time (it virtually never does in string 

theory, as it is a more generalized parameter), and  represents actual distance (it virtually never does) along the string from  = 

0 to  = , so a = . If we have no vibration of the string, so M = m, then (6) for the spatial coordinates becomes 

 2

2
1

1

i
i iv

u t v v t
v

   


, (7) 

the distance a non-accelerating object has moved after time t. Note this treatment is simply a mnemonic helpful in thinking about 

the second term after the equal sign in (3), as  is a more generalized parameter and generally M ≠ m, so quantities in (3)will not 

be exactly what we might otherwise think of them as being. The math in (3) still works, though the precise physical visualization 

of it may be challenging. Regardless, the second term gives us the part of X due to free (non-accelerated) motion of the string as 

a function of the parameter , for whatever gauge we use to specify . 

Third term 

  The third term represents the oscillating motion modes of the string (since it isn’t just a solid object), which to get the LH 

side of (3), is superimposed upon the first and second term contributions to get string motion at every value of  and . Though 

 and  don’t represent spatial position and time, the math of (3) still holds, but the physical intuition on what is happening in 

spacetime is more problematic. 

Note the cosine dependence on , a measure of distance along the string. The center of cos  is at /2, and there it equals 

zero. So, the last term in (3) describes oscillating motion about the string centerpoint, whose coordinates in spacetime are 

prescribed by the first two terms after the equal sign. 

The n
 (n ≠ 0)) are Fourier expansion coefficients, where the mode number of the string vibration is n. It can be confusing 

at first, but in string theory, the n
 (alpha, not “a”) coefficients actually are sort of an intermediary step to get to the type of 

coefficients one typically uses in QFT, represented by an
 (“a”, not alpha). Specifically, 

 0n nn a n    . (8) 

As we will discuss, the an
 (“a”) coefficients are siblings to the QFT operator coefficients, in that they have essentially the same 

commutation relations. 

The Role of Mode Number n 

Note also in (3) the form of the time factor oscillation ine  in the last term, 

 ine    (string theory). (9) 

Normally, for waves and oscillations, we see a factor like 

 ni t
e


 (QFT). (10) 

The parameter  is not generally, as noted, time t for the observer, and this accounts for n ≠ n. But, for string theory as 

formulated here, one can, in a sense, think of n as the frequency of the mode with respect to the  parameter (not generally with 

respect to time). n effectively has units of oscillations per unit  parameter. But also, n is a non-zero integer, and both  and n are 

unitless. 

 The role of
string
theoryn n  . (11) 

It can, at times, help in learning string theory to think in terms of (11). 
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4 The Hamiltonian in the Chosen Gauge Class 

4.1 Hamiltonian in Terms of String Displacement 

4.1.1 Usual String Theory Representation of the Hamiltonian 

The Hamiltonian in this gauge class turns out, again after significant mathematical manipulation, to be 

                                                   
0 0

1

4
H X X X X d d

 
 


   

 ɺ ɺi i H .                           (24.6)  with (24.5) [570] (12) 

4.1.2 Re-written Hamiltonian in More Familiar Terms 

For heuristic purposes, again imagine  as time and  as spatial distance (which they aren’t, but it can help intuitively). Then, 

in (4), we have, where the physical length of an open string is , 

 
0

open
strings

1 1 1

2 2 2tenxT E / m


  
             ( taken asspatial distance here), (13) 

so (12) becomes 

         0 0

0 0
 mass density per unit  length

2 2 2 2

T Tm
H X X X X d X X X X d

  
   


            

   ɺ ɺ ɺ ɺi i i i

���������

H

. (14) 

Note in (14) that the Hamiltonian density has a kinetic energy density term (in mass density and timelike derivatives of 

position) and a potential energy term (in tension and spacelike derivatives of position). This, as we noted above, would only be 

strictly true for  as position and  as time in the observer’s reference frame, but it is a good mnemonic and can help intuitively. 

4.1.3 Comparison with QFT Hamiltonian 

Note further how H of (12) parallels the classical scalar Hamiltonian density, as shown in Klauber, Vol. 1, (3-31), pg. 49, 

where , rest mass not counting tension there equals zero here, superscript 0 means scalar, subscript 0 means free field, and K is 

a constant, 

  
0

0 00 0 0
0 0 0 0 K     




      


ɺ ɺ ɺ ɺ
ɺ

L
H L L .      (classical free scalar field)  Klauber (3-31) [49] (15) 

Time and space derivatives in (15) are with respect to actual space and time coordinates, whereas in (12) they are with respect 

to parameters  and , which are more general in nature. H in (12) is actually not energy, since  and  are used there instead of 

spacetime coordinates. H in string theory works to give us the action, the Lagrangian, and the field equations for strings, so all 

the variational calculus math works out. But H there is generally not energy. Nevertheless, one can see the striking parallels 

between the string Hamiltonian density (12) in the special case of (14) and that of classical (as well as quantum) field theory. 

4.2 Hamiltonian in Terms of Quantum Operator Coefficients 

We now employ the quantization postulate of Sect. 1.2(b), i.e., we take the coefficients in (3) to be operators obeying certain 

commutation relations, similar to those of QFT. But, first a review of QFT Hamiltonians. 

4.2.1 For QFT 

For Scalars 

As shown in Klauber, Vol. 1, Chap. 3, pgs. 49 to 54, we can substitute the field equation solution ( there) into the 

Hamiltonian (the integral of (15) above and taking K =1), employ the second quantization requirement of the commutation 

relations for the coefficients in the solution, and get the Hamiltonian in terms of those coefficients (which are creation and 

destruction operators). The result of this is Klauber’s (3-55) [54], where symbols should be familiar to the reader, 

              0 † †1 1
0 2 2 a bH a a b b N N          k k k

k k k

k k k k k k .  (quantum scalar field). (16) 

For a discrete system each k is an integer multiple of the fundamental frequency 1, so we can re-express (16) as 

     0
0 1 1

1 1

 = mode number, an integera b

m m

H m N m N m m m 
 

 

    . (17) 
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For a real field, the antiparticle is the same as the particle, so we only have the ”a” type particle. Eliminating the “b” type terms 

in (16), we have 

  0 †1 1
0 1 1

1 11 1 1 12 2
a m m

m m m m

H mN m m ma a m
 

 
   

   

       . (18) 

Note that †
m ma a  is a number operator, which, when operating on states, gives us the number of particles in the mth oscillation 

mode. We expect energy to be proportional to the number of particles. The 1m is the frequency of the mth mode, and we expect 

energy to also be proportional to frequency, as it is here. Three times (m = 3) the frequency for the same number of particles, three 

times the energy. Twice the number of particles (eigenvalue of Na (m) = 2) at given frequency m, twice the energy. 

For Vectors 

The above is for a scalar. For a massless real vector field, such as the photon, one finds that in 4D (see Klauber, Vol. 1, (5-

57), pg. 149) Note that the last term should actually have the absolute value of r, which was not important for the rest of the 

chapter, since the vacuum contribution is ignored after this point. 

                  
     

3 3 0 1 2 31 †
0 †

0 0

1
2

4 polarizations assumed, 1 1

number operator 
r r r r

r r r rr r

H a a
N a a .

   
   

 

    
 


   k k

k k

k k
k k k

 (19) 

With the Gupta-Bleuler condition this was simplified such that the timelike polarization term with r = 0 term and the longitudinal 

polarization term with r = 3 cancelled and left us with only transverse modes. However, the Gupta-Bleuler condition can only be 

used for massless fields, such as the photon, so the most general form (massive or massless) for H0
1 is (19), or if we carry out the 

summation over r for the last term in (19), 

                     
3

1 † †
0 1 1

0 1 1

assume 4 polarizations
2 2    

in  = 4 spacetime
r r r r r r

r m m

H a a m a m a m m .
D

     
 

  

 
     

 
    k k

k k

k k   (20) 

For a coordinate system where the axes are aligned with the polarizations, r =   

 

   

 

1 †
0 1 1

1 1

1 1

1 1

4 here = number 

2 of polarization modes; 

polarizations  

aligned with axes.2

m m

m m

D D
H m a m a m m

rD
m N m m

  




  

 


 

 

 

 

   


 

 

  
  (21) 

If we consider massless vectors, like the photon, then two polarization modes (timelike and longitudinal) are eliminated, so Dˊ = 

D ‒ 2. 

      

   

   

1 †
0 1 1

1 1

†
1 1

1 1

2
No timelike or longitudinal modes;

2
4 here = spacetime dimensions; 

2
polarizations  aligned with axes.

2

m m

m m

D
H m a m a m m

D
D

rma m a m m

  




  

 

 

 
 

 


 




 

 

 
  (22) 

For higher spacetime dimensions than 4, the same relation can be expected to hold, just with different D. 

Note the number operator in the first row has all lowered indices. If the destruction operator had a raised index and the 

construction operator had a lowered index, they would be destroying and creating different (contravariant vs covariant) states. 

We need both operators to have either a covariant index or both have a contravariant index if together they are to represent a 

number operator. But then we need to insert a minus sign for the    †
00a m a m term. The  in the first row of (22) accomplishes 

that. We can have effectively the same thing, by simply raising one index, as in the second row, since raising the index only 

changes the sign of the  = 0 term. 

4.2.2 For String Theory 

We do a similar thing in string theory as we did in QFT. We take the Hamiltonian of (12), plug (3) into it, and postulate 

commutation relations between the coefficients n
 and their complex conjugates similar in form to those employed in QFT. 
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When we do this (see Appendix, relation (57)), we get, with the underbracket in (3) to convert the 0  factors, (don’t confuse 

4-momentum p with mode number p) 

                                   0 0
†

1 1

1

2 2
, p p,

p p

D
H na a p




 
 

 


      (23) 

p = mode number (we used n in (3) and (57), but that is used for something else later) 

Dˊ = number of modes string is assumed to oscillate in 

The last term in (23) arises from the non-zero commutation relations, as one can see in the Appendix. 

As noted in the Appendix, if we assume the string does not oscillate in the longitudinal nor timelike directions, then (23) 

becomes (see Appendix, which has the final result (60)) 

 †
0 0 0 0

1 1 1 1
2 2
1 12 2

2 2
p p p p

p p p p

D D
H pa a p p a a p   

      
   


   

 
           (24) 

                          Dˊ = D ‒ 2 = number of modes string is assumed to oscillate in. 

From (11), we know that p (n in (11)) acts like frequency in (24), like m =m1 in (19). And 
†
p pa a


  is a number operator 

(like    †
n na n a n  in (19)) that gives us the number of strings in the pth mode, oscillating in the  direction (and we sum over 

these different directions as each is considered a separate string). So, as in QFT, the Hamiltonian is proportional to the frequency 

times the number of particles oscillating at that frequency. (But remember that p is the frequency per unit  parameter, which isn’t 

usually the actual physically measured frequency.) 

As noted in the Appendix, a complicated analysis determines that for bosonic strings, Lorentz invariance only holds for D = 

26 in (24).  

5 The Infinite Sums 

Note the similarity of the infinite sums in the last terms of (22) and (24). In QFT, the issue of the infinite sum is interpreted 

as an infinite number, or as an enormous number if one sums only up to the Planck energy, and in theory constitutes an (infinite 

or enormous) energy in the vacuum. This, of course, is not observed, and the issue is widely considered to be unresolved. When 

making scattering or decay calculations, the infinite sum is simply ignored. 

In string theory, however, the seemingly infinite sum of the last term in (24) is treated in, what euphemistically can be called, 

an “odd” way. Through identification of that sum with a particular entity known as the zeta function and extensive, sophisticated 

mathematical gyrations, string theorists accept the following. 

 
1

1
1 2 3

12p

p




      … . (25) 

If you have trouble accepting (25), you are not alone, but string theory depends on it critically. It is the only value of the sum for 

which one can have Lorentz invariance in string theory (and then, only in the bosonic string spacetime of 26 dimensions, i.e., D 

= 26). In other words, all of string theory hinges on the validity of (25). 

Thus, for string theory, (24) becomes 

 †
0 0

1
2
1 1p p

p

H p a a 
  





          string theory Hamiltonian. (26) 

One could ask that if (25) is indeed valid, then we have no issue with the infinite sum of the last term in (22). If (25) is true 

then that sum equals ‒1/12, and we don’t have a large vacuum energy problem. Yet physicists simultaneous consider there to be 

an unresolved issue with (22), but not with (24). 

Time to move on. 

6 Virasoro Operators and the Hamiltonian 

An important part of string theory concerns particular combinations of the alpha operators in (3), which form what are called 

Virasoro operators. Specifically, these are defined as 
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2
1

n n p p

p

L 
 



 
ℤ

.                                (24.13)[571] (27) 

So, for L0 (n = 0 in (27)) without normal ordering, using (47) and (53), where again, the last summation arises from the non-zero 

commutation relations, 
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   

0 0 00 0
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a

L

p a a a a

    
     

    
     




           

       

 

 

   
  



 

 

     

     

 

  

 

ℤ

��������� �����

 † † †
0 0

1 1 1
2 2 2

1 1
p p p p p p

p p p

D
p a a a a pa a p .

   
      

  

  


      

  (28) 

      Dˊ = the number of directions string can oscillate in, naively = D (number of spacetime dimensions) 
  

If one makes the assumption (as stated in the Appendix) that strings cannot oscillate in the longitudinal or timelike directions, 

then Dˊ = D ‒ 2. If we also take (28) at face value, without normal ordering, we have 

 (not normal ordered) †
0 0 0

1 1
2

2

2

1
p p

p p

D
L p a a p

 
  

 

 


    , (29) 

Note from (29) and (24), that, 

 For L0 and H not normal ordered 0 H L . (30) 

However, Zwiebach notes that L0 in (30) is typically taken to be normal ordered. This means that we can switch the order of 

operators to move all destruction operators to the righthand side. In effect, under normal ordering, we assume all construction and 

destruction operators in (28) commute. In that case, the last term in (29) (derived from (28)) would not arise, i.e., 

 (normal ordered) †
0 0 0

1
2
1

p p

p

L p a a
 

  




  . (31) 

That changes (30), so 

                 0 0
1

2
for  normal ordered, the string theory Hamiltonian   

2 p

D
L H L p






     (but H not normal ordered). (32) 

With (25) and D = 26, we have 

                  for L0 normal ordered, but H not normal ordered  0 1H L  .                         (12.158) [262] (33) 

The relation (33) is deduced in Zwiebach in a (in my opinion) rather opaque way. The above derivation may be more 

transparent and less confusing to some. 

7 Mass Squared Relation 

7.1 Constraint for Our Choice of Gauge Family 

You can’t understand why at this point, but the expression  

                                                                 2 0X X  ɺ                                              (24.13)[571] (34) 

represents constraints on  and  (through the derivatives) that make  and  behave in ways we have previously described in 

Sect. 2. That is, (34) will limit these parameters to a gauge family where  always increases with increasing t, and lines of constant 

 are orthogonal to lines of constant . (34) essentially defines that gauge family. 
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By plugging the  and  derivatives of X (see (41) and (42) in the Appendix), into (34), we find, after some algebra and 

with reference to (27), 

            2

0
2
11

0      where
2

n n

in
n p p,

n p

X X L e L
T

  
 


 


 

    
ℤ ℤ

ɺ . (35) 

In classical theory, this would mean Ln = 0 for each n. But in quantum theory where Ln is an operator, it means, where 

| is any (quantum string) state, we expect 

 0nL   .    (not normal ordered) (36) 

There are additional subtleties with (36) we won’t delve into here. Suffice for present purposes that (36) is true as stated for n = 

0. 

7.2 Mass Squared Relation for Quantum Strings 

In (36) for n = 0 (see (31) with (33)), we find, using the underbracket in (3), where M is the mass of the string viewed by an 

external observer and includes contributions from tension and vibration energy (m is only from tension energy), 

             

 0 0

† † †
0 0

01 1 1
2

not normal ordered  normal ordered 1 0

1 1 1
2

1
p p p p p p

p p p

L L

p p
p a a p p p a a p a a .

T


    

    

 

     


  

  

  

    
            

     
     

  
  (37) 

Where N is the string number operator (and we switch the dummy index p to n), we have 

  2 † †

1 1

1 1
1 1n n n n

n n

M n a a N N na a 
   

 

 

 

 
     

  
 
  . (38) 

Relation (38) lets us determine the mass M, the eigenvalues for mass of a quantum string state | (LHS), by evaluating the 

operation on the RHS. Note that the N operator has a factor of n, the mode number, which we saw in (11) is related to string 

vibration energy for the nth mode (one contribution for each  direction). The factor 
†
n na a  acts like a similar part of the number 

operator in QFT. It yields the number of strings oscillating in the nth mode (summed for each  direction). So, one of these strings 

has an energy contribution related to n, its mode number. If 
†
n na a  gives us the number 2 as the number of strings oscillating in 

that mode, we would have an energy contribution related to 2n, and etcetera for greater numbers of strings.  

Note that in our special case of (13), where  equals physical distance along the string, (38) becomes 

  2 †

1

2 1 2 1n n

n

M m na a m N
  





 
    

 
 
   (special case for  = physical distance along string). (39) 

This lets us see that when N is multiplied by rest mass solely from tension m, we get units of energy (or mass) squared on the 

RHS, which is what we have on the LHS. But, again (39) does not represent the general gauge family, so it should only be used 

in a heuristic sense, to get a feeling for (38). 

Note that for the zero mode state, where n = 0, M is imaginary, i.e., a tachyon. For states where N = 1, we have massless 

string states. At the origin of the universe, before the Higgs field bestowed mass on particles, all particles had zero mass. Thus, 

we need the negative number ‒1 in (38) (from (25)) if string theory is to have any chance of being the underlying theory of the 

universe. Indeed, string descriptions of standard model particles invariably employ the N = 1 (massless) string states as SM particle 

states. 
  

8 An Overview of String Theory 

8.1 Different Formulations to String Theory 

What we have focused on in this article is known as the covariant formulation to string theory, because we used Minkowski 

coordinates and Lorentz covariance is something we have considerable familiarity with in those coordinates. 
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There is an alternative formulation which uses something called light-cone coordinates, effectively replacing the x0 and x1 

coordinate axes with the edges of the light cone in the first and second quadrants. The light-cone formulation also employs one 

specific gauge out of the family of gauges we have been working with, rather than with the entire family. 

The light-cone formulation is, in my opinion, a considerably more difficult way to be introduced to string theory, but doing 

so is quite common, and this is the way Zwiebach does it. One needs to learn both formulations, eventually, of course, but the 

covariant way may be the easier gateway to understanding the theory. 

8.2 Open vs Closed Strings 

We have looked herein at open strings, i.e., strings that are not loops. Closed strings are strings that form loops and are 

treated in a generally similar manner as we have done here, but with some modifications to account for the difference in the two 

types of string. 

8.3 Free vs Interacting Strings 

Everything we have done here is solely for free strings, those that are not interacting with other strings. As with QFT, we 

need to walk (with free fields/strings) before we can run (with interacting fields/strings). 

8.4 Bosonic vs Supersymmetric Strings 

In this article we have only dealt with bosonic strings. We have quantized classical strings, which like bosons in QFT, are 

something we consider manifest in our macroscopic world. But, just as Dirac was needed to make the breakthrough of including 

fermions in QFT, supersymmetry is needed in string theory, in order to include fermions into the theory. 

It turns out that while bosonic strings require 26 dimensions, supersymmetric string (superstring) theory requires only 10. 

One needs to learn bosonic string theory before making the jump to superstrings. 

8.5 Different String Theories 

There are five known string theories, all of which start with the basics we have presented herein. They differ with regard to 

whether they contain open or closed strings, whether they include bosonic strings along with superstrings, whether the strings 

have an inherent direction (called “orientation”) along their length or not, and certain other factors. It is suspected that they are 

unified into one grand theory called M theory, but no one has actually been able to prove that. 

8.6 Summary Overview 

Wholeness Chart 1 displays the different aspects of string theory and how they relate to one another. 

 
                                            Wholeness Chart 1. Overview of the Structure of String Theory                                      
                                        Free Strings                                                                          Interacting Strings 

                                   (bosonic or SUSY)               (bosonic or SUSY, though only realistic for SUSY) 

 
  

Covariant formulation                 Light-cone formulation                     Covariant formulation                 Light-cone formulation 

 

 Open           Closed     Open           Closed               5 different SUSY theories, some open strings, some closed  

 

                  We only did free open bosonic (not supersymmetric) strings here in the covariant formulation 

 

9 Appendix: Deriving H in Terms of Operator Coefficients 

Take (24.6) [570] re-expressed as (12) and repeated below for convenience, 

  
0 0

1

4
H X X X X d d

 
 


   

 ɺ ɺi i H . (40) 

Use (3) to find the derivatives with respect to  and , 
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   0
0

2

2 2 in
n

n
p

X , i e cos n
  



      




   ɺ
�����

  (41) 

  
0

2 in
n

n

X , i e sinn      



     (42) 

The First Term in (40) 

The first term in (40), then becomes 

000 0

0 0

1 1
2 2 2 2

4 4

in ip
n , p,

p
n p
n

X X d e cos n e cos p d
     

             
 


 


 


 
       
      

  

  ɺ ɺ   (43) 

 

0 00 0

0 0

0

0 0

2 2 2 2 2

1

4
2

ip in
, p , n ,

p
p n

i n p
n p,

p
n p

n

n

e cos p e cos n

d

e cos p cos n

    
  






            




    


 


 


 


 





 
      

 
 

  
 
 
 
 

 


 

  (44) 

In integrating over  from 0 to , the first term in (44) is constant, so it is just multiplied by . The second and third terms 

(each with a factor of cos n) go to zero. Under that integration, the last term is only non-zero for n = p or n = ‒ p. Specifically, 

 
0

if     or   integers
2

cos n cos p d n p n p n, p
 

       . (45) 

We thus have 

 

    

 

0 0
0

0

2 2 0 0
0 0

1

1 1 1

4 2 4

1 1

2 4

i n n i n n
, n n, n n,

n

i n i n
, n n, n n, n n, n n,

n

n

X X d e e

e e e e .

     
  

      
    

      


         


   








   





  


    





ɺ ɺi

  (46) 

With (12.58)[245]) extended to the covariant formulation, 

 †  a positive integern n n   , (47) 

and we have 

  2 † † 2 † †
0 0

0
1

1 1 1

4 2 4

i n i n
, n n, n n, n n, n n,

n

X X d e e
       

              






    

  ɺ ɺi . (48) 

The Second Term in (40) 

The second term in (40), with (42), becomes 

 
0 0

0

0
0 0

2
1 1

2
4 4

1

2

in
n

n

in ip
n p ,

n p

X X d i e sin n d

e sinn e sin p d .

   

   


    
 

    






 

 

 
       

        

 

 

i

  (49) 

Then, use the following integral formula to evaluate (49). 

 
0

0  for  or ;      for ;        for 
2 2

sinn sin p d p n n p n p n
  

            . (50) 

Thus, 
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    

 

 

0

0

2 2

2 † † 2 † †

1

1

1 1

4 4

1

4

1

4

i n n i n n
n n, n n,

n

i n i n
n n, n n, n n, n n,

i n i n
n n, n n, n n, n n,

n

n

n

X X d e e

e e

e e .

    
 

     
   

     
   

    


       

       


   







   










    


    

    







i

  (51) 

The Hamiltonian: Add the First and Second Terms in (40) 

Adding (48) and (51) gives us the total string Hamiltonian for free strings, 

       

 

0 0

2 † † 2 † † 2 † † 2 † †
0 0

† †
0 0

1 1

1

1 1

4 4

1 1 1

2 4 4

1 1

2 2

i n i n i n i n
, n n, n n, n n, n n, n n, n n, n n, n n,

, n n, n n,

n n

n

H X X d X X d

e e e e

.

 

            
        

  
  

 
 

                 

     

 
 


 



  
 

         

  

 

 



ɺ ɺi i

  (52) 

        Using      a positive integern nn a , n  , (53) 

  0 0
† †

1

1 1

2 2
, n n, n, n

n

H na a na a


 
  




   . (54) 

We then employ the commutation relations, similar to those of QFT, 

 
 

† † †

† † † † †

mn

mn mn

n m n m m n

n m, n m m n n m, m, n

,

, .

a a a a a a

a a a a a a a a a a



 
  

     

      
  

 

     

    

      



 
  (55) 

 

†

† †

= the number of spacetime dimensions with modes

no sum on 

nn mnn m,

n n, n, n

, D D

D n.

a a

a a a a







 
 

       

 
  (56) 

With (56) for the last term in (54), we get 

 0 0
†

1 1

1

2 2
, n n,

n n

D
H na a n




 
 

 


    . (57) 

At this point, as it turns out, one needs to postulate that for the last term in (57) strings have no longitudinal nor timelike 

modes of oscillation, or string theory will not work out. This is, in fact, true for massless fields in our world (like photons or any 

field before Higgs symmetry breaking), and may be (in fact, must be) considered a property of quantum relativistic strings. 

New postulate: Dˊ, the number of measurable transverse modes is two less than the number of dimensions D`. Then, (57) becomes 

 0 0
†

1 1

1 2

2 2
, n n,

n n

D
H na a n




 
 

 


    . (58) 

Problem with the postulate: Of course, if there were no longitudinal or timelike modes of oscillation, then we would not have the 

 = 0 terms in the summations of (58) and the other (spatial) dimensions would be constrained such that no longitudinal oscillation 

could occur for the string. Yet, theorists keep =0 terms in (58). (See Zwiebach, pg. 579, discussion after (24.19).) 

This may give one justifiable pause with regard to string theory’s internal consistency. 

Re-writing (58) using (13), and the underbracket relation of (24.9) [also in (41) herein],  

 0 2 p      (59) 

we have, where M is the mass of the string including contributions from the energies of tension and oscillation, we use (13), and 

m is the mass due solely to tension, 

 
†

1 1

2

2
n n,

n n

D
H p p na a n





 

 

      (60) 

A complicated analysis determines that for bosonic strings, Lorentz invariance only holds for D = 26. 
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or the last twenty years, physicists have investigated

String Theory rather vigorously. The theory has revealed

an unusual depth. As a result, despite much progress in our under-

standing of its remarkable properties, basic features of the theory

remain a mystery. This extended period of activity is, in fact, the

second period of activity in string theory. When it was first discov-

ered in the late 1960s, string theory attempted to describe strongly

interacting particles. Along came Quantum Chromodynamics—

a theory of quarks and gluons—and despite their early promise,

strings faded away. This time string theory is a credible candidate

for a theory of all interactions—a unified theory of all forces and

matter. The greatest complication that frustrated the search for such

a unified theorywas the incompatibilitybetween two pillars of twen-

tieth century physics: Einstein’s General Theoryof Relativity and

the principles of Quantum Mechanics. String theory appears to be
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the long-sought

quantum mechani-

cal theory of gravity and

other interactions. It is almost

certain that string theory is a

consistent theory. It is less certain that

it describes our real world. Nevertheless,

intense work has demonstrated that string

theory incorporates many features of the physical

universe. It is reasonable to be very optimistic about

the prospects of string theory. 

Perhaps one of the most impressive features of string theory is the appearance of
gravity as one of the fluctuation modes of a closed string. Although it was not discov-
ered exactly in this way, we can describe a logical path that leads to the discovery
of gravity in string theory. One considers a string, similar in manyways to the vibrat-
ing strings with tension and mass that are studied in freshman physics. This time,
however, the string is relativistic. This means that the classical mechanics of this
string is consistent with Einstein’s special theory of relativity. A relativistic string
is, in fact, a very interesting and subtle object with a rich spectrum of vibration modes.
These classical vibrations, however, cannot be identified with physical particles.
But quantum theory comes to the rescue: the quantum mechanics of the relativistic
string gives vibration modes that can be identified with physical particles! A
particular quantum vibration mode of the closed string describes a graviton, the
quantum of the gravitational field. A particular quantum vibration of an open string
describes a photon, the quantum of the electromagnetic field. It is the magic of quan-
tization that makes these results possible. In string theory all particles—matter
particles and force carriers—arise as quantum fluctuations of the relativistic
string. Physicists struggled to invent a quantum theory of gravity during much
of the twentieth century, and the answer came from the quantization of classical
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relativistic strings. We are reminded of an opinion expressed by Dirac in 1966 [1]: 

“The only value of the classical theory is to provide us with hints for getting
a quantum theory; the quantum theory is then something that has to stand
in its own right. If we were sufficiently clever to be able to think of a good
quantum theory straight away, we could manage without classical theory
at all. But we’re not that clever, and we have to get all the hints that we can
to help us in setting up a good quantum theory.”

The purpose of this article is to explain some of the unusual features of relativistic
strings and to show one way in which string theorymaydescribe the Standard Model
of particle physics. 

What are relativistic strings? 
To gain some understanding of relativistic strings, we can compare them with the
more familiar nonrelativistic strings. Nonrelativistic strings are typically charac-
terized by two independent parameters: a string tension T0 and a mass per unit
length m 0. Each of the four strings on a violin, for example, has a different tension
and mass density. When a string with fixed endpoints is also static, the direction
along the string is called the longitudinal direction. Such a string can exhibit small

transverse oscillations (Figure 1a). In this case, the 
velocity of any point on the string is orthogonal to
the longitudinal direction. The velocitynof a trans-
verse wave moving along the string is a simple func-
tion of the tension and the mass per unit length: 

n=    T0 /m 0 . (1)

A nonrelativistic string may support a different
type of oscillation. When we have a longitudinal
oscillation, the velocity of any point on the string
remains along the string (Figure 1b). In a longitudi-
nal oscillation the wave velocity does not involve the
tension, but rather a tension coefficient that describes

how the tension changes upon small stretching of the string. More important, a longi-
tudinal wave requires the existence of structure along the string. In order to tell that
the various points of the string are really oscillating we must be able to tag them.
If this is not possible, a longitudinal oscillation is undetectable because, as a whole,
the string does not move. Transverse motion is less subtle; we can always tell when
the string moves away from the equilibrium longitudinal direction. 

It takes a significant amount of imagination to construct the classical mechan-
ics of relativistic strings. In fact, the mechanics is simplest for the so-called “mass-
less relativistic string.”This is the string that one quantizes to obtain string theory.
To gain intuition, let’s discuss four surprising properties of these strings. 

(1) The relativistic string is characterized by its tension T0 alone—there is no
independent mass density parameter. The velocity of transverse waves on

32 ) zwiebach mit physics annual 2004

continues on page 46

=

Figure 1
(a) In a transverse oscillation the motion 
of any point on the string is perpendicular
to the longitudinal direction. (b) In a
longitudinal oscillation the motion of any
point on the string (represented by a thin
slinky) is along the direction of the string. In
order to detect longitudinal motion we must
be able to tag the points along the string.

(a)

(b)
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When, in the fall of 2001, distinguished string
theorist Professor Barton Zwiebach first proposed to
the Physics Education Committee a new elective for
the Department’s undergraduate curriculum based
upon his upcoming textbook, “A First Course in String
Theory,”the response was a moment of startled 
silence. How, the Committee members wondered,
could an area of physics be taught to undergraduates
that was built upon intellectual concepts viewed as
challengingly opaque by not a few of the faculty?

Nevertheless, Zwiebach’s talent and reputation as 
one of the most gifted instructors at MIT was well-
established, so the funds were granted to develop the
new elective, “8.251: String Theory for Undergraduates.”
Launched in the Spring 2002 semester and repeated
annually, the class continues to attract an equal number
of undergraduate and graduate students. It has been 
so successful that Zwiebach received the 2002 Everett
Moore Baker Memorial Award for Excellence in
Undergraduate Teaching, the only MIT prize whose
winner is chosen solely by undergraduates.

Comments from his students show a keen appreciation
of both the topic and the teacher.

“The class itself was often fantastic. Midway
through the term, when we’d reached Chapter 10 in 
his book, Prof. Zwiebach announced that we had 
done three semesters of quantum field theory in one
lecture. It was a heady feeling...”

“I’ll always be grateful for 8.251. Unlike most
classes around here, it left a warm and fuzzy spot in 
my heart. It has had a practical payoff, too: learning to
handle commutator relations early gave me a jump
over my 8.05 [Quantum Physics II] compadres, and
seeing Lagrangian dynamics early let me delve into
journal articles with less trepidation. I had a great time
with my 8.06 [Quantum Physics III] term paper, mostly
because Prof. Zwiebach’s class introduced me to 
fruitful new concepts I could then turn around and
apply elsewhere, giving me that spine-tingling shiver 
of knowledge fitting together.”
—Blake C. Stacey (SB ’04)

“Barton Zwiebach’s course finally bridges the gap
between theoretical physics as taught on the under-
graduate level and its current frontier, string theory.
Before taking this course, I was convinced one would
need to learn very sophisticated mathematical tools

before one could try to understand, even on a basic
level, what string theory is about. [ Thus] it was very
impressive, and intellectually very satisfying, to see
from Zwiebach’s class that basic knowledge about
classical and quantum mechanics is sufficient to get 
a head start in this subject....To make this theory
accessible to students at the undergraduate level 
can hardly be overestimated in its importance.”
—Martin Zwierlein, Graduate Student, Atomic Physics

“Originally I decided to take the class because
string theory is...on the frontier of physics, and this
class proposed to teach me the subject (at least some 
parts of it) with a minimum of previously required
knowledge...”

“The class itself was a novel way of teaching 
the topic and...quite different from the way string
theory is taught in other texts. Instead of beginning
with abstract field theoretic concepts, 8.251 started
rooted in the physics that we were all familiar with: the
mechanics of a simple string. It all started there and
quickly went through many iterations until arriving at
the quantum mechanics of relativistic strings. Though
at times the math was difficult, as is unavoidable in this
subject, the concepts were very clear throughout the
journey, which also included a discussion of the theory
of branes,T-duality and a few exotic topics like string
thermodynamics and black holes.”

“One thing that is for certain is that the class
would simply not be the same without Prof. Zwiebach;
his clear lecturing and willingness (and ability) to
answer questions was great. I enjoyed the class to the
point of volunteering to help look over the chapters 
of the textbook that were yet to be written, because I
really wanted to see more material on this subject.”

“All in all, the class was very exciting; it was
unlike most other physics classes at MIT and remains
among my favorites.”
—Alan M. Dunn (SB ’04)

For a more detailed look at 8.251: STRING THEORY

FOR UNDERGRADUATES, visit the class home page at
http://mit.edu/8.251/www/. The class textbook, A First
Course in String Theory [2], is available from Cambridge
University Press (http://publishing.cambridge.org/
stm/physics/strings/).

) String Theory for Undergraduates? 
The Story Behind 8.251



this string is the velocity of light c, so using (1) the mass
densitym 0 is fixed once T0 is fixed: 

c =     T0 /m 0     ’  m 0=T0 /c2. (2)

Special relativity tells us that mass and energy are
interchangeable, but familiar examples involve quantum
processes, such as massive particles that annihilate into
energetic (zero-mass) photons. In the relativistic string,
energy/mass conversion occurs classically. Imagine begin-
ning with an infinitesimally short relativistic string and
stretching it out to some length L. Since the string tension
is constant, the work done on the string is equal to the
product T0L of the tension times the length. This energy
makes up the rest mass of the string. Energy is converted
into rest mass by stretching the string! The mass is equal
to the energy divided by c 2, so it equals T0 L /c2. Conse-

quently, the mass per unit length is T0/c 2, as anticipated in (2). The relativistic string
has no intrinsic mass; the mass arises from work done against the tension. 

(2) The relativistic string does not support longitudinal oscillations. This is a
revealing fact: it tells us that the string has no substructure. The points along
the relativistic string cannot be tagged in an unambiguous way. When a string
moves a little, we cannot really tell which point went where. There is a minor
exception: if we have an open string, we can keep track of the motion of the
endpoints, which, after all, are points. Many times people ask, What is the
string made of? The lack of longitudinal oscillations tells us that no mean-
ingful answer can be provided: the classical relativistic string has no
constituent parts that can be identified. 

(3) The endpoints of a free relativistic open string move with the speed of
light. For familiar strings, oscillations require that the motion of the
endpoints be constrained. The simplest constraint is to fix the endpoints; the
string can then have a nonzero tension and oscillations are possible. Nontriv-
ial motion is possible for relativistic open strings even if the endpoints are
not fixed. Elementary mechanics suggests that the effective tension of the
string must vanish at the endpoints. This is actuallyachieved when the endpoints
move at the speed of light. One of the simplest open string motions is that
of an open string that rotates rigidly about its midpoint (Figure 2). This motion
has an unusual property: the angular momentum J of this string is linearly
proportional to the square of the energy E of the string: 

J=a' E2 (3)

The constant of proportionalitya' is called the slope parameter. The above prop-
ertywas the reason why physicists attempted (and still attempt!) to use some kind
of string theory to describe strongly interacting particles. Indeed, hadronic 
resonances fit rather accurately a linear relation between angular momentum
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Figure 2
A relativistic open string can rotate rigidly
about its midpoint.The angular velocity
must be such that the endpoints move 
with the speed of light.

Barton Zwiebach: From Vibrating Strings to a Unified Theory of All Interactions
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=

n=c

n=c



mit physics annual 2004  zwiebach ( 47

and the square of the mass (or the square of the energy). This relation is completely
unusual: for a rigid bar rotating nonrelativistically about its midpoint, one finds
the rather different . Equation (3) can be understood roughly by assum-
ing that the mass of the string is concentrated at the endpoints. Since the speed of
the endpoints is constant and equal to the speed of light, the angular momentum
is proportional to the length of the string times the mass of the string. Given that
both the length and the mass of the string are proportional to its energy, the
angular momentum is proportional to the energy squared. 

(4) A relativistic string has an orientation which determines the sign of the string
charge. Consider an electron and its antiparticle, the positron. They are oppo-
sitely charged point particles. Being zero-size points, there is no intrinsic
geometrical property that distinguishes their charges. This is different in
string theory. Relativistic strings come with an orientation. For a closed string,
the orientation is an arrow that defines a preferred direction along the
string. One can travel along a closed string in two directions; the orienta-
tion picks one out of these two (see Figure 3). It turns out that oppositelyoriented
strings have opposite string charges. In contrast to the case of point parti-
cles, in string theory the sign of charge has a geometrical basis. While string
charge is a novel concept, the implications for open strings are readily
understood. To specify an open string we must choose a direction or draw
an arrow along the string. This arrow creates a clear-cut distinction between
the two, previously similar, endpoints: the arrow points away from one
endpoint, called the beginning endpoint, and towards the other endpoint,
called the final endpoint. A surprising effect then takes place: the string charge
forces the open string endpoints to acquire opposite electric charges! String

J ;  E=

Figure 3
Relativistic strings carry orientation, a
direction of travel along the string indicated
by arrows. Top line: two oppositely oriented
closed strings are states with opposite string
charge. Bottom line: two oppositely oriented
open strings.The endpoints of open strings
carry ordinary electric charge.The charges at
the open string endpoints are opposite: (+)
at the final endpoint and (–) at the
beginning endpoint.

+

- +

-



charge transmutes into electric charge. The orientation points from the nega-
tively charged to the positively charged endpoint. Since open strings carry
electric charges, we may attempt to identify known charged particles with
excitations of open strings. 

The above properties, derived in the classical theory of strings, remain true in
the quantum theory of strings. Further surprises emerge, however, when rela-
tivistic strings are quantized. One finds that quantum mechanical strings cannot
propagate consistently in spacetimes of arbitrary dimensionality. For the simplest—
bosonic strings—the spacetime must be twenty-six dimensional. For superstrings,
strings whose excitations include bosons and fermions, the dimensionalityof space-
time is ten, one of time and nine of space. Quantization also implies that strings have
quantum states of oscillation. This allows us to identify the oscillations of strings
with particles, which are themselves quanta of familiar fields. The masses of the
particles associated with string oscillations are computed using the quantum theory.
While closed string oscillations that could be identified with gravitons have posi-
tive mass in the classical theory, their mass turns out to be exactly zero in the quan-
tum theory! This is precisely what is needed, since gravitons are exactly massless
particles. There was no reason to expect gravity to arise from fluctuating strings,
but it does. Quantum relativistic strings provide a theoryof quantum gravity. A related
effect occurs for open strings: massless oscillations of open strings represent photons. 

Building blocks of the Standard Model 
There are four known forces in nature. The Standard Model of particle physics
summarizes the present-day understanding of three of them. It describes the
electromagnetic force, the weak force and the strong force, but leaves out the
gravitational force. The Standard Model also describes the elementary particles
that have been discovered so far. 

The electromagnetic force is transmitted by photons, the quanta of the elec-
tromagnetic field. The weak force is responsible for the process of nuclear beta decay,
in which a neutron decays into a proton, an electron and an anti-neutrino. The
strong force or color force holds together the constituents of the neutron, the
proton, the pions and manyother subnuclear particles. These constituents, called
quarks, are held so tightly by the color force that they cannot be seen in isolation. 

In the late 1960s the Weinberg-Salam model of electroweak interactions put together
electromagnetism and the weak force into a consistent, unified framework. The
theory is initially formulated with four massless particles that carry the forces. A
process of symmetry breaking gives mass to three of these particles: the W+, the
W–, and the Z 0. These particles are the carriers of the weak force. The particle that
remains massless is the photon. The theory of the color force is called quantum
chromodynamics (QCD). The carriers of the color force are eight massless parti-
cles, colored gluons that, just as the quarks, cannot be observed in isolation. The
quarks respond to the gluons because they carry color; in fact, quarks come in three
colors. The electroweak theory together with QCD form the Standard Model of
particle physics. 
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Since we aim to show how the familiar particles and interactions may arise in
string theory, we now summarize the particle content of the Standard Model. We
have already said that gravity appears automatically in string theory as a fluctua-
tion of closed strings. Therefore, we will not focus on gravity, but rather on the other
force carriers and the matter particles, both of which arise from vibrations of
open strings. 

The Standard Model includes twelve force carriers: eight massless gluons,
the W+ , W–, Z 0, and the photon. All of them are bosons. There are also many matter
particles, all of which are fermions. The matter particles are of two types: leptons
and quarks. The leptons include the electron e–, the muon m – , the tau t– , and the
associated neutrinos ne , nm , and nt. We can list them as 

Leptons : (ne , e–), (nm , m –), and (nt, t
–). (4)

Since we must include their antiparticles, this adds up to a total of twelve
leptons. The quarks carry color charge electric charge and respond to the weak
force, as well. There are six different types or “flavors”of quarks: up (u), down (d),
charm (c), strange (s), top (t), and bottom (b). We can list them as 

Quarks : (u, d), (c, s), and (t, b). (5)

The u and d quarks, for example, carry different electric charges and respond
differently to the weak force. Each of the six quark flavors listed above comes in
three colors, so this gives 633=18 particles. Including the antiparticles, we get a
total of 36 quarks. Adding leptons and quarks together we have a grand total of
48 matter particles. 

Although the matter particles displayed above and some of the gauge bosons
have masses, these masses are in some sense remarkably small. Consider the
fundamental constants of nature: Newton’s gravitational constant, the speed of light
and Planck’s constant. Since there are three basic units—those of mass, length and
time—there is a unique way to construct a quantitywith the units of mass using
only the three fundamental constants. The resulting mass is called the Planck mass
and its numerical value is about 2.2310 –5 grams. While ordinary by the standards
of macroscopic objects, this prototype mass is extraordinarily large when compared
with the masses of elementary particles: it is twenty-two orders of magnitude
larger than the mass of the electron, for example. It is in this sense that elemen-
tary particles are essentially massless. 

The chirality of the electroweak interactions guarantees that the matter parti-
cles cannot acquire masses until electroweak symmetry breaking takes place. If
one adjusts the scale of electroweak symmetry breaking to be small, the matter
particles will be light. To understand the meaning of chirality, we recall that
particles with spin are described in terms of left-handed and right-handed states.
If the spin angular momentum points along the direction of the motion, the parti-
cle is said to be right-handed; if the spin angular momentum points opposite to
the direction of motion, the particle is said to be left-handed. A left-handed elec-
tron, for example, is denoted as e–

L and a right-handed electron is denoted as e–
R. The



electroweak interactions are chiral because the left-handed states and the right-
handed states of the Standard Model particles respond differently to the weak forces;
there is a fundamental left-right asymmetry. If we focus on the electron and the
neutrino, for example, we have: 

( ), e–
R , neR . (6)

The left-handed states in the doublet feel the weak interactions, while the
right-handed electron and the right-handed neutrino states do not. A similar
situation holds for the quarks. The left-handed states of the u and d quarks feel
the weak interactions while the right-handed states do not: 

( ), uR , dR . (7)

The existence of mass requires couplings between left- and right-handed states
that are not allowed as long as chirality holds. 

D-branes and the Standard Model 
D-branes are extended objects in string theory. Whenever we have open strings
we also have D-branes, since the endpoints of open strings must lie on them. 
D-branes come in various dimensionalities. A Dp-brane is a D-brane that has p
spatial dimensions. A D2-brane, for example, may look like a sheet of paper, and
a D1-brane may look like a string. In four-dimensional spacetime, a D3-brane may
fill the full extent of the three spatial dimensions, in which case we have a space-
filling brane. Since D-branes extend in various dimensions we can imagine
observers that live on D-branes. 

uL
dL

neL
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Figure 4
Top: Three parallel D-branes (shown as
horizontal lines) are needed to produce the
color interactions.The branes can be labeled
by colors: red, blue and green.The left-
handed quarks are open strings that end on
the colored branes. A red quark, for example,
is a string that ends on the red brane.The
left-handed antiquarks are open strings that
begin on the colored branes. Bottom: The
open strings that begin and end on the brane
configuration are gauge bosons.This brane
configuration supports nine gauge bosons,
eight of which are the gluons of QCD.
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String endpoints carry electric charge so, in order to represent a charged parti-
cle, we arrange to have a string with one endpoint lying on the D-brane. The other
string endpoint must lie on another, possibly separate D-brane, otherwise the
string would represent two oppositely charged particles, for a net of zero charge.
A positively charged particle is represented by a string that ends on the D-brane,
while a negatively charged particle is represented by a string that begins on the
D-brane. In fact, the photons that couple to these charges arise from open strings
with both endpoints on the D-brane. As required, these states have zero charge. 

How can we get quarks using D-branes and strings? Since color is just a
whimsical label for a kind of charge, to obtain three types of color we simply use
three different D-branes: a red brane, a blue brane, and a green brane (Figure 4).
To represent quarks we use strings that have one endpoint on a colored brane while
the other endpoint lies on a different collection of branes, to be specified later. A
string that ends on a green brane is a green quark, a string that ends on a blue brane
is a blue quark, and a string that ends on a red brane is a red quark. Strings that
begin on the colored branes are antiquarks. On the other hand, the gluons—the
carriers of the color force—arise from strings that begin and end on the colored
branes. With three D-branes, there are a total of nine such strings. Out of these,
eight of them are the gluons we are looking for. 

For any quark, one endpoint of the corresponding string lies on a color brane.
Where does the other endpoint lie? The answer becomes clear once we consider
the weak interactions. In order to produce the four gauge bosons of the elec-
troweak interactions we need two new D-branes, two “weak branes.”To draw the
brane configuration, it is convenient to use a plane and represent the D-branes as
lines. We take the weak branes to intersect the color branes, as shown in Figure 5.
Let’s now consider the two flavors of quarks indicated in (7). Since the left-handed
u and d quarks feel the weak inter-
actions (in addition to the color force)
the strings that represent them must
have their other endpoint on a weak
brane. Given that we have two weak
branes, we have a perfect fit: the left-
handed u quarks are strings stretched
from one of the weak branes to the 
color branes, while the left-handed d
quarks are strings stretched from the
other weak brane to the color branes. 

The strings that represent the
left-handed quarks stretch from one
kind of brane to the other. The string
tension forces the strings to have 
the minimum possible length, which
in this case is zero, so they represent
massless states that live at the points

Figure 5
The color branes intersect the two weak
branes (shown vertically). Open strings
localized near the intersection that stretch
from the weak branes to the color branes 
are left-handed quarks.The two flavors of
quarks (u and d) arise because there are 
two weak branes.
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where the branes intersect. Chirality is a property that guarantees that mass
cannot be readily acquired. When D-branes intersect, there is no small displace-
ment of the branes that eliminates the intersection, so the strings that stretch
from one brane to the other cannot acquire mass. Chirality is a property of states
that arise at brane intersections. 

How do we get the right-handed quarks listed in (7)? Since these states feel
the color force, the strings have one end on the color branes. Since they do not feel
the weak interactions, they cannot have their other endpoint on the weak branes
and consequently we need new branes. These new “right branes” must intersect
the color branes for the states to be massless. As shown in Figure 6, the right-handed
quarks stretch from the right branes to the color branes. 

Let’s now consider the lepton doublet that includes the left-handed neutrino
and electron [see (6)]. These particles feel the weak interactions, so they are repre-
sented by strings that have one endpoint on the weak branes. Since they do not feel
the strong interactions, the other endpoint in those strings must end on new
“leptonic branes.” The left-handed leptons are shown as strings localized at the
intersection of the weak branes and the leptonic branes. Finally, let’s consider the
right-handed electron e–

R and the right-handed neutrino neR . These particles feel
neither the color force nor the weak force. They are represented by strings that
stretch from right branes to leptonic branes, as shown at the bottom right corner
of Figure 6. 

We have exhibited the states that comprise one family of the Standard 
Model. The Standard Model has two additional families, with states completely
analogous to those described in (6) and (7). These are obtained with additional 
intersections. The first models to give the precise spectrum of the Standard Model
were constructed in 2001 by Ibanez, Cremades and Marchesano [3]. 
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Figure 6
The full D-brane configuration in which open
strings represent the familiar particles of the
Standard Model.The vertical branes to the
right are called “right branes” because they
support the right-handed quarks (which do
not feel the weak interactions).The horizontal
branes at the bottom are called “leptonic
branes” since they support the left-handed
leptons (to the left) and the right-handed
leptons (to the right).

color
branes

leptonic
branes

right
branes

weak
branes

gluon

dL
UL

nL

UR, dR

eR,nR

W+, W–

eL
–



mit physics annual 2004  zwiebach ( 53

We have so far imagined the D-branes as D1-branes that are stretched on a two-
dimensional plane. Let us finally show how the brane configuration fits into a ten-
dimensional superstring theory. A physical setup requires an effective four-dimensional
spacetime, so six of the spatial dimensions must curl up into a compact space of
small volume. To visualize the brane configuration we assume that two out of the
six extra dimensions are curled up into a two-dimensional torus (Figure 7). The
D-branes are all chosen to be D4-branes, and three out of their four spatial direc-
tions fill our space. The last direction is chosen to appear as a line on the two-dimen-
sional compact torus. So, in fact, Figure 6 was a picture of the D-branes as seen on
the torus, a close-up that does not quite show how the D-branes are fullywrapped
around the torus. The strings that represent the Standard Model particles are local-
ized at the brane intersections and are perceived as particles. 

While there are string constructions that give precisely the matter content of
the Standard Model, no one claims to have a derivation of particle physics from
strings. For this, one must also show that symmetry breaking works out correctly
and particles acquire their familiar masses. This has not yet been done. I hope, 
however, to have demonstrated that familiar features of our observed universe can
emerge from string theory. 

Outlook 
We maywonder what are the possible outcomes of an exhaustive search for a real-
istic string model. One possible outcome (the worst one) is that no string model
reproduces the Standard Model. This would rule out string theory. Another possi-
ble outcome (the best one) is that one string model reproduces the Standard
Model. Moreover, the model represents a well-isolated point in the space of all string
solutions. The parameters of the Standard Model are thus predicted. The number
of string models may be so large that a strange possibility emerges: there may exist
many string models with almost iden-
tical properties, all of which are consis-
tent with the Standard Model to the
accuracy that it is presently known. In
this possibility there may be a signifi-
cant loss of predictive power. Other
outcomes may be possible. 

New experimental input will also 
help us determine if string theory
describes our universe. The recent
discoveryof a nonzero positive cosmo-
logical constant has suggested new
directions of investigation based on
cosmological properties of strings. A
discovery of supersymmetrywould be
a strong indication that string theory is

Figure 7
The intersecting D-brane configuration.
To visualize a compactification we must
imagine that a compact torus, such as the
one shown in the figure, exists on top of each
point of ordinary three space (represented as
a plane with coordinates X1, X2, and X3).The
D4-branes fill three-space and have one
direction along the torus.The D-branes
appear as lines on the torus. A left-handed
quark is an open string that stretches from
weak to color branes on the torus. It is
perceived as a particle in three-space.

quark
x1, x2, x3

x4–x5



correct because supersymmetry is generic in string theory—it is almost a predic-
tion. The discoveryof extra dimensions, perhaps surprisingly large ones, would also
have dramatic implications. Most likely, finding out if string theory describes our
universe will require a greater masteryof the theory. String theory is in fact an unfin-
ished theory. Much has been learned, but there is no complete formulation of the
theory and its conceptual foundation remains largely mysterious. String theory is
an exciting research area because the central ideas remain to be found. 
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Gravity and E/M Units in Higher Dimensions 
            Robert D. Klauber, corrected version Feb 28, 2023    

 Gravity 
  

 D = 4  D  4 

 d = D ‒ 1 = 3  d = D ‒ 1  3            

 Quantity Units Point Source  Quantity Units Point Source 

 F = mg F (dynes) 2

GmM
F

r
     F(D) = mg(D) Same as 4D 

 
 

1
 D

d

D
G mM

F
r

  

 
2Fr

G
mM

   
2 2

2 2 2

dynes ergs cm

g g

F l l

m

   
  

 
N/A  

 
  1

3
D d

D dF r
G Gr

mM


   

See above far right box.  

1 1 2

2 2 2

dynes ergs cm

g g

d d d
F l l

m

     
  

 
 N/A 

 M m (g)  “  M Same as 4D “ 

 test mass m m (g) “  test mass m Same as 4D “ 

 gV
m

  
F

g  
dynes ergs

g g cm

F Energ

m m l

 
    

2

GM

r
 

r
g

r
  

 
 

 
D

D D
gV

m
  

F
g   Same as 4D 

 
 

1
D

d

DG M

r

r
g

r
  

 Vg 

ergs

g

E

m

 
 
 

 g

GM
V

r
    

 D
gV   Same as 4D 

 
 

2

1

2 
 


D

g d

DG M
V

d r
  

Newton 

grav law 
4 mG   gi

2

dynes ergs

g g cm

F

m l l

 
 

   
     34 GM   g ri  

     
4D D D

mG   gi   Same as 4D 
       4D D dG M   g ri

 
2 4g mV G   “ 

   2 34gV GM   r  
     2 4D D D
g mV G     Same as 4D 

       2 4D D dG M  g r  

 m 3 3

g

cm

m

l

 
 
 

   M r    
 D
m   

g

cmd d

m

l

 
 
 

     3M r   

  
For each spatial dimension greater than 3 (D greater than 4), the units of G(D) increase by a factor of length (cm) and the units of mass density are reduced by a 

factor of length (cm) in the denominator. All other quantities keep the same units as in 3d (= 4D). In particular, total mass (M) units are the same for any D. Mass 

plays the role of “charge” in gravitation theory, but as seen by comparison with electromagnetism on the next page, charge in e/m and mass in gravity are not treated 

the same way in higher dimensional theory. 

After reading the following page, be aware that the higher dimensional geometric factor cd employed in e/m theory is absorbed into the higher dimensional 

gravitation constant G(D). So, it doesn’t show up in the gravity chart above, whereas it does in the e/m chart on the next page. 
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Electromagnetism 
  

 D = 4  D  4 

 
d = D ‒ 1 = 3       3

1

4
c   

 
d = D ‒ 1  3            

 
   

12

2 1
unitless

2 


 d dd /

d /
c

Vol S
  

 Quantity Units Point Source  Quantity Units Point Source 

 F = qE F (dynes) 24

qQ

r


r
F

r
  

 
F(D) = qE(D) F(D) same as 4D 

 
   

1


D D
D

d d

q Q
c

r

r
F

r
  

 No constant in e/m comparable to G in gravity  No constant in e/m like G in gravity. So, units of q (and Q) must change. Plus, need cd factor. 

 Q q (esu)  N/A 
 

Q(D) 
 To cancel r factors, q(D)Q(D) = (esu)2rd‒3                          

q(D) units  
 3 3 2esu cmd d /q l      

N/A 

 test charge q q (esu) “  test charge q(D) “ “ 

 
q

  
F

E  
 

dynes ergs

esu esu cm

F Energ

q q l

 
     

 
24

Q

r


r
E

r
 

  
 

 D D

D
q

  
F

E  
     3 2

dynes

esu cm
D D d /

F Energ

q q l


 
  

  
   

 

1


D
D

d d

Q
c

r

r
E

r
  

 
ergs

esu

Energ

q

 
 
 

 
4

Q

r
   

 
(D) 

   3 2

ergs

esu cm
D d /

Energ

q


 
  

 
   

 

22 
 



D
D d

d

c Q

d r
  

Max 

eq 
 Ei  

2

dynes ergs

esu esu cm

F

q l l

 
    

     3Q E ri  

 

   D D Ei   
 

   

2

3 2 2 1 2

ergs ergs

esu cm cm esu cm

D

d / d /

Energ

q l

 




 
 

   

  
        i
D D dQE r   

 2       “ 
   2 3Q    r

    2 D D     
This is same as above box and (in different,     

but equivalent, units) below box. 
       2    D D dQ r   

  3 3

esu

cm

Q

l

 
 
 

   Q r   
 

 D   

 
 

 
3 2

3 2

1 esu
esu cm

cm cm

D
d /

d d d /

q

l




 
  

 
  

     D d
Q r   

  
In the force expressions (see first row for both type forces) in D > 4, we get extra factors of length units (from the r exponent) in the denominator on the RHS. In gravity 

theory, we absorb those extra units into the definition of G(D), such that units for other gravitational quantities, like mass, potential, and force per unit mass remain unchanged. 

In e/m, there is no constant in the force expressions like G in gravity. If we assume the units for force do not change in higher dimensions in e/m, as it is in gravity, we 

have to absorb these extra units into our higher dimension definition of charge. We also need the dimensional geometric factor cd, which was absorbed into G(D) in gravity. 

Since there are two factors of charge in the last block of the first row in the e/m chart above, the charge units must be        3 3 2
esu cm esu cm

d d /    . Since Q(D) 

appears in all other relations as a single factor, all of those other relations must change units from what they had in 4D.  Charge density, for example, is no longer esu divided 

by (higher D) volume, so E and  units are weird, as well. (Mass density in gravity however scales directly with the inverse of higher D volume alone). 

For each extra dimension above d = 3, charge units increase by a factor of the square root of length, in cgs, cm1/2. 

On the other hand, if we had wanted to keep  (and thus E) as having the same units, then we would need to define charge units differently than we did above, and then F 

units are weird.  



 

 
 
 

Planck Length and Gravitational Constant in Higher Dimensions 
      Robert D. Klauber www.quantumfieldtheory.info Feb 29, 2024 

 

 

 

 
 

  

Step Description 4D 5D Any D Comment 

1 
Gravity point source 

force 
1 2

2

M M
F G

r
   

   5 5 1 2

3

M M
F G

r
   

    1 2

2

D D

D

M M
F G

r 
   

Force spread in extra 

dimension(s). Same units for 

F(D) in any D. 

 Units of G(D) [G] [G X m] [G X mD‒4] m = meters 

2 
Dimensional analysis 

for Planck length 

2

3p

G
l

c

ℏ

    
 53

5

3p

G
l

c


ℏ
  

  
 2

3

DD
D

p

G
l

c




ℏ
  

lp = Planck length for D=4 

 D

pl = Planck length, any D 

 A ratio of interest 

2

3

pl

G c

ℏ

  
  
 

3
5 2

35

p p
l l

GcG
 
ℏ

 

  
 

2
2

3

D
D

p p

D

l l

GcG



 
ℏ

  
  

 2
2

D
D

pD

p

l G
l

G


   

3 

Mass spread in circle 

in extra dimension. 

Derived in Zwiebach 

pgs 65-66 

N/A  5

cG Gl   
  4D D

cG Gl    
lc = length of each 

circumference of circular 

compact dimension(s) 

   D

cG GV   
Vc = volume of extra 

dimensions for tori 

4 
Combine step 2 

(ratio) and step 3 
   

 53
5 2 2

p p p c

G
l l l l

G
    

   2
2 4 2

D
D D

p p c p cl l l l V


   If lc = lp, then 
 D
p pl l . 
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String Theory Gauges and Coordinate Systems 
Augments Zwiebach Chaps 9-11. (See last paragraph of Sect 11.5, pg. 229) 

        By Robert D. Klauber March 10, 2024 

 

 GAUGES: Fixing  and/or  Comment 

 Static Special Static A Particular Gauge Family  Light-Cone 4D here, also valid 

for higher D. 

n and all vector 

quantities can be 

expressed in any 

coord system 

Fix 

(define) 
 = t = X0 

‒ n ∙ X=  
as at left 

n ∙ X= ˊ (n ∙ p)
p constant, any n.                   

This fixes for chosen n 

 

At left, with n aligned 

with light cone edge 

Fix 

(define)   

2 21 T

ds
d

v / c
 


  

From 
0

dE
d

T
    

2
n n p


i iP   

Fixes  for chosen n,               

but not simple to see how 

 

At left with n 

above 
 

Other 

defined 
 0X X  ɺ i    

All of below left column 

true for any n 
“ 

Relations left & 

below good in any 

coord system 

Results   n ∙ P= 0 
← eq motion,                              

n∙P above, BCs 
“  

Constraints    

2 2

2

0 0

0equivalent 

X X X X

X X

   

 

ɺ ɺi
�����������

ɺ

  

Same fixing of gauge family as 

top two blocks above 

← 1st from n ∙ P= 0, 

X

 



P

L
 and L; 2nd 

from 1st,
X

 

 ɺ

P
L

 & 2 

blocks, top left column 

“ 

Using these two 

relations is the 

same as using the 

two in the top two 

rows. Both define 

the same gauge 

family.  

Conj mom 

densities 
Complicated 0

2 0

T

c
X T X

 
     ɺP P 1 1

2 2
X X 

     
 ɺP P   ← L in P , P  above “ 

Eq motion 
0

 

 
 

 
 
P P

  

Details complicated 

2
1 0
c

X X  ɺɺ   0 1hereX X c   ɺɺ   
← eq motion with                   

P , P  above left 
“  

Solution Complicated  X

 soltn to above (Neumann 

BC), (9.56) pg 186, 

 
“ 

This soln good in 

any coord system 
 



2 
NOTE: Each of the above possible gauges can be expressed in any coordinate system. The two coordinate systems we work with most commonly are the 

observer spacetime (Minkowski) system with x

 = (ct, x1, x2, x3) = (x0, x1, x2, x3) and the light-cone coordinate system x


 = (x+, x‒, x2, x3). 

Quantities like P 

 and P 


 are different things in each gauge, because they are defined in terms of derivatives of the Lagrangian with respect to  and  

derivatives of X

.  and  are defined differently in different gauges, so P 


 and P 


 are different things in different gauges. 

For a given gauge, the four vectors P 

 and P 


 ( index suppressed) can be expressed in different coordinate systems. They are the same thing physically in a 

given gauge, regardless of coordinate system chosen. But their components in different coordinate systems will be different. This is like a 3D velocity vector that 

will have one set of components in one coordinate system and another set in a different coordinate system (say, one rotated with respect to the first system). It is the 

same thing expressed in two different coordinate systems. 

Similarly, our choice of the four-vector n determines our gauge. But n has different components in different coordinate systems, even though (for the same 

gauge choice for n), it is the same physical entity regardless of the coordinate system chosen. 

If we go with a particular gauge (like the light-cone gauge), we can express everything we deal with in any coordinate system. But, it turns out the light-cone 

coordinate system is the easiest to use with the light-cone gauge. 

Note:   0tension stringE T l         From definition of d  = dE/T0           0tension &
oscillation

E T  . 

  

 COORDINATE SYSTEMS WITH DIFFERENT GAUGES  

 Static Gauge  A Particular Gauge Family  Light-Cone Gauge  

Minkowski 

Coords 
n = n = (n0,n1,n2,n3) = (1,0,0,0)  arbitrary n = n  = (a,b,c,d) 

 specific  n = n  = (n+,n‒,n2,n3) =  1 1
2 2

0 0, , ,   

 

n ∙ X= ˊ (n ∙ p) 
 n ∙ X= ‒ ct = ˊ (‒E/c)   

Natural units, open spring with  = 2 

0

02

2

E T
t E t

T


 




     

 n ∙ X= ˊ (n ∙ p)   

 

n ∙ X= ˊ (n ∙ p)     
0 1

0 1

2

X X
p p 

        

       

Light-cone 

coords 
n = n = (n+,n‒,n2,n3)  1 1

2 2
0 0, , ,   n = n     1 1

2 2
a b , a b ,c,d     

n = n = (n+,n‒,n2,n3) = (1,0,0,0)  

 

n ∙ X= ˊ (n ∙ p) 

 n ∙ X=  
 

2 2

p pX X
 

     
    

 n ∙ X     
1

0

2

3

1 1
2 2

X

X
a b , a b ,c,d

X

X

 
     
 
  

 

 

n ∙ X= ˊ (n ∙ p)    X p      

     
2

n n p



i iP      

2
p


 P   

    
 Similarly easier than Minkowski coordinates                     

for other quantities. 
 

 



The String Gauge Relations Viewed in Spacetime Diagrams 

Robert D. Klauber www.quantumfieldtheory.info correction March 10, 2024 to Jan 29 & 21, 2024 (had n

 not n unit vec)     

1 The  Parameter 

A family of gauges used in string theory of the string world sheet parameters  and  is, from Zwiebach (9.27) [181], where 

n is a timelike or lightlike unit vector, X is spacetime coordinates on the string world sheet, p is four-momentum of the entire 

string, and P is the conjugate 4-momentum density for X, 

  
0

1
1 for closed strings; 2 for open

2
n X n p

T

 
   


          (1) 

                             
2

n n p 
 




P =    (2) 

An analysis of what the planes of constant  look like for various choices of n is shown on subsequent pages and, for 

generality, includes spacelike n. A summary is shown in Wholeness Chart 1 below. 

Note we define a unit vector in a Cartesian, rather than Minkowskian, sense. For example, the lightlike vector 

     1 1 1 1 1 1 1 1
2 22 2 2 2 2 2

0 0 0 0 0 0 0
T

n , , , n n , , , , , ,


        , (3) 

has zero length (like any lightlike vector) in a Minkowski sense, but in a Cartesian sense, we can consider it has unit length. 

Otherwise, for the light-cone gauge, where n is aligned with the surface of the light cone, n would not be a unit vector, but a 

zero length vector. 

Wholeness Chart 1 is summary of the analysis of (1) above, which can be found below in Sect. 5. Fig. 1 is a visualization of 

these results. 

Key takeaway: For n timelike or lightlike, any object (which must travel inside the light cone) will have increasing  

parameter as time t passes in an observer’s frame, and as proper time proper passes on the object. For particles/strings, the 

parameter  never decreases with time. 

 

Wholeness Chart 1. Overview of  for Various n and Massless String  

Unit Vector Nature of n Constant  Plane Orientation 

n = (1,0,0,0)               ↑ timelike Visually to n time axis) 
timelike 

 = t 

 2 1
5 5

0 0n , , ,        timelike Visually  to n timelike 

 1 1
2 2

0 0n , , ,       lightlike Visually  to n (light-cone edge) lightlike 

 1 2
5 5

0 0n , , ,      spacelike Visually  to n spacelike 

n = (0,1,0,0)             → spacelike Visually to n (space axis) spacelike 

  

Figure 1. Planes of Constant  for Different n and Massless String (1 < 2 <3 ) 
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As noted, for an object traveling (which is always inside the light cone),  must always increase along its path for n timelike 

or lightlike. Not so for n spacelike. The gauge family of (1) and (2) always takes n as timelike or lightlike. 

2 The  Parameter 

Gauge constraint relations (1) and (2) can be expressed in different ways, as Zwiebach shows in Chap. 9. One of these is 

 2 20 and       0X X X X   ɺ ɺi    (same gauge family as (1) and (2)),     (9.33) [182] (4) 

which can be re-expressed as 

                                           0X X  ɺ .                                    (9.34) [182] (5) 

Each of (1) and (2), (4), and (5) is equivalent to any of the others. Each is a set of two equations that constrain  and , which 

makes sense ‒ two equations to constrain two parameters. 

Xɺ  is a vector obtained by a partial derivative in which we fix (keep constant), so it points in the direction of increasing  

and is tangent to a constant  line. Similarly, Xˊ is a vector tangent to a line of constant . So, the first relation in (4) tells us the 

lines of constant  are orthogonal (in spacetime) to the lines of constant  at every point on the world sheet. 

3 Intersection of World Sheet with Plane of Constant  

The intersection of a string world sheet and a plane of constant  looks like Fig. 2. Note, to help in illustration we have used 

a massive (not massless) string, so all points on the string travel inside the light cone. 

                            Figure 2. Intersection of a String Worldsheet with a Plane of Constant     

4 n
in the Second Quadrant 

For n

pointing up and to the left in a spacetime diagram (instead of up and to the right), we would find the planes of constant 

 as a mirror image of those in Fig. 1. 
  

5 Supporting Calculations for Massless String 

In (1), 
0

1

2 T



 is constant. For simplicity, we will assume this is unity, and we will use the same simple light-like 4-

momentum for each example. That is, for our examples, in this section, 

 we take    
0

1
1 and 1 1 0 0

2
p

T




  … . (6) 

We will then consider cases where  = 1,2,3 to see where the planes of constant  lie in a spacetime diagram. 

Note we are choosing a massless string, so the string 4-momentum is lightlike. In the next section, we look at a massive string, 

where the 4-momentum is timelike. 

5.1  n Aligned with Time Axis 

Take 

    1 0 0 1 0 0n , , , n , , ,


    … …  , (7) 

so (1) becomes 

ct

x1

string 
worldsheet

plane of 

constant 

line of constant             

on worldsheet

X()

point on worldsheet 

at ()
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 
0

1
1st constant plane 1; 2nd constant plane 2;3rd, 3

2
n X n p n X

T

  
         


      . (8) 

 0 0 0 1  on 1st constant plane; = 2 on 2nd; = 3 on 3rdn X X X X t
          . (9) 

This is what the left-hand diagram in Fig. 1 shows. Planes of constant  appear horizontal, perpendicular to the X0 axis, and 

perpendicular to n in this example. Also,  increases with increasing X0 = t1. 

5.2 n Timelike, but Not Aligned with Time Axis 

Take 

    2 1 2 1
5 5 5 5

0 0 0 0n , , , , n , , , ,
    … …   (10) 

so (1) becomes 

    
0

2 1
5 5

1
1st plane 1; 2nd, 2;3rd, 3

2
n X n p n X

T

  
       


        (11) 

 0 1 0 132 1
5 5 5

2 3n X X X X X


        . (12) 

 

0 1 1 0 0 1
1

0 1 1 0 0 1
2

0 1 1 0 0 1
3

1 2 3 0 1 50 0 3

2 2 6 0 3 00 0 6

3 2 9 0 4 50 0 9

X X X ,X . X ,X

X X X ,X . X ,X

X X X ,X . X ,X







        

        

        

  (13) 

(13) represent lines sloping from the upper left to lower right in the X0X1 plane, but planes when we include the X2 axis. They are 

represented in the second diagram of Fig. 1. These plane of constant  appear visually in a spacetime diagram like they are 

perpendicular to n, though in 4D spacetime they would not be considered orthogonal2. Note that  increases with increasing X0 

= t. Hence,  increases along the world line of any object. 

5.3 n Lightlike 

Take 

  1 1
2 2

0 0n , , , ,  …   (14) 

so (1) becomes 

    
0

2 2 2
1 1 21

1st plane 1; 2nd, 2;3rd, 3
2

n X n p n X
T

  
        


         (15) 

  0 1 0 1

2 2 2
1 1 2 2n X X X X X

           (16) 

 

0 1 1 0 0 1
1

0 1 1 0 0 1
2

0 1 1 0 0 1
3

1 2 0 2 0 2

2 4 0 4 0 4

3 6 0 6 0 6

X X X ,X X ,X

X X X ,X X ,X

X X X ,X X ,X







        

        

        

  (17) 

 
1 Note that we have taken /2T0 = 1 and p = (1,1,0,0) to make things simple, but actually, for open strings, /2T0 = E, where E is 

energy from tension and oscillation of the string, and p = (E,|p|,0,0). So, np = E, and nX = t. Thus, from the left side of (8),  = t. 

2 The vector orthogonal to  2 1
5 5

0 0, , ,   in spacetime is  1 2
5 5

0 0v , , ,  , since   2 1 1 2
5 5 5 5

0 0 0 0 0
T

n v , , , , , ,


    . 

But in a spacetime diagram, v does not look perpendicular to n. The vector  2 1
5 5

0 0, , , , however, looks perpendicular to n in 

this example visually, but in spacetime is not orthogonal to it. Similarly, the vector  2 1 0 0, , , , which aligns with a constant  plane 

in this example, looks visually perpendicular to n (but is not orthogonal to it in spacetime). 



4 
These are planes as represented in the middle diagram of Fig. 1. These planes of constant  do look visually in a spacetime diagram 

like they are perpendicular to the edge of the light cone, i.e., perpendicular to n in this example. Note that  increases with 

increasing X0 = t. Hence,  increases along the world line of any object. 

5.4 Spacelike n 

Showing the results of the last two diagrams in Fig. 1 is left to the reader. Note that the gauge family we are considering 

always has timelike or lightlike n, so deducing and showing the constant  planes is more of an academic than practical exercise. 

You can skip it if you like with little impact on the learning process. 

5.5 Conclusions for Massless Strings 

For n timelike or lightlike,  increases monotomically with increasing t, and thus, always increases along the spacetime 

path of any object. One exception: for lightlike n along the right edge of the light cone,  is constant for a massless object 

traveling along the left edge of the light cone. 

For n spacelike, we could have objects traveling spacetime paths where  decreases with increasing t, as you can see 

by considering what such paths would look like in the last two diagrams of Fig. 1. 

Hence, we can conclude that in this gauge family (that only includes timelike or lightlike n),  is a useful parameter 

because, for any possible particle/string motion, it never decreases with passage of time t. The same conclusion holds for 

massive particles/strings, as one could see, if one wished, by plotting the results of Sect. 6. 
 

6 Supporting Calculations for Massive String 

For the sake of completeness, in this section, we show similar calculations for a massive string. The strings of concern in 

almost all of string theory are the massless ones, so the following is of academic, but not great practical, value, and you may wish 

to just skip it. 

We again note that 
0

1

2 T



 is constant and assume, for simplicity, that it equals unity, as before. However, we now consider 

a massive string, and the same simple 4-momentum for each example. That is, for our examples, 

 we take    
0

1
1 and 2 1 0 0

2
p

T




  … . (18) 

We will then consider cases where  = 1,2,3 to see where the planes of constant  lie in a spacetime diagram. 

Note that the string 4-momentum is timelike, in contrast with the lightlike 4-momentum of the massless string in Sect. 5. 

6.1  n Aligned with Time Axis 

Take 

    1 0 0 1 0 0n , , , n , , ,
    … …  , (19) 

so (1) becomes 

 
0

1
2 1st constant plane 1; 2nd constant plane 2;3rd, 3

2
n X n p n X

T

  
         


      . (20) 

 0 0 02 2 2 on 1st constant plane; = 4 on 2nd; = 6 on 3rdn X X X X ct
          . (21) 

Constant  planes in this case are horizontal in spacetime diagrams and look visually to be perpendicular to n. Again, from the 

logic of footnote 1 on pg. 3, in the realistic case,  = t, here. 

6.2 n Timelike, but Not Aligned with Time Axis 

Take 

    3 2 3 21 1
5 5 5 5

0 0 0 0/ /n , , , , n , , , ,
    … …   (22) 

so (1) becomes 



5 

    
0

3 2 1
5 5

1
2 1st plane 1; 2nd, 2;3rd, 3

2

/n X n p n X
T

  
       


      i  (23) 

 0 1 0 13 1 4
5 5 5

3 4n X X X X X


        . (24) 

 

0 1 1 0 0 1
1

0 1 1 0 0 1
2

0 1 1 0 0 1
3

4
1 3 4 0 0 4

3

8
2 3 8 0 0 8

3

3 3 12 0 4 0 12

X X X ,X X ,X

X X X ,X X ,X

X X X ,X X ,X







        

        

        

  (25) 

(25) represents lines sloping from the upper left to lower right in the X0X1 plane, but planes when we include the X2 axis. These 

do not look visually to be perpendicular to n in this example. Nor do they look perpendicular to p. 

6.3 n Lightlike 

Take 

  1 1
2 2

0 0n , , , ,  …   (26) 

so (1) becomes 

    
0

2 2 2
32 11

1st plane 1; 2nd, 2;3rd, 3
2

n X n p n X
T

  
        


         (27) 

  0 1 0 1

2 2 2
32 1 2 3n X X X X X

           (28) 

 

0 1 1 0 0 1
1

0 1 1 0 0 1
2

0 1 1 0 0 1
3

1 2 3 0 1 50 0 3

2 2 6 0 3 00 0 6

3 2 9 0 4 50 0 9

X X X ,X . X ,X

X X X ,X . X ,X

X X X ,X . X ,X







        

        

        

  (29) 

These plane of constant  do not look visually in a spacetime diagram like they are perpendicular to the edge of the light 

cone. But, they do look visually to be perpendicular to p


. 

6.4 Spacelike n but not Aligned with Spatial Axis 

Take 

    1 2 1 2
5 5 5 5

0 0 0 0n , , , , n , , , ,


    … …   (30) 

    
0

1 2
5 5

1
2 1 1st plane 1; 2nd, 2;3rd, 3

2
n X n p n X

T

  
       


      i i   (31) 

 0 1 0 11 2 4
5 5 5

2 4n X X X X X


          (32) 

 

0 1 1 0 0 1
1

0 1 1 0 0 1
2

0 1 1 0 0 1
3

1 2 4 0 4 0 2

2 2 8 0 8 0 4

3 2 12 0 12 0 6

X X X ,X X , X

X X X , X X ,X

X X X ,X X ,X







        

        

        

  (33) 

The constant  planes in this case are sloped at less than a 45o angle from the time axis, and thus, there are spacetime paths 

an object could travel where  would decrease over time. 

6.5 Conclusions for Massive Strings 

Massive strings are similar to massless ones in that for n timelike or lightlike,  increases monotomically with 

increasing t, and thus, always increases along the spacetime path of any object. Unlike massless strings, however, there is 

no exception, since the planes of constant  can never form angels less than 45o with the time axis. 
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For n spacelike, we could have objects traveling spacetime paths where  decreases with increasing t, as you can see 

by considering what such paths would look like in the last two diagrams of Fig. 2. 

Hence, as with massless strings, for massive strings, we can conclude that in this gauge family (that only includes 

timelike or lightlike n),  is a useful parameter because, for any possible particle/string motion, it never decreases with 

passage of time t. 

Wholeness Chart 2 and Fig. 3 summarize the results for massive strings.- 

 

Wholeness Chart 2. Overview of  for Various n and Massive String  

Unit Vector Nature of n Constant  Plane Orientation 

n = (1,0,0,0)               ↑ timelike Visually to n (time axis) timelike 

 2 1
5 5

0 0n , , ,        timelike Not visually  to n, nor to p
 timelike 

 1 1
2 2

0 0n , , ,       
lightlike 

Not visually  to n,,                                     

but do look  to p

 

lightlike 

 1 2
5 5

0 0n , , ,      spacelike Not visually  to n, nor to p

 spacelike 

n = (0,1,0,0)             → spacelike Visually  to n (space axis) spacelike 

      
 

Figure 3. Planes of Constant  for Different n and Massive- String (1 < 2 <3 ) 
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Field 
Symmetry 

in L 
4 Current Conserved Charge Conjugate Momentum Physical Quantities Conserved 

(x) 

    + �
1

j
,






 
 


 
L

  

(external) 

00  conservedj , j dV
      

1 symmetry parameter             

 1 conserved quantity 

 

0

0

0 typically

j
,

,




 


 



 ɺ∼

L

 

Note:  is only time 

derivative, none spatial  

x
 







p =  = 4-momentum density (Vol. 1, pg. 23, (B2-2.3)) 

 

 

0 0 2

2

2

2

2

2

i
i i ,i i i

p dV dV dV dV N

V

k
dV dV , dV dV k N

V

 
  




 



 

 

   

   

k k
k k

k

k
k

k

ɺ ɺ ɺ

ɺ

= p = =

p = p = =

 

Since we have only proven dV  is conserved, it may not be 

obvious that p is. Also, physically, there are four conserved 

quantities p, though Noether’s theorem only predicts one. 

ie     �

j
,

i






 



 


 
L

  

(internal) 

00  conservedj , j dV
      

1 symmetry parameter             

 1 conserved quantity 

N/A    0 2

2
a b a bQ q j dV q i dV q N N dV q N N

V







     
   k

k
ɺ

L

A(x) 

AA+

�

A
j

A ,

A ,




  











 


 






L

L

  

(external) 

0
0  conserved

        for each 

,j j dV


  



    

4 symmetry parameters           

 4 conserved quantities  

 

0

0

0 typically

j
A , A

A , A

  

  





 
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 



ɺ

ɺ∼

L L

 

Note: 0 is conjug to time 

comp of A; i is conjug to 

space comp. Derivative 

always wrt time, never space. 

A

x



  





p =  

Each component of the field makes a contribution to the             

physical 4- momentum density 
2

0 0 0
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k
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ɺ
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Note: transformation not on x (independent variables),                

but on A (dependent variables = fields).  
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1 symmetry parameter               

 1 conserved quantity 
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q N dV qN
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String Theory 

Indices parallel Zwiebach pg. 158, except using  instead of a to label fields in L, so not to confuse a with  (which labels independent 
variables 

 = ). Note also, that Zwiebach uses  for i, after introducing the meaning of the i index. Also see Notes on next page.  
   

Field Symmetry in L 4 Current Conserved Charge Conjugate Momentum Physical Quantities Conserved 

X() 

= X(1,2)   

( spatial ↑) 

 ( ↓) 

= X() 

= X(
0,

1)   
 

 = 0,1,2,3 

 = 0,1 

4D translation 

X X + 

 = 0,1,2,3 

 

in Zwiebach, 

 sometimes as i 
   

(external) 

 
 

�

 

0 1

Zwiebach
 notation

  
  

 



 





 
 













 


 


 





�����

j j , j

j , j

X

X ,

,
X ,

L

L
P P

P

 

 

00

conserved for each 

,j j d
   



    

4 symmetry parameters        

 4 conserved quantities 
 

Aside 

1st eq above  eq of motion 

Zwiebach
 notation

0

 
 

 

 
 

 �������

P P
  

 

0

0

0

0 typically?

  

 
   

  







 
 

    
    

   
 

    
 



ɺ

ɺ∼ ,

X X

j j
X , X

X X

L L

L L
P

Note: 0 is conjugate to time 

comp X0; 1 or 2 or 3 is conjugate 

to space comp X1 or 2 or 3. 

Derivative always wrt , not . 

Note that x are the 4D coordinates in the frame 

of the observer and are independent (whereas X

 

are 4D coordinates dependent on , ). 
   

 

�

 0

4-momentum density per unit 


 

     








   


   


X
j j ,

x
p = P   

 0

total string 4-momentum

  
           p j d j d , dP

  

p conserved (for each ) via 1st eq, 4th column 

As above X
i X

iei Not in Zwiebach as of pg 177 (internal) 

As above 

4D Lorentz 

  





  

 

X X

X
 

Infinitesimal 

 <<1 

  


 




 

  

 

X X X

X X
 

( antisym with 

3 indep boosts + 3 

indep rotations  

6 indep variables)  
  

(external) 

 

 
 0 1

Zwiebach
 notation

 Lorentz current

j j , j

j , j

X

X ,

j X

j X

j X j X

X X

  
  

 



 




 

 
 

  
 

 
   

 
   






 

 





 


 

 
    

 
 
  

 

 



�������

L

P P

 

0
0

 Lorentz charge

,j j d M


     




Conserved for each indep 

set of  and 
 

6 symmetry parameters 

 = six indep comps of  

 6 conserved quantities 

 

 = 0,  = 1,2,3,                  

3 boost charges 

Other off diagonal terms,    

3 rotation charges. 

Note the term “charge” is 

usually reserved for 

internal symmetries, but 

here used for Lorentzian. 

N/A 

For j, k ≠ 0,   Li = ½jkMjk  = angular momentum, 

which is conserved because Mjk are. 

Boost M0j is related to initial position, i.e., it is 

conserved during string motion. 

  



 

 

 

Notes 

                0 1    
                     j , j , , j , j , , j , , , ,P P  is a vector dependent on  and , so, visually, we can imagine a field of vectors 

whose base points lie on the world sheet (because they are functions of world sheet coordinates  and ), though the tips of the vectors would, in general, be off of 

the world sheet. There would be two component vectors composing  
  j ,  at every point on the world sheet,      0 

        j , j , ,P  and 

     1 
        j , j , ,P . Each of those component vectors has 4 components  as seen in the 4D spacetime Minkowski space, and they add vectorially to 

give  
  j , ,  which itself has 4 components for = 0,1,2,3. 

We show the conserved quantity 
0 

             d j d j d d pPp  is actually physical 4-momentum using the general formula in the last column above 

that relates conjugate momentum to physical momentum. (See Klauber, Vol. 1, pg. 23, (B2-2.3).) Generally,    p , but in this particular case, they are equal. 

Zwiebach shows p is physical 4-momentum in a different way, via 3 steps, as follows. 1) Finding conserved quantity p (without knowing what it is physically) 

in the static gauge, 2) showing p is the same in any gauge, and 3) showing p is actually physical 4-momentum in the static gauge, so therefore p is physical 4-

momentum in any gauge (and is gauge invariant.)  

Note that the physical 4-momentum density of the string equals 
0 

       j j Pp , and has nothing to do with 
1 

   j j P . Thus, the total 4-momentum 

p has nothing to do with 
1 

   j j P .  

We know that the 4-momentum density has form m

proper

X 
 







p , where m is the rest mass per unit  length parameter. The derivative of any 4D position 

vector coordinates of a point with respect to proper time is tangent to the world line of the point. For a string, it would be tangent to the world sheet at each point on 

the world sheet. Thus, the  0 
       j j Pp   vectors at each point are tangent to the world sheet. Unless the world sheet happens to be flat, they will point 

in directions off of the world sheet, though they are actually vectors confined to the world sheet. One can also show the 
1 

   j j P  vector is everywhere tangent 

to the world sheet, since it ends up having form X  , where the prime indicates derivative with respect to . Such a derivative is tangent to constant  line and that 

line lies in the world sheet. 

  



Relativistic Point Particle vs Relativistic String Solutions 
Light-Cone Gauge & Light-Cone Coordinates: Classical Mechanics 

                                      As an aid for Zwiebach (text which equation numbers and pages below reference)      Robert D Klauber Jan 26, 2024   

 Point Particle Open String Field 

Independent variables 0
I Ix ,x , p , p    (11.25) [220] 0

I IX ,x , , p 
P   

(12.5)  [237]                                                              

P
 = momentum density 

Full description of motion x() = (x+, x‒, xI)  X () = (X+, X‒, XI)  

    Eq of motion 2 0
dp

p m x
d


 
  ɺ ɺɺ   

m2 instead of m gives 

unitless  (nat units) 
0X X  ɺɺ  (9.39)  [183] 

    General solution 20 m

p
x x


      

Motion of point particle 

with no external force 
0 0

0
2

1
2 2 in

n

n
p

X x i e cos n
n

   



     




    �����
 

(9.56), p from (9.52) 

Neumann B.C.s 

Wave motion of string with no 

external force 

    Transverse motion 
              (given) 20

I
I I

m

p
x x     (11.15)  [218] X 

I = (9.56) above with  = I (9.69)  [188] 

Dependent variables 

 2

2

0

0

0
m

m

p

p

x x

x x









 

 

 

 
  

← Light-cone gauge cond. 

(11.7) [217] & (11.29) [221] 
 
(11.14)[218] & (11.30)[221] 

 
0

0

2 2

0 in (9.56)n

X p

, x

    
 

  

 
  

   
 

X‒ = (9.56) with  = ‒ 

← Light-cone gauge cond. 

(9.70) [188] 
  

(9.72)  [188] 

    Auxiliary to get above 
 2

2
1 I I

p
p p p m
    

(From p
2
 = m

2
) 

(11.12) [217]                    

& (11.31) [221] 

2

1
2 1 I I

n n n n p p

p

L L
p

     




   
ℤ

 

 0 0 0

1
2 2 2p L L p p

p
        


       

 
 

† 2
0 0 0

1
2 2

1
2

From 

I I I I I I
p p

p
I I p mp p

L p p M



    




    ������������
  

(9.77) derived [189]  
nL   transverse Viasoro mode  

(only used for n
 ) 

  
(9.78) [189]                            

(p‒ from point particle) 
  

M 2 from (9.83)  [190] 
 

Momenta density N/A  P
 = P  = (P+, P‒, PI)    

2
1 X  
  ɺP    

Momenta of motion p = (p+, p‒, pI)  p = (p+, p‒, pI)     p d
    P    

Hamiltonian 
 2

2 22

I Ip p mp p

m m
H

  
    

(11.34) [222] Not energy, 

but translation operator                 

( gauge dependent) 
02H p p L       

(12.16) [239] Not energy,     

but  translation operator                     

( gauge dependent) 

Valuable relation   
   2

0 in this 
gauge family

1 1 1

2

inI I
nX X X X L e

p p

 


   

 


    


ɺ ɺ
�����  

    
(9.79) [190]  = 2 for open 

     
(9.77) [189] above 

 

 



Generators of Translation, Rotation, and Boost 
                  See Zwiebach, Sects. 11.5 and 11.6, pgs 226-233 and Klauber, Vol. 2, Wholeness Charts 2-2, pgs. 20-21; 6-3, pg. 172        Robert D. Klauber Feb 28, 2023 
 

 Translation  Lorentz Transformations (Rotations and Boosts) 

 Particle –  1 Spatial D Field –  4D  Particle –  4D Field –  4D 

  Dependent variable    x x t p p t       t , t ,       x y       x x p p           t , t ,       x x   

  Classical     x y  below to save space    

  Poisson brackets   u v u v
u,v

x p p x

    
  

       

 
r r

r r

u v u v
u,v 

  
    

     
  

 
As 2 columns to left                As 2 columns to left                        

     Special case   1
x p x p

x, p
x p p x

    
   

       

 

   

s s
s t t

t r r
r r

s r s
r t t

,
  

  
  

    

    
  

    

   x y x y

 

 M x p x p        

Lorentz charges, Zwiebach (11.76),  x


and p

 satisfy {x,p} relations 

        M  

M d   xM  

 and  satisfy{ , } relations 

  Transformation x x x     
  

              
 

smallx x x x    
            x x

       
            

    Via Poisson brackets    x x, p x, p     
  

 , d
     

          y   
  2

1x x , M x   
         2

1 d, M
  

     y   

      Transform operator p   (via Poisson bracket)    (via Poisson bracket) 
 ‒ ½ M


  (via Poisson bracket) ‒ ½ M


  (via Poisson bracket) 

Quantum       

  Commutators    1x, p i ℏ   , i , ig    
                  As 2 columns to left                As 2 columns to left                         

  Transformation x x x        As at left for x indep variable  smallx x x x    
         As at left for x indep variable 

    Via commutators    x x, i p i x, p         N/A: x

 indep, not dep variable 

 
2
1x x , M x   

       
Zwiebach (11.79)  

N/A: x

 indep, not dep variable 

    Transform operator 
d

p i
dx

   (via commutator)  N/A for x 
 

‒ ½ M


 (via commutator) N/A for x 

 transformation 

   
 

  

i Et px

i Et p x

t ,x t ,x

Ae

Ae


  




 

  

  



 

  , i d

    

     
 

    

      

    

      y
 

Mirrors x for particle 

 

Scalar  unchanged under Lorentz 

transf. Ditto for Et ‒ px 
2
1, M d

    


   
 

     

    

   

     y
 

     transform operator 
i pT e 

   ‒i   (via field commutator) 
 Identity operator 2

1 M
  (via field commutator) 

 

   
   

    

i Et px i Et pxi p

i Et p x

t ,x T t,x

T Ae e Ae

Ae t ,x








 

 

   

  

 

 

  

N/A 



ˊ(xˊ) = (x) N/A 



2 

 
Notes 

  
Recall from Klauber Vol. 1, Chaps. 1 and 2, that a basic postulate for quantization (going from classical theory to quantum theory) is the taking of the classical Poisson 

brackets over into commutators (with an extra factor of i and ℏ = 1). This is what we do in this chart. It is virtually never noted in texts that the generator of translation, so 

often referred to quantum theory, has a direct analogue in classical theory. The difference is simply that for one we use commutators, and for the other, Poisson brackets. 

The parallel between the classical and quantum realms extends beyond merely translation to the general Lorentz (including rotation) transformation. 

‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

For the 1d (x and t) particle case, in quantum theory, the  translation operator comprises a Lie group, with continuous parameter . As there is only one parameter in 

this case, it is a U(1) group. The operator p is then a generator of the associated Lie algebra. 

Note that in 3d, since [pi, pj] = 0 the Lie algebra generators for different spatial dimensions (i = 1,2,3) all commute. So, they don’t collectively form a higher degree Lie 

algebra. There are simply three different, independent U(1) Lie groups/algebras (for translation), each acting on its own without regard to the others. We will see this is not 

the case for rotation, or for Lorentz boosts. The operators there do not commute, and their non-zero commutation relations lead to higher degree Lie groups. 

Similar logic applies to 4D fields in translation. Each of the four components of a field may each be translated independent of the others. 

‒‒‒‒‒‒‒‒‒‒- 

For Lorentz transformations for a particle, there are six independent M, three for boosts and three for rotations. M is antisymmetric, so it has 6 independent 

parameters. Various values for these parameters determine the degree of rotation or boost the particle undergoes during transformation. 

We know rotations do not commute, so it should be no surprise that the different components of M do not generally commute. Thus, unlike translation, each M (for 

given  and ) does not form an independent Lie group. The commutation relations between the M give rise to higher degree Lie groups. The rotation subgroup, for 

example, is SO(3), which should be no surprise. M is Hermitian. 

Note that for i,j = 1,2,3, Mij = xipj ‒ xjpi is angular momentum in the direction perpendicular to the i-j plane. 

In the quantum realm, the commutator of M with 4D position vector generates the change in that vector under a Lorentz transformation (including rotations), as shown 

in the chart. 

In Zwiebach (11.80), pg. 230, M ,M i M i M i M i M                    (which can be proven via substitution). This commutator defines the Lorentz 

Lie algebra. Any quantum theory one poses must satisfy this commutation relation in order to be Lorentz covariant. The commutator is a constraint any potential theory 

must meet to be viable. 

‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

All of this is background for Zwiebach taking these results into the light-cone gauge and light-cone coordinates.  See pg. 4 for the world sheet coordinates as a 4D field 

dependent on parameters  on the world sheet. 

With specific regard to M, in the covariant gauge with light-cone coordinates, the above commutation relation holds, as Zwiebach shows on pg.233. Since the 

commutator is a 4D covariant relationship, it should, of course, remain valid under a change of coordinates. 

In the light -cone gauge, however, one must modify the M carefully in order to have it satisfy the commutator above and also, to be Hermitian (which is necessary 

for any generator of a Lie Algebra).  
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Showing Lorentz Transformation Generation via Poisson Bracket 
 

  
?

2
1x x x , M   

        (1) 

     
2 2
1 1x , M x , x p x p

      
        (2) 

 

    
       

 
 

 
   

2

2

2 2

1

1

1 10 0

x ,x p x ,x p

x p x p x p x px x x x

p p p px x x x

x p x p
x g g x x g g x

x x

     


          

    
   

   
         

    





   

  

       
     
        

  
        
   

  (3) 

In the row below, we make use of the anti-symmetry of . 

 (3)
2 2 2 2
1 1 1 1x x x x x x

       
                    (4) 
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Continuation of Chart on Page 1  

 

 Translation  Lorentz Transformations (Rotations and Boosts)  

 
Particle –  

1d 

Field –  

4D 

 Particle 

–  4D 

Field –  

4D 
World Sheet Coordinates X as Field 

    Covariant Fields, Light-Cone Coordinates          |      Light Cone gauge & Coordinates 

  Dependent variable See pg. 1 ↓ See pg. 1 ↓  See pg. 1 ↓ See pg. 1 ↓        t , X , t , ,         x x P  As at left, but light-cone gauge 

  Classical        

  Poisson brackets   

 

 

 Like 1st & 3rd boxes to left in “Field 4D” column. 

   
r r

r r

u v u v
u,v

X X
  

           P P
   

     Special case   

 

 

 X X     M P P  

M d   xM  

X and P satisfy{X, P} Poisson bracket relations 

Must modify definition of Lorentz 

generators M to keep correct 

commutation relations for M (which 

are needed to keep Lorentz invariance) 

  Transformation   
 

 
    X x X x X X

       
            

The above restricts the theory to D=26 

and leads to unstable tachyon scalars. 

      Via Poisson brackets    
 

 
  2

1X d XX , M
  

   y   See Zwiebach pgs. 260-262. 

      Transform operator   
   ‒ ½ M


 (via Poisson bracket)  

Quantum         

  Commutators   

 

 

 Like 1st & 3rd boxes to left in “Field 4D” column.

     

 

X , , , i

X , ig

 
 

  

       

  

    

     

P

P

  

 

  Transformation   
 

 
 Similar to left for  indep variables, but  &  

transfs not discussed 

 

    Via commutators      N/A:  indep, not dep variable  

    Transform operator      N/A for   

(=X here) transformtn   

 

 

    
2
1

X x X x X X

X X , M d X

       
  

   
 

 

   

      

     
 

 

     transform operator      ‒ ½ M


 (via field commutator)  

      N/A  

 



Finding D = 26: A Summary of and Little Different Wrinkle from Zwiebach   
Ref: Zwiebach, Sect. 12.4 pgs 250-253 and Sect. 12.5, pgs 259-262.     Robert D. Klauber May 2, 2023  

   
The present writer has big problems with (12.110) (he doesn’t believe it and will never be convinced), so we ignore that result 

herein. It is not needed to form a meaningful theory. 

The Hamiltonian of (12.101) is (where p has nothing to do with momentum and is simply an index label for the pth mode, and 

ℤ comprises all real integers, positive, negative, and zero) 

 0 0 0

1 1
2 2 2 2
1 1 1 1I I I I I I I I

p p p p p p

p p p

H L        
 


  

  

      
ℤ

, (12.101) 

where the last term is not normal ordered.  Zwiebach converts that term to a normal ordered terms plus an infinite constant, which 

converts (12.101) to (12.103), where D is the dimension of spacetime, i.e., 

  
0 0 0

1 1
2 2 2
1 1 1 2I I I I I I

p p p p

p p p

H L D p     
 


 

  

       
ℤ

. (12.103) 

The last term is reminiscent of the infinite zero point energy (ZPE) of quantum field theory (QFT). That term is ignored in 

QFT, though its meaning is an unsettled issue with field theorists. So, we choose to follow tradition and simply ignore it here, 

without trying to force it into something it is not. 

Jumping ahead to pg. 260, where the Lorentz generators  are discussed, we see that their commutation relations in the 

light-cone gauge must be parallel to the covariant formulation of the same relations, in order for Lorentz covariance to hold. In 

particular, 

 0I JM ,M     , (12.148) 

is true in the covariant formulation, so it must be true in the light-cone gauge formulation. 

It turns out (it is not actually said in the text) that, for string theory as developed herein in the light-cone gauge, the LHS of 

(12.148) does not equal zero. It cannot be made to equal zero without redefining something in that theory. 

The redefinition that makes (12.148) hold is the following, where a is, at this point, an undetermined constant. 

  0 0

1 1
Old definition new defintion  

2 2
p L p L a

p p 
   

    
 

  (1) 

Using this in (12.150) give us the M ‒I of (12.151). When we plug that into (12.148), we get (12.152) on the RHS. 

The only way that can equal zero is if D = 26, and a = ‒1. 

Using the new definition in (1) with this value of a affects the mass squared, as shown in (12.108). 

 2 2 †
0

1

1 1
Old relation 2 I I I I I I

n n

n

M p p p p p L p p n 
 

  



      
    (2) 

  2 2 † †
0

1 1

1 1 1
New relation 2 I I I I I I I I

n n n n

n n

M p p p p p L a p p a a na a 
  

  

 

                     
   (12.108) 

 

 

 

† †

1 1

†

when not = 0, typically = 1

Number operator  sum on 

 string mode number  number of strings in  mode in  direction

I I I I
n n n n

n n

I I
n n

N n a a I

n a a nth I

 

 

 

 

 

�����������������������
  (12.164) 

†I I
n na a  is equal to one or zero throughout Chap. 12 and virtually throughout the book. 

Bottom line: To keep Lorentz invariance (maintain (12.148) in the light-cone gauge, we needed to introduce a constant in the 

definition of p‒, as in (1). The Lorentz invariance constraint of (12.148) forced two things upon us. 1) a must equal ‒ 1, and 2) 

the dimension of spacetime must equal 26. That, in turn, forced a shift (a 3rd thing) in the mass squared operator by a/ˊ = 1/ˊ. 



Closed vs Open Relativistic String Solutions 
Light-Cone Gauge & Light-Cone Coordinates: Classical Mechanics 

                                                     As an aid for Zwiebach (text which equation numbers below reference)            Robert D Klauber May 3, 2023   

 

 Open String Field        = 2 Closed String Field        = 1 

Indep variables 0
I IX ,x , , p 

P   
(12.5)                                                                  

P
 = momentum density 

Same 0
I IX ,x , , p 

P    

Motion descrip X () = (X+, X‒, XI)  Same    X () = (X+, X‒, XI)  

    Eq motion 0X X
  ɺɺ  (9.39) Same    0X X

  ɺɺ   

    General sol 
0 0

0
2

1
2 2 in

n

n
p

X

x i e cos n
n



   



     






   �����
 

(9.56), p from (9.52) 

Neumann B.C.s 

Wave motion of string 

with no external force 

     

0 0
0

2
2

L R

in
in in

n n

n R Lp

X X u X v u v

e
x i e e

n

 


     



   

    







       

   
 
 

 ����� ����������

(13.9), (13.24), & (13.22) 

No B.C. but 2 identification 

Wave motion of string                    

with no external force 

    Transverse  X 
I = (9.56) above with  = I (9.69) X 

I = (13.24) above with  = I  

Dependent  

variables 
 

0

0

2 2

0 in (9.56) aboven

X p p

, x

      
 

   

 
    

   
 

X‒ = (9.56) above with  = ‒ 

   
←Light-cone gauge (9.70) 
          

(9.72) 

 
0

0

2

0 in (13.24) aboven

X p p

, x

      
 

   

 
    

   
  

X 
‒ = (13.24) above with  = ‒ 

  
← Light-cone gauge (9.70) 

(Closed 0
 = half of open 0 . .

  Same symbol, diff meaning) 

 
 

    Auxiliary        

for ↑ 

     

2

1
2 1 I I

n n n n p p

p

L L
p

     




   
ℤ

  

       

0 0 0

1
2 2 2p L L p p

p
        


    

 † 2
0 0 0

1

1
2

I I I I I I
p p

p
I Ip p

L p p M



    




   
�����

 

        
(9.77) Derived [189] 

nL   transverse Viasoro 
modes   

        
(9.78)   

     
M 2 from (9.83) 

 

2

2

2
2 ame 

2
2  

1

1

I I
n n n n p p

p

I I
n n n n p p

p

L S L
p

L L
p

   

   

  




  




  

  




ℤ

ℤ

  

0 0 0 02

2
2 1p L L p p L

p
         


       

†
0

1
4

I I I I
p p

p

L p p  



     

or in (13.24)
2

1
n np

L  
  

(13.40) & (13.37)              

(13.40) and (13.41)  0 0L L
 

   
(13.43 in (13.42),                    

same form for 0L    

Hamiltonian 02H p p L       (12.16) (classical version) 0 0H p p L L         (13.49) (classical version) 

Valuable              

relation 

 2
2

1 1 I I

p
X X X X
 


   ɺ ɺ  

This yields 

 
2
1 I I

n n p p

p

L  




 
ℤ

 

    
(9.65)  = 2 for open 

 
     

(9.77) above 

 

 2
2

1 1 I I

p
X X X X
 


   ɺ ɺ  

This yields

2 2
 1 1I I I I

n n p p n n p p

p p

L L    
 

 

  
ℤ ℤ

 

   
(13.35)  = 1 for closed 

       
(13.37) above 



Lagrangians: A Summary of Different Cases 
                           An aid for Zwiebach (which plain eq nums reference – “K” eq num refs to Klauber, Vol. 1)          Robert D Klauber March 6, 2023 

 [xx] reference page number in the text 

 Non-Relativistic Relativistic 

 Free Interacting Free Interacting 

Particle, L= 

2

2
2

2

1T mx

p

m





ɺ

  

      
(4.22) [78] 

with V=0  2

2
1

T V

mx V x

 

ɺ
  (4.22) [78] 

2 2 21T mc v / c   t system 

       = ‒ mc2                  system 

     
(5.8) [92] 

 
(5.7) [92] 

 

     
2

c
dx

T V mc A
d

q 

 
     

                    system 

      
(5.33) [97] 

Harmonic oscill 
2 2

2 2
1

n nn
q qnɺ  (12.68) [247] Not common  Not common 

 

Not common 

 

Field, L=     t system below  t system below  

 Scalar 2

2
1 x

 

ɺ

T U

U
  
U = internal 

pot energy 2

2
1 x

  

 ɺ

T U V

U V
 
V = external 

pot energy 
† 2 †

         K(3-32) [49] † 2 †
       V   

 Spinor Not common  Not common   i m
      K(4-60) [104]  i m e A


 

          K(7-20) [186] 

 Photon N/A  N/A  1
4

F F


   ←A = 0 in 
1
4

F F e A


 
      K(11-7) [288] 

String       parameter space below 
 

  

  General 

 

 

2
0

2
0

2

2

1

1

y

T y





ɺ

 (4.35) [81] 
 

 

2
0

2
0

2

2

1

1

y

T y



 

ɺ

V

  
     

0

0
2 2 2

T

c

T

c
X X X X

  

  ɺ ɺi

  

(6.44) & (6.46) 

[112] 

Min area of        

world sheet 

  

  Static gauge N/A  N/A  

   0
2 2

0
T

c
X X T




  


x
ɺ  

2 2
0 1

ds
T v / c

d       

(6.66) [118] 

 

(6.89) [123] 

  

  ↑ & new   

parametrization 
N/A  N/A  As above 

 
  

  n∙X=ˊn∙p

 
2

n n p



 iP   

N/A  N/A  As above 

 

  

  Light cone gauge N/A  N/A  As above    

  Simple surrogate N/A  N/A   1
4

I I I I
X X X X 

 ɺ ɺ ɺ   (12.81) [248]   

  World sheet 

fermions 
N/A  N/A  

 
 

1 1

2 2
2
1

I I

I I

 


 


 

 

    
  

     
L  (14.10) [310]   



Number Operators in QFT vs String Theory 
                                                                           Note: We ignore the ordering factor (ZPE in QFT, a in string theory)                 Robert D Klauber May 3, 2023 

         Quantum Field Theory    (Eq & pg nums, Klauber, Vol. 1)                                        String Theory            (Eq & pg nums from Zwiebach) 

Commutator 
†

a ,a     k kkk   (3.41) [51] I J IJ
m n mna ,a        (12.64) [245] 

Creation & 

Destruction 

Operators 

nk is the number of particles of 3-momentum k 

†

†

0 1

1 1

1

a n

a n n n

a n n n

 

  

 

kk

k k kk

k k k k

 
(3-81) [59] 

n̂n
I is number of strings in mode n in Ith direction 

†

†

0 1

1 1

1

I I
n n

I I I I
n n n n

I I I I
n n n n

ˆa n

ˆ ˆ ˆa n n n

ˆ ˆ ˆa n n n

 

  

 

  

(12.65) [246], 

more or less, 

but for alpha 
† †I I

n nna    

Number 

Operators 

†

†

†

†

N a a

N n a a n n n

N N a a

N n a a n n n

 
 






 

 

 

 



k kk

k k k k k kk

k kk
k k

k k k k kk
k

  
(3-56) [54] 

 

†

†

†

†

I I I
n n n

I I I I I I I
n n n n n n n

I I I I
n n n

I ,n I ,n

I I I I I I I
n n n n n n

I ,n

N a a

ˆ ˆ ˆ ˆN n a a n n n

N N a a

ˆ ˆ ˆ ˆN n a a n n n



 

 

 

 



  Not shown. 

   Eigenvalue 
nk is the number of particles of 3-momentum k 

If only one or no particles, nk = 1 or 0 
 

n̂n
I is number of strings in mode n in Ith direction 

If only one or no strings, n̂n
I = 1 or 0 

 

Other 

number 

operator 

†

†

†

†

N a a

N n a a n n n

N N a a

N n a a n n n

 
 






 

 

 

 



k kk

k k k k k kk

k kk
k k

k k k k kk
k

k

k k

k

k k

ɶ

ɶ

ɶ ɶ

ɶ

  Not shown 

†

†

†

†

I I I
n n n

I I I I I I I
n n n n n n n

I II
n n n

I ,n I ,n

I II I I I
n n n nn n

I ,n

N na a

ˆ ˆ ˆ ˆN n na a n nn n

N n N n a a

ˆ ˆ ˆ ˆN n n a a n n n n






  

 


 





 

  

 

 



  (12.164) [264] 

   Eigenvalue 

knk is the number of particles of 3-momentum k, nk, 

times the 3-momentum k 

If only one or no particles, knk = k or 0 

 

n n̂n
I is number of strings in mode n in Ith direction, n̂n

I,                     

times the mode number n 

If only one or no strings,  n n̂n
I = n or 0 

 

   Conclusion For single particle state, eigenvalue of Nk
ɶ is k Not shown For a single string in a single mode n, the eigenvalue of N


is n 

 
above (12.169) 

[264] 

 QFT states can be single particle or multiparticle  String states studied in Zwiebach are single strings  

 As an aside, Nk
ɶ is actually the 3-momentum operator P  (3-101) [64] 

For a single string with modes in more than one direction I, see 

Zwiebach, bottom of page 264 
[264] 



Chapter 14 Zwiebach: Summary and Helpful Notes 
      Robert D. Klauber www.quantumfieldtheory.info January 26, 2024 

Section 14.3, pgs 309-312   

Instead of employing 1 and 2 of (14.10) to (14.23) to deduce  of (14.23) to (14.26) and the rest of the chapter, start 

with an action for , rather than one for both 1 and 2 as in (14.10). 

  2
1 I IS d d



   


 
       . (1) 

Demanding a stationary action in the usual way, we get the same thing as (14.15), but with 2 =0, 1 = , and our 

boundary limits from ‒ to +. The equation of motion and its solution form are thus 

    0I I I
             . (2) 

The boundary condition is 

        0I I I I I I, , , ,



          




           . (3) 

Since  and  have the same sign, as shown in (14.25) and (14.26), 

    I I, ,       . (4) 

The meaning of (14.26) [(4) above] can be understood pictorially, as shown below. 
  

Ramond boundary condition    
              0 for illustrationI I        

 wavelengths 
2 2

2
2 3

, , ,
 

 …   

 frequencies f proportional to inverse of above 
1 2 3

2 2 2
, , ,

  
…   

  

 mode numbers n = 0,1,2,3,… 

 

Neveu-Schwartz boundary condition  

   
   I I       

 wavelengths 
4 4

4
3 5

, , ,
 

 …   

 frequencies f proportional to inverse of above 2 2 2
3 51

2 2 2
, , ,

  
…   

 mode numbers 
2 2 2

3 51r , , , …   

 

World Sheet Bosons/Fermions vs Spacetime Bosons/Fermions 

It is key to keep in mind the distinction between world-sheet fermions (bosons) and spacetime fermions (bosons). 

|NS+ are world sheet bosons and spacetime bosons 

|NS‒ are world sheet fermions and spacetime bosons (including tachyon) 

|R+   are world sheet bosons and spacetime fermions 

|R‒   are world sheet fermions and spacetime fermions   
BUT ALL employ anti-commuting creation and destruction operators on the world sheet. 

(continued on next page) 



 

 

etc. ...



 

 

etc. ...



2 
Spacetime States for Open and Closed Strings 

Open strings:  For spacetime, truncate both NS and R to |NS+ (bosons) and |R‒ (fermions) same number at each M 2. 

   Massless: 8 bosons and 8 fermions. 

   Don’t use |NS‒, since it has a tachyon. Other combinations not SUSY. 

Closed strings:  

Type IIA – L sector 
NS

R

 
 

 
, R sector 

NS

R

 
 

 
;  

(NS+, NS+) (R‒,R+) = spacetime bosons,   (NS+,R+)( R‒,NS+) = spacetime fermions 

Massless: 8X8 = 64 of each of above combinations  128 bosons and 128 fermions 

Same result if exchange R‒ and R+ above. 

Type IIB – L sector 
NS

R

 
 

 
, R sector 

NS

R

 
 

 
;  

(NS+, NS+) (R‒,R‒) = spacetime bosons,   (NS+,R‒)( R‒,NS+) = spacetime fermions 

Massless: 8X8 = 64 of each of above combinations  128 bosons and 128 fermions 

Sane result if use R+ instead of R‒ above. 

 

Heterotic O(32) Summary: Problem 14-5. 

Note: I believe Rˊ+ is a spacetime boson as stated below, though not said explicitly in Zwiebach. That sector comes from 

26D spacetime bosonic strings, so this should be correct. It is the only way the tensor products below make sense. 

NSˊ+  and Rˊ+ (left moving) are spacetime bosons (because they come from 26D bosonic string) 

NS+  (right moving) are spacetime bosons (as they are in open superstring theory) 
R‒ (right moving) are spacetime fermions (as they are in open superstring theory) 

 

NSˊ+  NS+  (spacetime boson times spacetime boson) is a spacetime boson 

Rˊ+  NS+  (spacetime boson times spacetime boson) is a spacetime boson   
NSˊ+  R‒  (spacetime boson times spacetime fermion) is a spacetime fermion 

Rˊ+  R‒  (spacetime boson times spacetime fermion) is a spacetime fermion 

 

 



Branes and Open Bosonic Strings Summary 
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Section, equation, and page numbers herein are with reference to Zwiebach, A First Course in String Theory.   

1 Dd Branes (Space filling, p = d) - 1st row of Wholeness Chart 1 herein 

  
 

2 1I

NN
X , X ,X , X I , , p p d d D        …   (1) 

 0 0
0

2

1
2 2 in

n

n
p

X x i e cos n
n

   



     




    �����
  (9.56) [186], p from (9.52) [185] 

    2 † †

1 1

1

1 and 25 for Lorentz invariance

1 1
1 1

I I I I
n n n n

n n

a d

M a na a na a N 


 


 

               
 

�����������

      (12.108) [252] (12155), (12.156) [262] 

2 Dp branes and boundary conditions (Sect. 15.1)  

Consider branes with spatial dimension p, where p < 25 embedded in the full d = 25 spatial dimension space. Strings 

vibrate in all 25 dimensions, but they have endpoints with Neumann B.C.s in the Dp brane and Dirichlet B.C.s with all 

dimensions outside the Dp brane. Take the coordinates  to i, where i represents directions tangent to the Dp brane. For 

coordinates normal to the Dp brane, use coordinate symbol a for the D (Dirichlet) string coordinates normal to the Dp brane. 

In the light cone gauge, the string coordinates are 

 
 

   
2 1i a

NN DD
X , X , X , X , X i , , p a p , ,d p d        … …

 (15.7) [333] 

3 Open Strings on Dp-branes (Sect. 15.2) - 2nd row of Wholeness Chart 1 

Xi of (15.7) is simply (9.56) above with  = i and the p value of (15.7). The coordinates normal to the Dp brane are 

  
0

1
2

a a

n

a in
nX , x e sin n

n

    


  ɶ , (15.20) [335] 

where we note there is no pa term, since the overall (average) momentum of the string in a DD direction is zero. Such 

fields can’t be Maxwell fields, which must always have momentum. 

  2 † †

2 1

1 11 1i i a a
n n m m

i a p

p d

n m

M n a a ma a N

N

 


  
 



 
      

 
 
 

  
���������������

  (15.27) [336] 

4 Open Strings between Parallel Dp-Branes (Sect 15.3) – 3rd row of Wholeness Chart 1 

3rd row of Wholeness Chart 1 for visual image of two parallel branes showing different symbol meanings. [ij] represent 

string oriented from ith to jth brane. i and j called Chan-Paton indices. Strings with ends on same brane (symbols [11] and 

[22]) are like row 2 of Wholeness Chart 1. 

Strings stretching from brane 1 to brane 2 

     1 2 1

0

1
2  here different from  of single brane

a a a a

n

a in a a
n n nX , x x x e sin n

n

      




    ɶ ɶ ɶ      (15.45) [340] 

  
2

2 2 1 1 1  same form as (15.27) above
2

a ax x
M N N

 


 
   

 

ɶ ɶ
  (15.11) [34] 

For two separate but coincident branes (i.e., 2 1 0a ax x ɶ ɶ  [343]), and 1N   , there are 4 massless gauge (U(2) Yang-

Mills) fields. For N coincident branes, there are N
2
 massless gauge (U(N) Yang-Mills) fields. 

5 Strings between Parallel Dp and Dq Branes, p > q (Sect. 15.4) – 4th row of Wholeness Chart 1 

See the figure in 4th row of Wholeness Chart 1 for visual image of two parallel branes of different dimensions. 

In the light-cone gauge, coordinates (note particular symbols) are 

              
     

2 1 1i r a

NN ND DD
X , X ,X , X , X , X i , ,q r q , , p a p , ,d         … … …     (15.63) [347] 

Coordinates for strings stretching from brane 1 to brane 2 in r (ND) direction are 



2 

   2
2

2

2
2

2
odd

r r

n

nir
n /

n
X , x i e cos

n

 
   




  
ℤ

ɶ . (15.72) [348] 

  
2

2 2 1 1 1
1

2 16

a a
x x

M N p q



   

          

ɶ ɶ
  (15.84) [350] 

 

     

†† †
2 2

2 1 1

tangent normal mixed 

2
odd

r ri i a a
n n m mk / k /

ki r q a p

q p d

n m

NN DDND

k
N na a a a m a a



    
      

ℤ������� ����������������

 (15.85) [350] 

 

Wholeness Chart 1. Overview of Branes and Open Strings  

 Visually in Low Dimensions Ground States Tachyons 1 Tangent 1 Normal 

Dp brane            

in all d 

(p=d) 

spatial 

dimensions 

 

 2 d

p , p

p p , , p





�

�
…

 

(12.159) [263]  

 

0N   

n = 0 

For D = 26, 

2 1M     

Lorentz scalar 

1N   

n = 1 

For D = 26 

2 0M   

Maxwell field,   

24 components 

No such animal 

(All string 
oscillations 

inside p=d) 

Dp brane            

in d (p<d) 

spatial 

dimensions 

  

 2 p

p , p

p p , , p





�

�
…

  

(15.82) [336] 

no p
�

 outside 

brane 

0N    

n=m=0 

For D = 26 

2 1M      

Lorentz scalar, 

like above 

1N    

n = 1, m = 0 

For D = 26 

M
2
 = 0 

Maxwell field,   

p-1 components 

1N    

n = 0, m = 1 

For D = 26 

M
2
 = 0 

Massless scalar 

each a direction 

2 Dp branes 

in d (p<d) 

spatial 

dimensions 

   

Figure 15.1 [339] 

strings vibrate in all d directions 

 

 

 

 

; 11

; 22

; 12

; 21

p , p

p , p

p , p

p , p









�

�

�

�

 

   
(15.54) [341] 

[11] and [22] like 

row above 

[12] and [21] 

0N    

n=m=0 
2

2

2 1 1

26

2

a a

D , M

x x
 

 

 
 

 

ɶ ɶ

M
2
 neg, zero, 

or pos 

Lorentz scalar 

Tachyon if <0 

[12] and [21] 

1N   

n = 1, m = 0 

For D = 26 
2

2 2 1

2

a a
x x

M


 
  

 

ɶ ɶ

Massive vector 

(not Maxwell). 

One of scalars (at 

right) added for p 

components 

[12] and [21] 

1N   

n = 0, m = 1 

For D = 26 
2

2 2 1

2

a a
x x

M


 
  

 

ɶ ɶ
 

Massive scalars.  

Scalar pointing 

between branes 

added to vector at 

left. So d‒p‒1 

scalars here. 

Parallel Dp 
and Dq 

branes 

(p<d, q<d, 

p+q=d ) 
  

  
Figure 15.3 [346]   
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(15.86) [350] 

[11] and [22] like 

two rows above 

[12] and [21] 

0N   

n=k=m=0 
2

2

2 1 1

26

2

a a

D , M

x x
 

 

 
 

 

ɶ ɶ

M
2
 neg, zero, 

or pos 

Lorentz scalar 

Tachyon if <0 

[12] and [21] 

1N   
      

For D = 26                   

M
2
 > 0                 

since p > q.  

No massless 

gauge fields. 

[12] and [21] 

 

As at left 
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x1
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   =p+1
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1 x
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2
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1
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1 (N)

(D)
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2
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x1

(NN)

(NN)

x3
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 p < d

string in all d, 
vibrates inside & 
outside Dp brane

outside 
mode 
shown



How Strings Give Rise to Fields Like Maxwell Fields 
                     Robert D. Klauber March 13, 2024 www.quantumfieldtheory.info  

 

1 Quantization: The Big Picture 

Recall from QFT that when we quantize a classical field, the classical field is typically a displacement vector. Think 

of an elastic solid or a fluid continuum, where the classical field is comprised of the vector displacement in space of the 

continuum at every point, and that displacement is generally a function of time. We can symbolize the displacement by 

X


, so 

    X X t, X x    x ,    a classical displacement field. (1) 

Upon quantization, i.e., upon invoking the canonical commutation relations, the classical field becomes a quantum 

field, which is not a displacement typically, but an operator (that creates and destroys states). We can symbolize the 

quantum field by A


, so 

    quantization
X X x A A x        , a quantum creation/destruction operator field. (2) 

2 QFT Review 

2.1 Maxwell Fields in QFT 

In 4D, if A


 has two independent components (two transverse fields in 3D space) plus is massless, it can be a 

Maxwell field, i.e., a photon field. That is, for a Maxwell field, the number of independent components in 4D is 4‒2=2, 

or D ‒ 2. 

We can generalize to higher dimensions D, where d is the number of spatial dimensions. 

 independent components 2 1D d     necessary for a Maxwell field. (3) 

Thus, it is necessary that a Maxwell field must be i) massless plus have ii) d ‒ 1 independent components, but that is not 

enough (not sufficient). A candidate field must also satisfy Maxwell’s equation. 

Bottom line #1: A Maxwell field i) is massless, ii) has d ‒ 1 independent components, iii) has D total components, and 

iv) satisfies Maxwell’s equation. These are necessary and sufficient conditions for (2) to be a Maxwell field. 

2.2 Massive Fields in QFT 

In 4D, massive vector fields in QFT, such as the Ws and Z of electroweak theory, have three independent 

components, not two. (See Klauber, Student Friendly QFT, Vol. 2, The Standard Model, Sect. 5.4, pgs. 154-157.) That 

is, massive 4D boson vector fields have 4‒1= D ‒ 1 = d  = 3 independent components. 

We can generalize to higher D, again. 

 independent components 1D d    necessary for a massive boson field. (4) 

Bottom line #2: A massive vector field has i) mass, ii) has d independent components, iii) has D total components, and 

iv) satisfies the Proca equation [(5-80), pg. 157 in above reference Klauber.] These are necessary and sufficient conditions 

for (2) to be a massive vector field. 

2.3 Scalar Fields in QFT 

In 4D, a scalar field has a single component. It is not a vector with D components of any mix of independent and 

dependent components. 

Generalizing to any D, we have 

 independent components 1  necessary for a scalar field for any D. (5) 

Bottom line #3: A scalar field, whether massive or massless, has i) one independent component, and ii) satisfies the 

Klein-Gordon equation. These are necessary and sufficient conditions for (2) to be a scalar field (for no component index 

) or a collection of scalar fields where each value of  represents a different independent scalar field (not a component 

of a vector field). 
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3 QFT Boson Equations in Light-Cone Coordinates 

3.1 Scalar Fields in Light-Cone Coordinates 

The Klein-Gordon equation, in the usual spacetime coordinates, is 

                                                       2
0

a
m x


                                (10.14) [197]. (6) 

For light-cone coordinates, we have 

                           2
I Ix x x x


  

   
    

   
         parallel to (2.52) [23] for xx

. (7) 

The K-G equation, in those coordinates, becomes 

  22 0I

I I
m x ,x ,x

x x x x
  

 

            
. (8) 

We can Fourier transform  in (8), just in the x‒ and xI parts, so, where we note that p+ is the conjugate momentum 

for x‒, 

                 
 

2

22 2

I I
D I

I ix p ix p I

D

dp d p
x ,x ,x e x , p , p 

 

 
 

     


                 (10.28) [200]. (9) 

The K-G equation (8) then becomes 

                     22 0I I Iip p p m x , p , p
x

  


       
                        (10.29) [200], (10) 

or 

                       21
0

2

I I Ii p p m x , p , p
x p

  
 

 
   

 
     (10.30) [200] & (12.192) [270]. (11) 

Here x+ is an independent variable upon which  depends. In the light-cone gauge and coordinates, the dependent 

X+ is a function of p+ and , i.e.,  

                                                2X a p           for open strings, in light cone gauge (9.70) [188]. (12) 

Since X are the coordinates on the string worldsheet, and we want to know the form of the K-G equation if it were 

confined to the worldsheet, we can take our independent coordinate x+ of (11) (which normally spans all space) as the 

dependent coordinate X+ (which spans only the worldsheet), That is 

 on the worldsheet = x X  , (13) 

where, from (12), 

 
1

2x X p   

  
 

 
. (14) 

With (14) into (11), we have 

    2 0I I Ii p p m x , p , p 


      
       K-G eq on worldsheet, open string. (12.194) [270] (15) 

3.2 Photon Fields in Light-Cone Coordinates 

Taking m = 0 and   A in (6), we get Maxwell’s equation in the Lorenz gauge, 

   0
a

A x
 

   . (16) 
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Following the same procedure that got us from (6) to (15), we find, parallel to (15), for the transverse (to the x+ and x‒ 

axes) photon field 

   0I I I Ii p p A x , p , p


     
 Maxwell eq on worldsheet, open string (12.194) [270]. (17) 

I believe here we are thinking of the photon as traveling in the x1 direction, where it has no longitudinal component. 

It also has no time direction component, as the only photon field components in 4D are the spatial ones transverse to the 

photon velocity direction. Thus, since A+ and A‒ are each a combination of A0 and A1, which equal zero for this photon 

orientation, then A+ = A‒ = 0. 

However, if the photon were not so judiciously aligned, it seems (17) should hold for all components, i.e., 

   0I I Ii p p A x , p , p , ,I 


        
. (18) 

Note that the components of the photon field can, in general, be in any direction in all of spacetime, including not 

tangent to the worldsheet, even though the string itself is confined to the worldsheet, i.e., the independent coordinates x 

= x+, x‒, xI or x0, xi are confined to the world sheet. 

(15) and (18) can be re-arranged to be equations of the Schrödinger type form. 

 

 2I I

I I

i p p m

i A p p A
 

  





  

 


  (19) 

4 String Field Equations 

4.1 Basic String Equation of Motion in Independent Parameters  and  

The basic string equation of motion for the chosen gauge family (in either Minkowski or light-cone coordinates) is 

                                  
2 2

2 2
0 or  0 1

v
X , , ,I , ,I  

 

  
      

  
                (9.39) [183], (20) 

with open string solution 

                      0 0

0
2

1
2 2

in
n

n
p

X , x i e cos n
n

    



       



    
�����

                 (9.56) [186]. (21) 

Upon quantization, the field X

 is sometimes represented as  in Zwiebach (12.185), 

                                         after quantization
notation in Zwiebach

X , ,
                               [269]. (22) 

4.2 Photon Field Directly from Basic String Field Equation of Motion 

The question becomes “is (20) equivalent to (16)?” 

Consider the static gauge in (20) where  = t and  represents the physical length along the string s. To keep 

things simple, work in Minkowski coordinates ( of the RH of (20)), though the same conclusion can be drawn with 

light-cone coordinates. We then have 

 
2 2

2 2
0

v
X

t s

  
  

  
. (23) 

The physical length s along a vector obeys 

 
2 2 2 2

2 2 2 2
s x y x




   
      

   
… , (24) 



4 
which turns (23) into 

 
2 2 2 2

2 2 2 2
0 0v vX X

t x y x




    
              

… . (25) 

(25) equals Maxwell’s equation (16) and also, (25) equals (23).  (23) equals (20) in this gauge. The equation of 

motion (20) is invariant under change of gauge.  

Conclusion 

So, in general it seems, (20), the string equation of motion for zero mass, can equal the photon equation of motion, 

Maxwell’s equation (16). 

Caveat: For somewhat complicated reasons we won’t get into, d only equals ds for a massless string. The following 

section shows another way to consider relativistic strings equivalent to Maxwell fields. 

4.3 Another Way to Make the Connection between Strings and Photons 

The gauge family of choice is defined by, where  = 1 for closed strings and 2 for open string, 

    
0

1

2
n X n p n p

T

  
     


    (26) 

 
2

n n p
  

 



P =   (27) 

where 

 1
2

X 
 

 





P . (28) 

The  Gauge Condition (27) 

Consider (28) into (27), where to simplify, a and b are the only non-zero components of the unit vector, 

  0 0n a,b, , ,  … , (29) 

  
0 1

0 1

2

1
2

X X X
n n p a b ap bp




 


 
   

  
   

  
= . (30) 

Since a and b can be varied, the only way (30) can be true is if the quantities multiplied by a are equal, and the quantities 

multiplied by b are equal. Also, we consider Minkowski coordinates where X0 = t on the string worldsheet, and X1 = x 

the distance in the x direction on the world sheet, both as seen by an observer in the t-x system. Then, (30) gives us 

 

0 1
0 1

1

X X
a a p b b p

t x
E p

   
 

   
 

 
  

 
 

  
 

  (31) 

Now, dividing the bottom two relations in (31), we get 

 
1 1

 velocity of string as seen by observer
x p p

v v
t E E


   


. (32) 

For massless particles |p| = E, and here for us, |p| = p1. Thus, 

 1  for a massless particle.  In natural units, this is the speed of light.v    (33) 

Strings are wavelike. (Their equation of motion is a wave equation.) And if they are massless, they have speed equal 

to that of light. Hence, they can represent photons, or any other massless elementary particle. 

Note further, that if p1 = E, then from the second row of (31), x = t. The string travels the edge of the light cone, as 

objects traveling at the speed of light must do. 
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The  Gauge Relation (26) 

We can get the same result using the gauge relation (26) for . 

  0 1 1 1

0 0 0

1 1 1

2 2 2
aX bX aE bp at a E bx b p

T T T
     

  
       (34) 

  
1

1for massless, 1  the speed of light
x p

v p E v
t E
      (35) 

Conclusion 

A massless string satisfies a wave equation and moves at the speed of light, just as photons do. The massless string 

field can be considered a Maxwell field. 
 

4.4 Photon Field from String Field via Schrödinger Type Equation 

A different approach, used in Zwiebach, pgs. 268-270, is to express the equation of motion for X

 =  of (20) 

to (22) in a form similar to (18), i.e., in a Schrödinger equation type form. To do that, Zwiebach focuses on the 

transverse components of the string field, labeled with a subscript I. 

 string field    for transverse
components only

I I
I, p , p , p , p     . (36) 

He then looks at the Fourier transform of (36) 

    
 

2

22 2

I I
D I

I ix p ix p I
I I D

dp d p
x ,x ,x e x , p , p 

 

 
 

     


  .       imbedded in (12.185) [269]. (37) 

FIRST QUESTION: HOW DOES THE ARGUMENT OF (37) (x+, x‒, xI) ARISE FROM THE ARGUMENT () OF 

(20) to (22)?? 

Zwiebach then states, pg. 269 above (12.186), that “The Schrödinger equation [type form] satisfied by the general 

case (12.183) [our (37)] is” 

 I Ii H 






. (38) 

SECOND QUESTION: WHERE DOES HE GET THIS FROM? IS HE NOT ASSUMING WHAT HE SET OUT TO 

PROVE? 

He then notes that, in string theory, 

                              2
0 1 1I I I IH L p p N p p M                             (12.187) [269], (39) 

so, (38) becomes, for photons with M = 0, 

 I I
I Ii p p  







. (40) 

Conclusion 

Since the string equation of motion (40) expressed in the light-cone gauge is the same as the photon equation 

of motion (Maxwell’s equation) (19) in the light-cone gauge, strings can manifest as photons. 

PROBLEM?: Did he assume what he wanted to prove. 
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Kalb-Ramond String Charge vs Electromagnetic Charge 
         Robert D. Klauber www.quantumfieldtheory.info March 10, 2024 

See Zwiebach, Chap. 16, for equations and page numbers referenced below. This chart summarizes Sect. 16.1, pgs 356 to 362. 

“0” subscripts on Lagrangians indicate free particles or fields; “I” subscripts indicate interaction Lagrangians. Note that in 4D, dV = d 
3x dt is invariant, so rest 

frame dV0 == d 
3x0

 d  = dV = d 
3x dt in any frame (where subscript “0” here means rest frame). Similarly, for D dimensions, dV = d 

dx dt = d 
Dx (where d = D ‒ 

1) is invariant, so in any dimensions, dV0 = dV = d 
Dx in any frame. 

 

Entity Electromagnetism Strings  

Field A      (Maxwell field = vector potential) B     (Kalb-Ramond field = tensor potential; antisymmetric)  

Tensor of 

measurables 
E and B fields components of F A A          K-R measurable fields components of H B B B              Both antisym, 

any 2 indices 

Action, 

Charged 

object, 

D dimens 

2path path
0

path

path

path

 free charged particle- interaction
point particle

1

2
0

1

4

1

4

D

A

m dt
dXA d F F dd

qA u dt

dx
S m d q A d F F d x

d

q

qA dx






 


 








 


 
 

 

   















  

���������
�����

����� ���������

���������

���������

 
 

free photon field

16 2

356d xdt

.



�����������

���������

 
�

 

 

 
 

 

2

2

 free
 string- interaction free K-R fieldstring

1
2

357

1
16 3

6

1
16 4

6

str B H

D
str B

D
str

B

S S S S

X X
S B d d H H d x S .

X X
S B d d H H d x .



 


 

 


 

 
  

 
  

  

 
   

 

 
  

 

 

 

��������� ���������

  

KR charge 

taken as 1 

X designates       

spacetime path; 

x

, fixed 

coordinate 

system grid 

L l
particle photon
0 0 2

0

1

4

e/ m d
I

m
L L qA u L F F d x

 
 

 
        Not relevant for us.  

Action, 

charged 

region, 

D dimens 

     

0 0 0 2
0

particle 0
0

charged region-    free mass,
charged region interaction

0

0

1

4

d D D
m e / m

e/ m
I

e/ m

A

D
m

e/m
Im

A

A j

d x

S d x d A u d x F F d x

S

u



 
 

 






  









   




  
���������

������� ���������

������� ���������

�������

LL
photon
0

free photon field

2
0

1

4
F F


 

�����������

���������

L

  

The string is a charged region (charge spread over the string length).  
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Define 

current 
Maxwell current = 0 0 0

path

e/ m e/ m e/ m

x X
j u

 
   

 
 

  
 

  K-R current=  1
2

D X X X X
j x X d d

   
   

   

    
        
 (16.11) 

j antisym 

 j00 = 0 

SI 

e/ m D
IS A j d x

    

Only non-zero in region where charge density is non-zero. 

                   
- 1

2
K R D
I BS S B j d x

                        (16.10) [358] 

D(x‒X) in j confines action to string world sheet. Zero elsewhere. 

j only non-

zero along 

string 

S  eq of 

motion 

                                          
F

j
x










                      (16.7) [358] 

Gauss and Ampere equations in Maxwell’s equations. j = e/m source 

                                  
2

1 H
j

x










                           (16.14) [359] 

K-R charged string (represented in  j) source of K-R field. 

 

Conservation  

of charge 
                                          0j                          (16.15) [359]                                        0j                                   (16.16) [359]  

Charge 

density 
j 

0   j 
0k     k = 1,2,3  ( j 

0 really, but we have  j 
00 = 0)      (16.17 [359]  

Divergence 

comparison 
Electrostatics where 

0

0
j

t





from (16.15)   0 0

i
i j   ji         j 

00 = 0 with (16.16)   00
0 0k

k
j   ji       (16.19) [359] 

At left, string 

conserve of 

charge 

relation 

Charge Scalar 
0 DQ j d x                                      3-vector  

0 Dd x Q j                   (16.20) [360]  

String 

charge 

direction 

N/A 

                      0 1
2

t ,
,t t , d


  




 


X
j x x X        (16.23) [360] 

Charge density j0 is tangent to string at every point on string. 

Points in + direction. Unoriented strings have no K-R field and 

don’t carry K-R (string) charge. 

(16.11) [358] 

in static 

gauge,  = t, 

with  = 0 

K-R field 

variation 

vector 

potential 

N/A 

                                     B                          (16.43) [366] 

 different from B as tensor potential for H. 

(See 1st and 2nd rows at top of chart.) 
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Chapter, section, equation and page references are to Zwiebach. 

Chap 16. String Charge and Electric Charge [356-375] 

Pg. 356, Chapter Abstract: “If a point particle couples to the Maxwell field, then that particle carries electric charge. … string 

endpoints carry electric charge …” 

Sect. 16.1 [356-362] 

1st part of section shows e/m point particle Lagrangian and how that has coupling to Max field. 

[357] “Can a relativistic string be charged? The above argument makes it clear that Maxwell charge is naturally carried by 

points. … It is therefore plausible that the endpoints of open strings carry electric Maxwell charge. We will show later that this is 

indeed the case.” 

Sect. 16.3 [365-370] 

[365] “If D-branes have Maxwell fields [living on them], is there any object that carries electric charge for these fields?”  

(Note this is related to Kalb-Ramond fields B.) 

“… the realization that the ends of the open string behave as electric point charges! They are charged under the Maxwell 

field that lives on the D-brane where the string ends.” (As an aside, the electric field lines of the point charges carry K-R string 

charge, even though they carry no electric charge. This is needed to conserve K-R charge.) 

Elaboration of pages [366-368] 

In varying B, the Kalb-Ramond [tensor] field, we find we can express that variation in terms of a parameter  (the Kalb-

Ramond [vector] potential, a vector in D dimensions), as 

 B           . (16.43) [366] 

In varying SB, the action for the Kalb-Ramond field1, we find (after some effort) 

 

0

0
m

B m

X
S d



 
 

 




  
 .            m = 0,1,…,p for Dp-brane (16.53) [368] 

Since the action is not zero under variation (due here to the B.C.’s at the string end points), the Kalb-Ramond charge is not 

conserved. We can cause it to be conserved if we redefine the action for the K-R field as 

 

0

m

B B m

X
Ŝ S A d



 


 




 
   (16.55) [368] 

where we define the transformation under variation for the field Am as 

 m mA   . (16.56) [368] 

Then, for the redefined string action, the variation, using (16.55), (16.53), and (16.56), and understanding that variations are done 

only for fields B and Am, not X, . or , is 

 

 

 

0 0 0

0 0

0

0

m m m

B B m m m

m m

m m

X X X
Ŝ S A d d A d

X X
d d

  

 

     

   

      
  

 
 

  

 

  

 

         
    

 
    

 

  

 

. (1) 

Since (1) equals zero, we have, by Noether’s theorem, a conserved K-R charge, i.e., conserved string charge. 

 

1   
 

1
2

16 3 357B
X X X X

S B d d . B d d
  

    
   

   
   

      (middle term in (16.4) [357]). 
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But what about electric charge? To answer that question, start by noting from (16.2) [356] that the action for a charge located 

at a point is 

     
  path of point charge in spacetimee/ m int eract

po int charg e

dx
S q A x d q A x dx

d




 


 





    P P , (2) 

where x are the coordinates in spacetime of the point particle, i.e., as  evolves, the particle worldline is the locus of points x(). 

For the action confined to a string, we take x  X, where X represents the spacetime coordinates along the string where 

a point charge exists. So, for a string with a point charge located at X, (2) becomes 

     
int eraction
po int charg e
on a string

dX
S q A X d

d






 


   . (3) 

The worldline of a point charge on the string is the locus of points X(), where  for the point charge may, or may not, change 

over time. (3) implies we are following the point charge in its route through spacetime, but that route is confined to being 

somewhere on the string. 

For a charge located at the end of the string where  = , (3) becomes 

     
int eraction
point charg e
at end

dX
S q A X d

d





 


 

  

 


 . (4) 

For the other string end, we just take   0, so 

     

0
0

int eraction
point charg e
at end

dX
S q A X d

d








 

 

 


 . (5) 

Now, if we, by convention, take q = ±1, we represent a positive charge at  and a negative charge at  = 0 with terms in 

the action 
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dX dX X
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d d
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 
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     
  




   
 

   . (6) 

But, the terms in (6) are the same ones we added to (16.55) to get an invariant ŜB, i.e., to get a conserved K-R (string) charge. 

Bottom line: By redefining the action in order to get a conserved string charge, we have to add terms that represent electric point 

charges on the ends of the string. 

With our convention the  = 0 end has negative charge, and the  =  end has positive charge. 

 

For Closed Strings   
Note that for closed strings, the B.C. condition in (16.53) is zero. That is 
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. (7) 

Hence, 1) the Kalb-Ramond action is invariant, so the K-R (string) charge is conserved, and 2) we have no terms in the action 

that lead to point charges on the closed string. 

Bottom line: Closed strings carry no electric charge. They can carry K-R (string) charge. 
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This is an elaboration of material found in Zwiebach, Sect. 16.4 [pgs 370-373]. Equations cited with “(16.X)” and 
page numbers are with reference to that text. 

 

1 Background 

The e/m interaction part of the action for an electric point charge q is 

                 

Zwiebach (16.1)  [356]

e / m
I e / m

point

dx
S A x j d A x qu d q A x d q A x dx

d


      

   


       


      
�����������

, (1) 

where x() is the path of the particle through spacetime, and the 4D source current is 

  
 

e/ m
point

dx
j q

d


 




 . (2) 

As an aside, for an electric distributed charge it is 

          4 4e/ m
I e/ m e/ mS A ,x j ,x d x A ,x ,x u ,x d x

 
              . (3) 

For a point particle located at x, 

    
e / m ,x q x x     , (4) 

and (3) reduces to the quantity after the second equal sign in (1). 

Bottom line: If in string theory, we find a relationship like (1) arising at any point, it would represent the action for 

a charged point particle in a Maxwell field. 

Note that all of the above reasoning is not restricted to 4D spacetime, but to spacetimes of any number of spatial 

dimensions. 

2 Higher Order Tensor Fields than Maxwell’s 

2.1 The Second Order Field 

2.1.1 The Action 

The Maxwell field A(x) is a vector field, a first order tensor. In Chap. 16, Zwiebach extrapolates this analysis to a 

possible 2nd order tensor field B


(X), where the field acts over the string world sheet coordinates X() rather than 

the particle worldline x(). It is reasonable, therefore, to deduce that the action in this case parallels (1), and we find 

   B
I B

dX dX
S k B X , d d

d d

 


    
 

  ,  (16.3) [357] 

where Zwiebach takes kB = ‒1, by convention. B


 is an anti-symmetric tensor and is known as a Kalb-Ramond (K-R 

hereafter) field (as opposed to a Maxwell field with only one index.) 

In subsequent sections, Zwiebach discusses the K-R field on an open string and its associated source, the string 

charge. We do not address that herein, but note that the string charge is a vector quantity, whereas the electric charge is 

a scalar. As we progress to higher order tensor fields, the associated charge will have one index less than the field it is 

the source for. 
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2.1.2 Open vs Closed Strings 

Open Strings 

Additionally, which I elaborate on in another document, the end points of the open string are shown to have point 

electric charges on them, due to the K-R field being coupled to the Maxwell field. So, an open string has 

  i) electric point charges at its ends (negative at  = 0 and positive at  = 2), and 

ii) string (K-R) charge (a vector) all along its length. 

Closed Strings 

As shown in that same document, a closed string carries  

i) no electric charge (as there are no ends), and 

ii) (I believe) string charge (a vector) all along its length. 

2.2 Higher Order Anti-symmetric Tensor Fields 

2.2.1 Extrapolating the Action to Any Order 

In (16.3), the K-R field acts over a two-dimensional world sheet, which we can think of as inside of a 4D spacetime 

world, or as inside of a D = d + 1 spacetime, where d, the number of space dimensions, is arbitrary. 

A string is considered a 2D brane in spacetime, a Dp-brane, where p = 1, i.e., a D1-brane. Spacetime generally has 

more dimensions than the string brane, i.e., d > p (exception = space filling brane where p = d). 

Parallel to (16.3), the action for tensor fields higher than second order acting on a Dp brane, where p ≤ d, can be 

crafted as (where our SI p equals Zwiebach’s Sp) 

   
   1 2

1 2

1 2 1 2

1 2

0 1 2 0 1 2 0 1 2
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p

p p
I p p

k

dX dX dX dX
S A X , , , d d d d

d d d d

, , , , p, ,d , , , , p, ,d , , , , p, ,d

 


          
   

  

 

  

 … … … …

… … … … … …

. (16.62) [371] 

In (16.3), the brane (world sheet there) has p = 1 spatial dimension, though the spacetime has d spatial dimensions. Here, 

in (16.62), we have p parameters i and each index 1, 2,,…p runs over 0, 1, 2,… d. There are p parameters and d 

spatial dimensions. 

2.2.2 New Kinds of Charge 

One can presume that (16.62) leads to new kinds of charges in branes of higher dimension than that of the string 

world sheet. Just as the K-R two index field led to a K-R (string) charge of one index, and the single index Maxwell field 

led to electric charge (a scalar) with no index, it should follow that a tensor field of order p + 1, such as that of (16.62), 

would have its own associated source charge of p indices. (Charge is a tensor of order p.) 

Zwiebach does not discuss this, and we won’t discuss it further here, but it can help to keep this in mind in order to 

distinguish these higher order charges from electric charge. 

2.2.3 Open Strings 

A Dp-brane traces out a p + 1 dimension world volume. In parallel with our analysis of (16.3) showing the endpoints 

of the open string (which trace out edges of the world sheet) are electrically charged, higher dimensional world volumes 

of p spatial dimensions will carry electric charge if coupled to a massless anti-symmetric tensor field with p+1 indices. 

2.2.4 Closed Strings 

Bosonic strings 

It turns out that for the closed bosonic string, there are no other antisymmetric tensor fields (in any number of 

dimensions) besides the K-R field. Thus, the closed bosonic string can never carry electric charge. 

It seems this conclusion arises from the fact that the bosonic string is a D1-brane, i.e., p = 1, so in (16.62), we must 

have a field with two indices. For the K-R field, we take our generalized symbol A1 in (16.62) to the specific K-R field 

symbol B in (16.3). For a two-index field, there is only one formulation that is antisymmetric. This would be true no 

matter how many dimensions  and   run over. So, we conclude that only one field, the K-R field, can be antisymmetric 

in  and . (Since the components of B can vary, in a given problem/situation, there can be different fields B, but 
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they are just different K-R fields. This is analogous to the fact that the e/m field A can take on different component 

values, but these are just different values for the Maxwell field A. 

Additionally, and not clear in Zwiebach, I believe for any closed brane of any d, the K-R field is the only one 

allowed. 

Superstrings 

It turns out (analysis is extensive and not shown here or in Zwiebach) that Type IIA and IIB superstrings permit 

additional antisymmetric tensor fields beyond the K-R field (called Ramond-Ramond fields). For further discussion, see 

pg. 371 in Zwiebach. 

2.3 Electric Charge Arising from Compact Superstring Branes 

As noted, a string is a D1-brane (it is one dimensional in space and two dimensional in spacetime). A string is just 

a special case brane. There are closed strings, i.e., closed D1-branes, and there are closed higher dimensional branes.  

We can consider a Dp-brane that is compacted in m dimensions, where m < p. The compacting in each m dimension 

is considered to be circular and such that it yields an m dimensional torus. The surface of such a torus is m dimensional. 

A circle is a 1-torus. A doughnut is a 2-torus. 

We further consider superstring, rather than purely bosonic string, theory, so additional antisymmetric fields other 

than the K-R field can exist for a given brane. Thus, we consider (16.62) for a Dp-brane. And, we analyze such a brane 

that is compact in all p dimensions. (A brane can’t be compact in p + 1 dimensions, because it can’t be compacted in 

time. If it were, part of the compactification would have to travel backwards in time.) 

Coordinates of the brane, in each of its compactified dimensions, are thus 

 
 1 1 1 2 2 2

1 2

no sum on 

0 2 0 2 0 2

p p p

p

X R X R X R p

.

  

     

  

     

…
  (5) 

Using (5) in (16.62), we find 

   
1 2

1 2 1 2 1 2

p

p p p
I p

dX
S A X , , , R R R d d d d

d



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

  … … … … , (6) 

where integration over each k (k = 1,2,…,p) is from 0 to 2. And, again,  and  both  = 0,1,2,…,p, …,d. 

The radii Rk are considered extremely small, so the antisymmetric field 
1 2 p

A  … will not vary much as one travels 

in the k direction. Thus, we can assume an essentially constant value in that direction for the field, and thus, 

    
1 2 12varies over taken effectively constant over 

p

k k
pA A    … … . (7) 

Alternatively, we could consider 12 pA …  as representing the average value over each k. In doing (7), 12 pA …  loses its 

dependence on the k upon which X


 is dependent. 

      
1 2

1 2
12p

p
pA X , , , A X

 
       … …… . (8) 

   With (8), (6) becomes 

         1 2
122 2 2 p

I p p

dX
S R R R A X d

d




    


   …… .  (9) 

The X


 has some components on (tangent to) the compactified space of the brane and some components outside 

(normal to) that space. We break these up, notation-wise, as follows. 

     where  or 1 2 tangent to brane  and 0 1 normal to braneX k m k , , , p m , p , ,d     … …   (10) 

The components tangent to the brane are not of concern to an observer outside the brane, as the brane is in such a 

compactified space that it appears effectively as a point. We are deducing what the compactified brane, with its 
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antisymmetric field(s) looks like to that outside observer (in a lower dimension space than d). So, we will concern 

ourselves with the m components, as defined in (10), and express (9) for those. For superscript n ranging over the same 

space normal to the brane (just as m represents), 

        1 2
122 2 2

m
normal p n
I p m p

dX
S R R R A X d

d
    


   …… . (11) 

Recall from (1) where x

() represents the coordinates of path of a particle in spacetime, here Xm (and Xn) represents 

the path of the brane (which looks like a point) through the spacetime external (normal) to the brane. So, we can take 

upper case X to lower case x in (11), but keep in mind that our integral is over the path of the point-like brane in the 

external spacetime. 

Recall we use upper case X as the coordinate of the string/brane displacement (which oscillates in time and spacetime 

and is a dependent variable), but lower case x as the spacetime coordinate (which is fixed, does not oscillate, and is an 

independent variable). Even though x is independent, when we want an integral to be over the world line of a particle 

with coordinates x, we imply this by writing x(), to imply the integral is over that world line (which evolves with ). 

With this, and realizing that the factors in front of the integral sign in (11), for a p-torus, equal the volume of the p-

torus, we have 

     
12 12

m
normal m
I p p m p p m p

dx
S V A x d V A x dx

d
 


    … … , (12) 

which looks strikingly like (1), the action for a electrically charged point particle as the source of a Maxwell field. This 

leads one to suspect the compact brane acts in the non-compact space like an electrically charged particle, which is the 

source of a Maxwell field  
12m pA x… . Indeed the field here has components in the space normal to the brane and is a 

vector (has a single index m, since 1,2,…,p are fixed). This conjecture works, but by convention is altered a bit by defining 

a new field as follows. 

   
 

  
12 2

1
m p mp /

A x A x 





…
ɶ   (16.70) [372] 

With (16.70) in (12), we have 
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s

V V Vdx
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d l
   

 
     

 
  ɶ ɶ ɶ  .(16.71) [372] 

In analogy to (1), the compactified brane appears in the uncompactified space as a point particle with electric charge  

 
   2

p p

pp/
s

V V
Q

l
 


, (16.72) [373] 

interacting with a Maxwell field mAɶ . Note that in natural units, charge is unitless, and (16.72) is, indeed, unitless. In 

addition, for a dimensionless action (16.71), mAɶ  has units of 1/L = M, which is the same as that for an e/m field. Getting 

unit to work out is the main reason, the new field was defined in (16.70). 
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Equations numbered such as (21.68) refer to Zwiebach. The symbol [483] means page 483 in Zwiebach. 

1 Oscillations of Compact Dimensions and Moduli 

In string theory with compact spaces, such as a 6d torus, or a 6d Calabi-Yau space, oscillations arise in the fabric of space itself, 

as opposed to oscillations of a string, or even of a brane, located in that space. This may seem strange at first, but in general 

relativity we have gravitational waves, which are nothing but oscillations in the fabric of spacetime itself. This concept is 

extrapolated to the compact spaces of string theory. 

In string theory before considering space oscillations, one took a classical oscillating string field and quantized it, to make it a 

field. Oscillations of classical string field displacement X became quantum fields that created and destroyed string states, which 

one presumes are particle states. A similar thing happens with oscillations of compact dimensions. The dimension itself, such as 

the radius R in one dimension of a torus, becomes a field that creates and destroys states, which one presumes are particles. A 

vector displacement like X becomes a quantum vector field; a scalar like a radius R becomes a quantum scalar field. 

Consider a circular compact spatial dimension of radius R, for which the radius can oscillate in various modes. 
    

                                     Figure 1. Various Modes of Oscillation of a Compact Circular Dimension 

Violet circular line is static (non-oscillating) dimension. In the first figure, green dashed lines are max and min displacements. In 

other figures, the non-circular green line shows one extreme of the oscillation mode. Image credit: IET Research Hub - Wiley 
     
For modes of n>0, the oscillations can move circumferentially, i.e., they can comprise a wave moving in the circumferential 

direction with variations in R, i.e., variation transverse to the direction of travel.  

For a 2-torus, we would have a second radius and a space with oscillations normal to each compact circumference. And so on, for 

higher dimensional compact spaces. 

The radius R can vary with location in 4D (non-compact or reduced) spacetime. That is, variations in R can propagate as waves 

in 3D. Thus, where we denote 4D reduced spacetime position with shorthand notation x (which = x), 

  Displacement of compact radial dimension = which varies with 4D location R x x   (1) 
  
Just as quantizing string displacements X resulted in a quantum field, displacement R(x) of a compact dimension results in a 

field, here a scalar field.  

    quantization
Displacement of radial dimension scalar field R x R x   (2) 

Upon quantization, R(x) comprises a scalar field with various wave modes. As a quantum field, it creates and destroys a scalar 

state, which, as with the rest of QFT, carries the properties (quantum numbers like 3-momentum, charge, etc.) of the associated 

field that creates it. In practice then, one can think of R(x) as the state of the compact space, or alternatively as a classical field 

representing the radius of that space, with numerical radius R(x) at 3D location xi at time x0. 

2 Compact Dimension Spaces: Their Potential and Stability 

2.1 The Potential for a Dimension Space 

We generally think of a potential as associated with some field, such as the electric field in electrostatics or the gravity field in 

gravitational theory. The motion of objects (waves and particles) is affected by the potential. 

In general relativity, curved spacetime gives rise to what we otherwise think of as a potential. It affects the motion of objects and 

waves. More curvature means more effect. This curvature is represented in the metric g, from which we can deduce the Riemann 

R

n=0

R
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curvature tensor. For circularly curved spaces with radii Ri in each curved dimension, the metric is a function of the Ri. And thus, 

the effective potential is a function of the Ri. And the motion of the dimensions themselves (think Ri) would depend on that 

potential (which is itself a function of the Ri). 

Consider a compact space comprised of two dimensions, where R1 =R2 = R. With the theory of general relativity, we can deduce 

what the effective potential in that space would be. We don’t do that here (and neither does Zwiebach, but see the Appendix herein 

for a bit more detail)), and instead just state the result, which is the (where we will explain the various symbols) 

             effective potential for compact 2D circular space  
4

2 2gV R a g
R


    .   (21.68) [483] 

g is non-negative integer known as the genus and takes different values for differently curved spaces.  is known as the Euler 

number. ag is a positive constant. 

2.2 Dimensional Stability and the Potential 

For a two-sphere, net curvature is positive and we get g = 0, so the potential is negative. This leads to a force 
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           
 

. (3) 

A force in the minus R direction will compress that circular dimension to zero. Any non-zero modulus for a two-sphere is unstable. 

Such a space cannot, therefore, exist. If it is not already of zero size (R ≠ 0), it is unstable. One can get the same results by simply 

looking at the potential V (21.68) [483] and noting what R will make it a minimum. This is displayed for the 2-sphere visually in 

the left most diagram of Fig. 1. 
 

                                        Figure 1. Potentials for Various Compact Spaces 
 

For a two-torus (see Fig. 1), the net curvature is zero and we get g = 1, so the potential is zero. This means there is zero force in 

the R directions, and R is a modulus, which can take on any value, in principle. 

For spaces with g > 1 (“other” in Fig. 1) the net curvature is negative, the potential is positive, and we get a force in the positive 

R direction that drives the space to infinite size in the R directions. (The potential seeks a minimum.) Such a space for finite R is 

unstable. 

We discuss the right-most diagram in Fig. 1 later. 

When the field R(x) is not unstable, it is called a modulus, as for example, with the 2-torus. In principle, it can take on different 

values. The set of all possible R(x) is called moduli space. 

 
  

Wholeness Chart 1. Some Compact 2d Spaces and Stability 
  

 

Space Net Curvature Genus g  Potential FR Effect Stability? 
Is R a 

Modulus? 
Massless? 

2-sphere positive 0 2 ~ ‒1/R4 negative R  0 unstable no yes 

2-torus, R1 = R2 zero 1 0 0 0 any R 
neutral 

(constant R) 
yes, but 

arbitrary 
yes 

Other negative > 1 < 0 ~ +1/R4 positive  R  ∞ unstable no yes 

V(R)

R

2-sphere other

V(R)

R

2-torus

V(R)

R

V(R)

R

2-sphere and 

magnetic flux

Rvac
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Regarding the massless column, recall from QFT that a massive scalar has a term in the Lagrangian of form 

    2 † 2

2
1  complex or   realm m   . (4) 

The Lagrangian for the compact space is comprised of a kinetic term (in derivatives of the field), the potential term (21.68) [483], 

and presumably interaction terms. None of these has the form of (4), i.e., there is no ½m2RR term, so, we conclude the field is 

massless, for all three rows of the Wholeness Chart 1. 

We can’t have an unstable compact space, so at this point (ignoring the right most diagram of Fig. 1 for now) we are limited to a 

2-torus with equal radii in both directions. And for that, with no other contributions to the Lagrangian, we can have any value for 

the continuous parameter R, the radius, which in this case is a modulus. 

3 Stabilizing R for the 2-sphere and Making it a Modulus 

(21.68) [483] represents the gravitational potential part of the Lagrangian for the compact space. It is possible that magnetic fields 

could exist, and if they are coupled to gravity, we would have additional terms in the gravitational Lagrangian carrying this 

coupling. Since, in our examples, the radius is the essential parameter in determining the spatial curvature, it must play the key 

role in gravitational effects. So, a magnetic field coupled to gravity would have to have the geometric properties of the space 

inherent to it. For the spaces we are considering, the key geometric property is the radius R. 

As discussed in Zwiebach [483], with reference to his Chap. 19, magnetic flux is quantized on a compactified space comprising 

a torus. A similar effect occurs with a 2-sphere, with magnetic potential (as found by extensive analysis not shown here), where 

n is an integer and af is a positive constant, of 

 
2

6f

n
a

R
. (5) 

If we add that to (21.68) [483], we get a total gravitational plus magnetic potential of  

  
2

4 6
2 2 2 an integerg f

n
V R a a g n

R R


       . (21.69) [483] 

This is displayed in the right-most diagram of Fig. 1. From (21.69), we can find a minimum via 
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So, R no longer goes to zero with time. It is stable. Therefore, under these conditions, R for a 2-sphere can be a modulus. And its 

value is fixed via (21.69) [483] and (7). This is an example of moduli stabilization via flux compactification. 

This analysis and the right-most diagram of Fig. 1 should remind us of Higgs symmetry breaking, where the universe ended up 

in the true vacuum when the potential found its minimum. Compact spaces, along with the reduced 4D spacetime, with no strings 

comprise the vacuum. Just as the Higgs potential stabilized at its minimum, which is the vacuum, compact space potential 

stabilizes at its minimum, which is the string theory vacuum. Rvac is the compact space radius for that vacuum. 

For different values of n, we get different moduli, and as long as n can take on any positive integer values, there are an infinite 

number of possible forms for the potential and thus an infinite number of possible moduli (possible Rvac).  

4 Fixing the Modulus R for the 2-torus 

For the 2-torus, R is not unstable. But it is not stable either. It can take on any value. There are ways, however, to fix the value of 

R, which can be advantageous in theory building. 

To fix R in this case, we would need two additional terms in (21.68) [483], since the term therein is zero for the 2-torus with  = 

0. We can get a positive term similar to the second term in (21.69) [483] for the 2-spherre, which here we label f+(n,R). But, we 

also need a negative potential like we have in (21.69). 

Getting this entails the use of orientfolds, which we do not delve further into here. Simply understand that orientfolds introduce a 

negative term into the potential so we end up with a potential of form (where forient is a positive function related to an orientfold 

and depends on an integer m) 

      
2

6
 behaves similar to ; 0;  integersorient f orient

n
V R f n,R f m,R f a f n,m

R
     . (8) 



4 
For given m and n, (8) has a minimum and via (6), one can find the value for R at which it occurs. Employing orbifolds (or 

possibly other means) leading to relations like (8) is known as moduli fixing. As different m and n lead to different minima, there 

are many different Ri
vac values, an infinite number in principle, if there are no upper limits on m and n. 

5 Higher Dimensional Spaces 

For compact spaces of higher dimensions than two, we have additional contributions via general relativity to the potential, can 

have additional fluxes quantized via other integers, such as m, k, l, etc. and have additional moduli. For each different set of 

integers (m,n,k,…) we would have a different set of moduli Ri
vac. 

Such spaces are the background for string oscillations. They exist without strings (particles, as our theory presumes). So, such 

spaces comprise different possible vacua. There are many possible vacua in string theory. 

6 Calibi-Yau Spaces 

For 6d Calabi-Yau space, the potential can depend on hundreds of different integers, leading to many different possible moduli, 

where each such set of moduli comprises a different string vacuum. 

7 The String Vacuum 

The form of the compact 6d space varies in the five different string theories (e.g., 6-torus, Calabi-Yau space). The vacuum in each 

case would comprise curled up dimensions with moduli, such as R above for each circular dimension or other parameters (such 

as those associated with Calabi-Yau space), which can vary considerably in number, type, and magnitude. The potential for the 

space would then vary with all of these parameters and the integers by which they are quantized. 

As noted above, a compact space without strings is a vacuum, but still has moduli. For different moduli, there are different vacua, 

known as the string vacua. There are an extraordinarily large number of possible ones, and the collection of all of these possibilities 

is called the string landscape. Each possible vacuum in the string landscape space comprises a local minimum of the potential in 

that space, and the moduli take on vacuum expectation values at that minimum. 

Since compact spaces can have hundreds of different integers characterizing them, there are an enormous number of vacua in the 

landscape. Theorists have determined this number exceeds a mind-boggling 10500. It is presumed that our universe (i.e., its 

vacuum) is one of these possibilities, but no one has yet found the particular one. On pages 484 to 490, Zwiebach discusses the 

likelihood that our universe is the landscape, given certain things we know now, such as the energy content of dark energy, and 

assuming such energy is vacuum energy. 

8 Whence the Magnetic Field? 

One could ask, as I did when first studying moduli, if we are analyzing the vacuum, then where do the magnetic fields come from? 

If there are magnetic fields, then the vacuum isn’t really a vacuum. 

The answer, I’ve surmised, is that, as discussed in Zwiebach Chap. 19, rotated D-branes manifest as magnetic fields. So, one can 

presume, the vacua associated with magnetic fields can instead be considered vacua with rotated D-brane coordinate spaces. 

9 Massless vs Massive Moduli 

Recall from Higgs symmetry breaking that the potential in terms of the high-energy Higgs field  can be re-expressed in terms of 

a low-energy Higgs field , where  is the vacuum expectation value of . See Klauber, Vol. 2, Fig. 7-2 [209],(7-55) [222] and 

the Higgs terms in (7-58) [223]. In Fig. 2, we compare the true vacuum Higgs field  to the vacuum modulus field for the 2-

sphere with magnetic flux compact space. (Note we don’t distinguish in this case, the true from false vacuum for the modulus, as 

there is no false vacuum for the 2-sphere.) 
   

                             Figure 2. The Higgs Field Vacuum vs a Modulus Field Vacuum 

                                        (for a 2-Sphere Comact Space with Magnetic Flux) 
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The true vacuum Higgs  can oscillate around the false vacuum Higgs VEV  as  varies. The shape of the potential curve near 

 has mathematical form, in the potential (and thus, in the Lagrangian), of 

 
2 2

2
1

Hm  . (9) 

The form (9) is the hallmark of a massive scalar, where mH is the mass. The vacuum modulus field Rˊ has similar graphical shape 

about the R field VEV of Rvac as  does about , and Rˊ can be visualized as oscillating about that VEV. An increase in Rˊ results 

in a restoring force leftward pushing Rˊ back toward zero. Similarly, a decrease in Rˊ results in a restoring force rightward, pushing 

Rˊ back toward zero. 

Mathematically, one can find a term in the potential, and thus, the Lagrangian, similar to (9), where the coefficient of an effective 

½Rˊ2 is the mass squared of the vacuum modulus Rˊ. Then, the field Rˊ is a massive field, whereas R without a magnetic field (for 

the 2-sphere) was massless (and unstable). 
   

10 Summary of Spaces with and without Magnetic Flux 

Wholeness Chart 2 summarizes this article. 
   
                     Wholeness Chart 2. Some Compact 2d Spaces with and without Magnetic Flux 
  

 

 

11 Appendix: Oscillating Moduli and the Gravitational Constant 

Recall the relation between the gravitational constant G (= G(4) below) we are familiar with in the reduced 4D spacetime we are 

familiar with and the higher dimensional gravitational constant (where VC below is the volume of the compact space). 

 

 

 
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G VG
   . (3.117) [67] 

In our 4D macro universe, G is constant. But if the compact space has a viable modulus R, that modulus oscillates, so the volume 

of the compact space varies. This fact is used by theorists as part of the general relativity calculation that gives us (21.68) [483]. 

Space Curvature g  Potential V Vmin? FR Effect Stable? 
Is R a 

Modulus? 

Multiple 

R
vac

? 

2-sphere positive 0 2 ‒ag2/R4 no negative R  0 unstable no none 

2-sphere with flux same ↑ same ↑ same ↑ ‒ag2/R4+afn
2/R6 yes 

forces R       

to Vmin R  Rvac stable yes 
one for 

each n 
           

2-torus, R1 = R2 zero 1 0 0 no 0 any R neutral 
yes, but 

arbitrary 

none (or 

maybe all R)

2-torus with flux same ↑ same ↑ same ↑ 
f+(n,R)                  

(similar to afn
2/R6) 

no positive R  ∞ unstable no none 

Tori or C-Y spaces

with flux & 

orientfold(s) 

same ↑ same ↑ same ↑ f+(n,R) ‒ forient(m,R) yes 
forces R       

to Vmin 
R  Rvac stable yes 

one for each 

set of n,m 
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Everything herein is in the covariant (not light-cone) formulation. 

 

Context String Action Zwiebach Comment 

Nambu-Goto 

Action      

0

22 2

1

2

1

2

S T d d d d

X X X X d d 
     

     


 


     


      


 


  

(6.44) [112] 

& (6.39) 

[111] 

Natural units 

Action equivalent 

to Nambu-Goto, 

easier to work with 

  1

4
S X X X X d d 

       

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    

(24.4) [569]  

Re-expressing 

above 
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ˆS X X d d
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  
 

  (24.65) [583] 

Zwiebach uses  for our 

̂ , but that can be 

confused with 4D  

Re-expressed again     
 
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0 1
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1
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ˆS X X d d 
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  


 

  
 

  
Not used in 

Zwiebach 
 

Try another action 

with unknown h 

          0 11

4
S h h X X d d 

    


   
                 (B) 

 h Det h   h is inverse of h; h h = . 
(24.70) [583] This is Polyakov action. 

Try a particular              

form for h 
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              (C) (24.92) [586]  is real; 2 is positive 

Use (C) in (B)       
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




  

(D) = (A), so with form 

(C) chosen for h,                  

(B) = (A) 

1st Conclusion 
For  2 0 1 ˆh ,     , S of (B) is identical to (A), so we 

can use (C) in (B) if it is advantageous. 
 (C) is conformal gauge. 

Try another              

form for h 
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(24.86) & 
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Use (E) in (B) 
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 (F) 
(24.88) to 

(24.90) [586] 

Same as first row at top, 

original form of Nambu-

Goto action. 

2nd Conclusion 
For 

 2

1
h

f

 


 ,  S of (B) is equivalent to Nambu-Goto 

action, which is equivalent to (A). 

  

Final Conclusion Can use h of (C) or (E), as convenient  get same theory   
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Equation and page references are to Zwiebach, A First Course in String Theory  

1 Preliminary Concepts 

1.1 Degenerate Polygons 

Degenerate polygons play a key role in interacting string theory, but they are neither polygons nor degenerate, in 

the usual physics sense of that word. In QM, for example, “degenerate” implies more than one eigenvector (wavefunction) 

has the same eigenvalue (such as energy). The meaning in the term “degenerate polygon” is quite different. 

Fig. 1 may help in visualizing what is meant by a degenerate polygon. To turn a true polygon into a degenerate one, 

we move the point C to the line connecting points A and B. 

                                          Figure 1. Typical Polygon vs Degenerate Polygon     
Note that the degenerate polygon in the middle of Fig. 1 is not what we would consider a polygon, but a straight 

line (overlapping lines here, actually). The drawing on the far right is a common way of representing such a degenerate 

polygon, as it shows the overlapping lines of the polygon clearly, though in reality that drawing is a true polygon 

(rectangle). In that righthand drawing A and B appear as lines, but each line is merely a symbol for a point in the actual 

degenerate polygon. 

Fig. 2 shows another, more general type, polygon and one way it can be converted (by moving points) to a degenerate 

polygon. Point B in the far right drawing is actually a single point represented as a short line to aid in visualization. 
    

                        Figure 2. Another Example of a True Polygon vs a Degenerate Polygon     
We can consider the straight-line segments of a polygon as directed. That is, we can think of moving along 

successive lines from one end to the other, in one direction or the other around the edge. See arrows in Fig. 3 indicating 

orientation in one direction. We can then define a turning angle i as the angle made at a point i on the polygon to the 

subsequent line in the polygon, as shown in Fig. 3. Positive turning angle is ccw. In the figure, A is positive; B is 

negative. 

 

  
                        Figure 3. Polygons, Degenerate Polygons, and Turning Angles 
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Note that for the degenerate polygon, we have a point (B in Fig. 3), where the turning angle is ‒ . In general, for 

degenerate polygons, we will have at least one turning angle of either  or ‒ . In fact, that can be used a definition for 

degenerate polygon. 

1.2 String Interactions on the Worldsheet (- Plane, not X. Plane) 

In QFT, a single particle splitting into two particles is represented by a Feynman diagram like Fig. 4. 

   
  Figure 4. QFT Feynman Diagram for a Photon Splitting into a Charged Fermion and Anti-fermion 

   
The comparable string interaction (where our theory presumes strings are standard model particles) can be shown 

in the   worldsheet (of parameter space, rather than the X


 worldsheet of spacetime) as in Fig. 25.6 [605] of Zwiebach, 

a simulation of which is Fig. 5 herein below. In the left diagram of that figure, a single string, represented by the vertical 

line at P1 splits at point Q into two strings, represented by the vertical lines P2 and P3. The worldsheet diagram can be 

interpreted as a degenerate polygon, as shown on the right side of Fig. 5. 

Note the first string (on the left end) extends from the  axis up to a particular value of . That particular value, at 

the end of the string, has heretofore (in free string theory) been taken to be  (for an open string). However, in interaction 

theory, it turns out to be more advantageous to take that value of  as follows, where the beginning of the string is at  

= 0, and momentum in the + direction of light-cone coordinates is p+. 

 Length of incoming string = 1end = 12 p  , and (1) 

 2 3length of 2nd string = 2 length of 3rd string = 2p p    . (2) 

 Since momentum is conserved, i.e., 

 1 2 3p p p    , (3) 

the total length of the final two strings together equals the length of the initial string. Note the “length” here is not the 

actual physical length of the string. It is only the value of the parameter   that we choose to make analysis easier. 

 
             Figure 5. One String Splitting into Two, Construed as Degenerate Polygon 

   

1.3 Degenerate Polygons on the Worldsheet 

The string P1 is considered to be incoming from  = ‒ ∞, and the two outgoing strings going to  = +∞. Thus, the 

strings at those times ( values, really) are an infinite number of times farther away horizontally than vertically. This is 

illustrated in Fig. 6, where we can think of the left and right ends extending out to infinity. 
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  Figure 6. The String Interaction Degenerate Polygon Shape for Incoming and Outgoing Strings at Infinity        
In such case, the turning angle at P1 is : at P2, ; at Q, ‒; and at P3, . In essence, with such turning angles, the 

degenerate polygon, for string P1 at minus infinity, and P2 and P3 at plus infinity, looks like a straight line on the real axis 

of the - space. P1, P2, and P3 have effectively become vertex points (rather than lines) on a degenerate polygon in the 

- space.  
 

2 The Worldsheet and Riemann Surfaces 

2.1 What is a Riemann Surface? 

A Riemann surface is a two-dimensional surface which, roughly speaking, has a two-parameter grid on it wherein 

one parameter is real and one is imaginary. The complex plane where z = x + iy is an example of a Riemann surface. We 

will soon see other examples. 

A more precise definition involves complex variable theory and can be found in Zwiebach on page 599. 

2.2 The Worldsheet as a Riemann Surface 

It turns out that a consistent string theory can be structured by considering worldsheets like that of Figs. 5 and 6 as 

Riemann surfaces. In doing so,  is conventionally taken as the imaginary parameter and  as the real one. We represent 

any point on the (Riemann surface) worldsheet by w. 

 wi
ww i r e

    . (4) 

2.3 Mapping to a Different Representation of the Riemann Surface 

A Riemann surface can be mapped one-to-one onto another surface. If such mapping is constrained to be done in a 

certain way (read “analytic”, for readers who know what that means1) the original surface and the surface it is mapped to 

are considered equivalent Riemann surfaces. Each is simply a different representation of the same entity. 

For example, a complex space (Riemann surface) with points represented by z, 

 zi
zz x iy r e

   , (5) 

can be mapped from w space (the Riemann surface of Figs. 5 and 6) to z space, 

    with inverse mapping    z z w w w z  . (6) 

2.3.1 One Particular Mapping 

For example, consider the particular mapping from w space (the Riemann surface of Figs. 5 and 6) to z-space, where 

we have a single string with momentum in the + direction (along the light cone edge) of p+, 

 
2 2 2 2

2

z

i
i

z z z

w

p p p p
z e e e r e r e

p



  
    




   


       


. (7) 

Note we can find the inverse of (7) by taking its natural logarithm. 

   2
2

w
ln z w z p ln z

p






  


. (8) 

 
1 Zwiebach notes he will often use the word “conformal” for “analytic”, and he is doubtless not alone in this practice. 

Analytic maps are conformal, but conformal maps are not necessarily analytic. 

P3

P2

Q
P1



// //

P3

P2

Q
P1



at  at   
////

 P1 P2 P3 far from Q  P1 P2 P3 infinitely far from Q 
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2.3.2 Another Particular Mapping 

Zwiebach [601-602] also shows another possible mapping to a surface with points , 

    1 1
or from -space   

1 1

iw iz
w z z

iw iz
 

 
  

 
, (9) 

but we need not put any more attention now on this particular mapping. At this point, it is just an example. 

2.3.3 Why Do We Need to Map? 

It turns out in string theory that different interactions can be mapped from w-space to z-space and compared most 

efficiently in z-space to one another, as one sees after working with the theory for some time. 

2.3.4 Visualizing the First of These Mappings 

Zwiebach [601-602] explores the first mapping above of Sect. 2.3.1 and displays the results in Figs. 25.6 [600] and 

the left side of Fig. 25.7 [601], which we mimic in Fig. 7 herein below. 

To get a feeling for the z-space representation of the string in the righthand diagram of Fig. 7, in Table 1, we calculate 

a few points in that space using the right-most part of (5). 
   

Table 1. Finding Points in z-space from Points in w-space  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

    
         Figure 7. A Single Free String Viewed on the  Worldsheet (w-space) and in z-space 

                  (The solid line in the right diagram is the unit circle, so A is at x = +1 and D is at x = ‒1.) 
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A  = 0    = 0 rz = 1   z = 0 x = 1, y = 0 

D  = 0    = 2ˊp+ rz = 1   z =  x = ‒1, y = 0 

     = 0    = ˊp+    rz = 1   z =  x = 0, y = 1 
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Note that in z-space, the ends of the string in the infinite past are on the real line at x = 0, i.e., at z = 0. From (8) we 

can see that the log of zero is ‒∞, so for z = x = 0, where w =  = ‒∞. Had we taken ln (z ‒ 1), we would find that for z = 

x = 1, we would have w =  = ‒∞, i.e., the ends of the string at  = ‒∞ on the worldsheet, would be at x = 1 on the real 

axis in z-space. This understanding will help us in what is to come. 

2.3.5 Definitions 

What we have been calling z-space is typically labeled H , and we will refer to it by that label henceforth. 

If we are dealing with polygons in w-space (the worldsheet), then the transformation from H  to w-space is known 

as the Schwartz-Christoffel map w(z). In particular, it takes points zi in H  over to vertices Pi in polygons in w. Since we 

deal with degenerate polygons representing string interactions on the worldsheet, this is a map we will need to be using. 

Note that the inverse of w(z), i.e., z(w) is also called a Schwartz-Christoffel map. 

In Fig. 7 on the righthand side, we see that the origin, while a point in H , is at infinity in w-space. Such points, 

which represent infinity on the worldsheet, are called punctures. We actually have one puncture in H  in Fig. 7 at the 

origin and one at infinity (which is not actually a point). Punctures are on the boundary of a given space and not actually 

included as part of that space (since they are infinite). They “puncture” the space, in a sense. 

3 The Three String Interaction and the Schwartz-Christoffel Map 

In general, finding an equation w(z) for the Schwartz-Christoffel map is not an easy task. We merely state here a 

result (10) derived by Zwiebach [606-607] for the case of the three-string interaction of Figs. 5 and 6. 

3.1 A Particular Mapping Equation That Works 

With a view to (7), (8), and the point made just after Fig. 7, one can glean a bit of the logic for the commonly 

employed Schwartz-Christoffel map for the three-string interaction, 

                      
2 32 1 2 1w p ln z p ln z                   Zwiebach  (25.46) [607]. (10) 

Note what we get if we take the real number point z = ‒1. Then, 

        
2 3 2 32 0 2 2 2 2 2w p ln p ln p p ln                      (11) 

On the worldsheet this is a point on the real axis at infinity, where w =  = +∞, so z = ‒1 is a puncture in H . 

For z = 1, 

        2 3 2 32 2 2 0 2 2 2w p ln p ln p ln p                  . (12) 

This point is also on the worldsheet real axis at infinity, where w =  = +∞, so z = +1 is also a puncture in H . 

From the right side of Fig. 6, we might want to consider these two points in H  (z = ‒1 and z = 1) as P2 and P3 (w 

= +∞ for both) in the worldsheet. And we will. 

Note that the constant “1” used in two places in (10) is taken as such by convention. It places two punctures in H  

on the real axis at ‒1 and +1. Due to the minus sign in (10), these punctures represent the infinite future for the two 

strings. Compare with (8), with the opposite sign, that led to a puncture representing the infinite past. 

Consider the point in H  z = +∞. Then (10) maps that to 

    
2 32 2w p ln p ln          . (13) 

We could consider this point in H  (z = +∞) as P1 (w = ‒∞) on the worldsheet. And we do. 

It looks like (10) makes sense as a good map to use for the three-string interaction, but before being sure, we need 

to investigate what it does with the interaction point Q. Before doing that, we need to state, without proof, an important 

rule for Schwartz-Christoffel mapping. 

Before doing that, we note that (10) maps points on the real line in H  (z-space) to points on the real line of the 

worldsheet Riemann surface (w-space). This is important, as the degenerate polygon in Fig. 6 has the incoming string, 

the interaction point Q, and the two outgoing strings all on the real axis ( axis). 
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3.2 Ordering Rule for Schwartz-Christoffel Maps 

It is well known in mathematical circles that the order of vertex points under a Schwartz-Christoffel map is not 

altered. That is, if we have points ordered from left to right in H , say P1P2P3, then those points, when mapped to the 

(degenerate) polygon vertices on the worldsheet must have order along the boundary of the polygon of P1P2P3 or P2P3 

P1 or P3P1P2, but not, for example, P2P1P3. And vice versa. Vertex points along the polygon boundary must, under 

mapping to H , be ordered along the real axis in the same cyclical sequence as their corresponding points along the 

polygon boundary.  

Note that we have the proper order for the three Pi points in our Schwartz-Christoffel map (10).  That is, along the 

polygon on the worldsheet, we have order P1P2P3, and along the real line in H , we have P2P3 P1. P2 at z = ‒1; P3 at z = 

1; P1 at z = ∞. 

3.3 The Interaction Point Q 

Since Q (interaction point) in Fig. 6 is between P2 and P3 on the worldsheet polygon, it must be between P2 and P3 

on the real axis in H . This is shown pictorially in Figure 25.9 [605] of Zwiebach, which we mimic below as our Fig. 8. 

                        
                  Figure 8. The Schwartz-Christoffel Map from z-space (RHS) to w-space (LHS) 

  

3.4 Points Oher than Endpoints on Strings 

The points P2 and P3 shown on the right side of Fig. 8 really represent just the string endpoints in H (z-space) in 

the infinite future. At those times the end points of each string collapse to the same point in H . However, at other times, 

the strings, represented in z-space are not points. Figure 25.11 in Ziebach [608] shows this, and we mimic that figure 

below in our Fig. 9. (See the appendix for details on P1.) 
 

                          Figure 9. H  Riemann Surface for Three String Interaction Evolution with 
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3.5 Finding x* for Point Q. 

We can find x*, the location on the real axis in H  for point Q by using the derivative of (10) with respect to z. 

 32 22

1 1

ppdw

dz z z

  
  

 
  (14) 

Locally, at the point Q, z is real (= x), and at its mapped location in w-space,  remains unchanged as one progresses 

along the degenerate polygon, i.e., w changes equal changes. Thus, 

 32 22

1 1

ppdw d

dz dx x x

  
   

 
   near Q. (15) 

In proceeding from P2 to P3, we can see from Fig. 8 that is at a local minimum at point Q. Thus, we can set (15) 

equal to zero when x = x*. 

 32 22
0

1 1Q

ppd

dx x* x*

  
   

 
. (16) 

So, 

 2 32

3 2 3

1 1

1 1

p pp x* x*
x*

x* x*p p p

 

  

 
    

  
. (17) 

4 General Rules for Any Interaction 

From the three interacting strings example and (10), we can glean general rules for relating w to z for any interaction 

of any number of strings, as follows. 

To find w from z, use the general relation 

      1 1 2 22 2 2 1 puncturesn nw p ln z z p ln z z p ln z z n              … , (18) 

with these rules. 

1. Add a logarithm, one for each string i except the one with a turning point mapped to infinity in the upper half 

plane of H  . 

2. The argument of each logarithm is z ‒ zi, where zi is the puncture point in H (z-space) corresponding to a 

string at  = +∞ or ‒∞ in w-space. 

3. The pre-factor of each logarithm is 2ˊpi
+. 

4. The sign on each logarithm term is negative when, in w-space,  increases when crossing the turning point in 

the degenerate polygon. The sign is positive when  decreases when crossing the turning point. 
  

5 The Open Four-String Interaction 

5.1 The Riemann Sphere 

5.1.1 Mapping to the Riemann Sphere 

To help in analyzing the 4-string interaction, we need to first consider another type of Riemann space, the Riemann 

sphere. The term Riemann surface pertains specifically to a plane, whereas the Riemann sphere, as the name implies is a 

Riemann space comprising the surface of a sphere. The surface of a complex plane carries the mathematical label C , 

whereas the surface of a sphere having complex coordinates is labeled Ĉ . 

We need a mapping to convert from the plane to the sphere, and vice versa. That is obtained via a projection as 

shown in Figure 10. 
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                           Figure 10. Mapping from the Riemann Plane to the Riemann Sphere     
Consider a straight line from any point P on the plane to the north pole of the sphere. That point is considered 

mapped to the point Pˊ on the sphere surface, where the line intersects that surface. We can consider the points on the 

sphere to carry the same labels as the points on the plane, i.e., z = x + iy, and talk about the points on the sphere, yet since 

it is easier, display those points on a plane (with orthogonal grid lines x and y). Note that the Riemann sphere is sometimes 

called the extended Riemann surface. 

We don’t need to know the mathematical relation for this mapping (it is complicated). We just need to know that 

we can carry it out, and that it is one-to-one. Note, all of infinity in z maps to the north pole, as single point, on the sphere. 

5.1.2 Mapping from One Riemann Sphere to Another 

Now, the mathematicians tell us, and we will simply accept it, that mapping form one Riemann sphere to another 

can be carried out with the following mapping. 

 
az b

w
cz d





          a,b,c,d real,   ad ‒ bc > 0. (19) 

By convention, in string theory, we take 

 1ad bc  . (20) 

5.1.3 Proving Something We’ll Need Using Riemann Spheres 

We need (19) to prove one thing. That if a series of points on the real line of z-space for a Riemann surface (a plane) 

has a certain order along that line, the mapped points in the Riemann surface w-space (a plane) have the same order. We 

do this by using (19) to draw a conclusion about Riemann sphere to Riemann sphere mappings, and then from the 

projection mapping of Fig. 10, presume the same conclusion applies to Rieman surface to Riemann surface mappings. 

We do this because it is easier to prove using the mapping of (19) than the mapping of (18). 

We start by taking the derivative of (19), where we assume z is real, i.e., z = x. Note the last step below results from 

the last part of (19). 

 
 

 

 

 

 

       2 2 2 2 2 2
0

dw a az b c a cz d az b c acz ad azc bc ad bc

dz cz d cz d cz d cz d cz d cz d cz d

     
       

      
.  (21) 

If we are moving in an increasing z direction along the real axis in z-space from one point to another, from (21), we must 

also be increasing in the w direction along the real axis in w-space from the mapping of the first point to the second. In 

other words, the order of points along the real axis must remain the same under the map. 

We then use the mapping of Fig. 10 to conclude that the same result must hold for Riemann surfaces as we found 

here for Riemann spheres. For points along the real axis, the cyclic ordering of points must remain unchanged. By way 

of example, for three such points being mapped from z to w, 

 1 2 3 1 2 3 2 3 1 3 1 2 1 3 2 must map to cyclic ordering  or  or , but not  (which is not cyclic)P P P PP P P P P P P P P P P . (22) 

If the cyclic order changes, the two Riemann surfaces are not equivalent. There are only two different cyclic orders 

for three points, so there are two different Riemann surfaces for which the three points are on the real axis. 

We call the abstract set where each member of the set is a different (inequivalent) Riemann surface, modulus space. 

In this case, there are two discrete members of modulus space for w-spaces, the two inequivalent Rieman surfaces for 

which the three Pi have different cyclic order. We label that space as N3 where the “3” means three points. 

Note that things are always easier when we take our points in z-space as on the real axis. Real numbers are always 

easier to handle than complex numbers and the mapping (19) tells us that if the zi are real, then the mapped wi are also. 

In string theory, we stick to real numbers whenever we can. 

Bottom line: Using the Riemann sphere, we have proven that the cyclic order of points on the real axis in one Riemann 

surface (plane) must be preserved under mapping to a second Riemann surface in order for the surfaces to be equivalent. 

Inequivalent Riemann surfaces are members of (points in) an abstract set (space) called modulus space. 
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We have shown the cyclic order is maintained under mapping for points lying on the real axis, but the principle 

applies, in general, to the boundary of any space. The real axis is the boundary of H  (z-space, for example). In such 

spaces, there are no points below the real axis, i.e., no points with negative imaginary parts. 

2nd bottom line:  The cyclic ordering of points on the boundary of a Riemann surface is maintained under analytic 

mapping. 

5.2 z-space to w-space Map 

We now examine the string interaction shown in Fig. 11, where two strings are incoming and two are outgoing. The 

numbering may seem a little strange, as in QFT, one usually numbers the two incoming as 1 and 2; and the two outgoing 

as 3 and 4, but we follow Zwiebach on the numbering. 

In w-space, the points Pi, QA, and QB appear in Fig. 11 to have non-zero  values, but because they all have  values 

of magnitude infinity, they effectively live on the real axis ( axis) and can be treated as lying on the  axis in that space, 

i.e., treated as real. 

The order of points along the boundary of the degenerate polygon on the left side of Fig. 11 is that of the arrows 

indicating orientation of that boundary. For example, QA in w-space is between P1 and P2 in that space, so, as we learned 

in the prior section, it must lie between P1 and P2 in z-space. So, in fact, the ordering of points as shown in w-space of 

fig. 11 is the same as the ordering of points in z-space of that figure. 
 

                                                 Figure 11. Map Between z-space and w-space 

 

We know the location of the four punctures in w-space.  Recall that we can choose three of the puncture locations 

in z-space however we wish. By convention, these are taken to be   

      1 1 1 3 3 3 4 4 4:  0 :  1 :  P z w P z w P z w          .  (23) 

We know that P2 has w2 = ‒ ∞, but we are not free to specify z2, so we label its value as , an unknown at this point. We 

do note that, in order to maintain cyclic order, its value must lie between that of P1 and P3, i.e., 

 2 0 1z     . (24) 

Now, we don’t use the sphere-to-sphere mapping of (19), since it leads to bizarre results due to all the infinities in 

w-space (which you can check by substitution into (19)), and because (19) was used only to glean an important result in 

the simplest way and is not so reflective of what is going on with Riemann surfaces. Thus, we employ the mapping (18) 

for four punctures. and the values for those punctures as shown in Fig. 11. That is, we employ the analytic map 

    
1 2 3 42 2 2 1w p ln z p ln z p ln z z               . (25) 

Recall from an earlier section of these notes that for the choice of gauge family employed (which includes the light-

cone gauge as one case), the parameter  increases monotonically with time t of any observer. So, one will see authors 

like Zwiebach cavalierly refer to  values, such as T in Fig. 11, as “time”, even though  is only a parameter. 

To show that (25) actually does map the points as described, we calculate the w position of points in z-space in 

Table 2. To use that table, we remind readers of some key relations. 

      0 1 0 1ln xx e ln ln ln ln i ln x ln x i ln i                     (26) 

 

 


2'p+

1

2'p+
2

T 

w
2'p+

3

2'p+
4

QA

QB

TB TA

P1 P3P2

z

P4QA QB

0
x

i y

xA xB1 

P2 (z=)

P1(z= 0)

P3(z= 1)

P4(z= )
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                          Table 2.  Finding Points in w-space from Points on Real Axis in z-space Using (25)   

Point z Value w = w(z) w Value  

P1 z1 = 0 w1= ‒ 2ˊp1
+ ln 0  ‒ 2ˊp2

+ ln (‒) + 2ˊp3
+ ln (‒1) w1= ∞ + i2ˊp3

+ = ∞  

P2 z2 =  w2= ‒ 2ˊp1
+ ln   ‒ 2ˊp2

+ ln 0 + 2ˊp3
+ ln (‒1) w2= ∞ + i2ˊp3

+ = ∞  

P3 z3 = 1 w3= ‒ 2ˊp1
+ ln 1  ‒ 2ˊp2

+ ln (1‒) + 2ˊp3
+ ln 0 w3= ‒∞  

P4 z4 = ∞ w4= ‒ 2ˊp1
+ ln ∞  ‒ 2ˊp2

+ ln (∞‒) + 2ˊp3
+ ln (∞‒1) w4= ‒∞  

For unknown (at this point) xA and xB in z-space 

QA 0 < xA <  wA= ‒ 2ˊp1
+ ln xA  ‒ 2ˊp2

+ ln (xA ‒) + 2ˊp3
+ ln (xA ‒1) wA=TA + i2ˊp1

+  

QB 1 < xB < ∞ wB= ‒ 2ˊp1
+ ln xB  ‒ 2ˊp2

+ ln (xB ‒) + 2ˊp3
+ ln (xB ‒1) wB=TB + i2ˊp4+  

 

5.3 Finding  for Given T 

At this point, we have three unknowns, the locations in z-space for P2, QA, and QB, i.e., , xA, and xB. We know the 

locations of all six points in w-space. (We assume Re{wA} = TA and Re{wB} = TB are known, as well as all pi
+.) 

So, we need three equations in these three unknowns. Once we have these, we will be particularly interested in T = 

TA ‒ TB Because of that, we will take our first of the three equations to be the difference between the real parts of wA and 

wB, as shown in the last two rows, third column of Table 2. 

The First Equation 

Note from (26), that 

   for a postive or negative real numberlnC ln C C  . (27) 

Thus, from Table 1, 

 
 
 

1 2 3

1 2 3

2 2 2 1

2 2 2 1

A A A A A

B B B B B

T w p ln x p ln x p ln x

T w p ln x p ln x p ln x .

   

   

  

  

         

         
  (28) 

From Fig. 11, we can glean the signs of the quantities inside absolute value lines of (28), and 

 

   
   

 
 

 
 

1 2 3

1 2 3

1 2 3

2 2 2 1

2 2 2 1

1
2 2 2

1

A A A A

B B B B

A AA
A B

B B B

T p ln x p ln x p ln x

T p ln x p ln x p ln x

x xx
T T T p ln p ln p ln .

x x x

   

   


  



  

  

  

       

       

 
       

 

  (29) 

 
 
 

 
 1 2 3

1
2 2 2

1

ABB

A A B

xxx
T p ln p ln p ln

x x x


  


   

    
 

        1st equation in , xA, and xB. (30) 

The Second Equation 

The second and third equations are arrived at by noting that at the points QA and QB in w-space, the orientation of 

the boundary of the degenerate polygon changes, i.e., the real part of w changes, while the imaginary part is constant. At 

the same points in z-space, z is real and continues increasing. Thus, we can consider the derivative of w with respect to z 

as zero. 

For QA, from (25), we have 

 1 2 3

1 1 1
0 2 2 2

1A A A
A A

w w
p p p

x z x x xx x z x
  


           

    
     2nd equation in  and xA. (31) 
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Third Equation 

For QB, again using (25), we have 

 1 2 3

1 1 1
0 2 2 2

1B B BB B

w w
p p p

x z x x xx z x
  


           

   
        3rd equation in  and xB. (32) 

The Result 

So, we have three equations (30), (31), and (32) in the three unknowns , xA, and xB, where we assume T and all pi
+ 

are known. Note one does not need to know the individual values of TA and TB to solve these equations, just the difference 

between them T. 

In finding amplitudes, one typically takes the incoming and outgoing 4-momenta as given, since the external 

particles are external to the interaction region. However, the characteristics of the interaction region itself and the virtual 

particles/strings therein are not measurable. Such is the case with the time T between interaction points. Hence, one must 

integrate over all possible T to get the amplitude for given external particles of given 4-momenta. 

Since the three unknowns, including , are all pinned down by the three equations, for given T, we can find  as a 

function of T.  We can also find xA and xB as functions of T, if we were interested in those. Essentially, in principle, we 

can find 

     for given more generally, i iT p T , p      , (33) 

so, integration in w-space over T is equivalent to integration in z-space over . 

In practice, solving these equations is not trivial, but one can more easily investigate the behavior of the various 

parameters in certain extrema, as we discuss in the next sub-section. 

Re-arranging Two of the Equations 

Zwiebach rearranges the 2nd and 3rd equations (31) and (32) to gain insight into the amplitude. To do this, first solve 

(32) for all p1
+ and substitute that into (31). 

 (32)          1 2 3

1 1

1
B

B B

p x p p
x x

   
     

  (34) 

 (31)     1 2 3 2 3

1 1 1 1

1 1
A B

A A B B

p x p p x p p
x x x x 

       
              

  (35) 

 

2 3 2 3

2 2 3 3

2

3

1 1 1 1

1 1

1 1 1 1

1 1

1 1 1 1

1 1

A A

B A B A B B

A A

B B A B B A

A A

B B A B B A

x x
p p p p

x x x x x x

x x
p p p p

x x x x x x

p x x

x x x x x xp

 

 

 

   

   





    
   

  
   

 
   

    

  (36) 

 

   
   

   
   

 
     

2

3

2

3

1 1

1 1

1 1

B A A B B A A B

B B A B B A

A B A B

B A B A

x x x x x x x xp

x x x x x xp

x xp x x

x x x xp

 

 



 









      
      

  
      

  (37) 

 
  
  

2

3
1 1

A B

A B

x xp

x xp

 







 


 
   Zwiebach (25.87) [620] 2nd line (our xA, xB = his x1, x2) (38) 

In similar fashion, we show without proof, 

 
  

 
2

1
1

A B

A B

x xp

x xp

 







 



    Zwiebach (25.87) [620] 1st line. (39) 
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Our 1st equation (30) is Zwiebach’s (25.86) [619]. On pages 620-621, he uses (30), (38), and (39) to show that as T 

 +∞,   0, and as T  ‒∞,   1. As T varies continuously from ‒∞ to +∞,  varies continuously from 0 to 1. Each 

different value of T in w-space leads to a different value of , and thus, an inequivalent Riemann surface in z-space. 

Hence, as T is a modulus in w-space,  is a modulus in z-space. 

Summary of this Section 5: See Wholeness Chart 1 below. 
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6 Self-energy Interactions for Strings 

We now examine what is known in QFT as a self-energy diagram, one of which, for QFT, is displayed in the upper 

left (Feynman) diagram in Fig. 11. Below that diagram is the equivalent interaction in string theory, where the analysis 

and symbolism follow that of prior sections. T is the time (the  parameter, actually) during which the virtual 

particles/strings exist. Note that the incoming 4-momentum (in light-cone coordinates) is considered given, and since 

momentum is conserved, only one of the p1+ or p2+ momenta is unknown. Of the two, we choose p1+ to be the unknown, 

so it and T are the variables. If we were to work with this expression of the interaction, to get the amplitude, we would 

integrate over all possible T and all possible p1+. These two variables are known as the moduli for this example. 

We will be carrying out a sequence of several analytic mappings for this interaction, which are diagramed in Fig. 

11. The period during which the virtual particles/strings exist is represented by a slit, as shown in the top row left diagram. 

Thus, we can treat that entire diagram like we treated other interactions using degenerate polygons, though we realize the 

slit actually has zero thickness. 

Figure 10.  Sequence of Analytic Mappings from Self Energy String Diagram to Canonical Annulus  

 = 
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6.1 The First Mapping: From w-space to z-space 

The first mapping is the one we have been dealing with in prior sections. It takes us from the top row left diagram 

in w of Fig. 11 to the top row right diagram in z and is shown mathematically both in that row and in (7). The diagrams 

parallel Fig. 7, except there is now a slit that is carried along with the mapping. 

Note some things: 

1. The string with = 0 actually lies between the DJ and EK strings and is not shown. It has been taken there (which 

may seem a bit unusual or unexpected) in order for subsequent mapping diagrams to look like those in Zwiebach. 

Hence, the entire interaction over T occurs for negative . However, T is still positive. 

2. The angular distance z around any string in z-space is proportional to . That is why the slit between Q and Qˊ 

aligns longitudinally with the origin in z-space. They both have the same sigma values, so they both have the 

same z values. 

3. If T is longer, then the slit in z-space is longer. If p1
+ is greater (and thus, p2

+ lesser), the slit in z-space moves 

counterclockwise, since z is proportional to p1
+. 

6.2 The Second Mapping: From z-space to -space 

The next mapping, shown in the middle row right side, is that of (9), re-expressed below as (40) and takes us from 

the z complex variable space to the  complex variable space. 

   1

1

iz
z

iz






  (40) 

In Table 3, we deduce mapped  values from associated z values for some particular points. 
     

Table 3. Finding Points in -space from Points in z-space  

Point in z-space 

x and y 

Point in z-space 

rz and z 

Point in w-space 

 and  

Point in -space 

2 2

2 2

1 1
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1 1

1
1

i
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 
 
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 







 

 

 

 

  
 

  

 





=

  
x and y 
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   
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 
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Note some things: 

1. The entire length of the incoming string at  = ‒∞ is located at a single point in -space,  = 1. The entire length 

of the outgoing string at  = +∞ is located at a single point in -space,  = ‒1. Time passes moving 

counterclockwise (positive ) in the upper half plane; clockwise (negative ) in the lower half. 

2. If T is longer, and thus, the slit in z-space is longer, then the slit in -space is also longer. If p1
+ is greater (p2

+ 

lesser), and thus, the slit in z-space moves counterclockwise (z is greater), then the slit in -space moves inward 

(further from the starting points B, C, and D), i.e., r gets smaller. 

6.3 The Third Mapping from -space to ɶw -space 

For the next mapping to what we label wɶ -space, note if you are following along with Zwiebach, that he uses the 

notation w-space. Using w can be confusing since that was used (by both us and Zwiebach) for the very first string 

diagram (upper left in Fig. 11), but this space we now encounter is a quite different thing. 

The mapping we now employ is akin to taking potential and field lines in electrostatics, as shown in the middle row 

lefthand diagram of Fig. 11. Think of the middle row righthand diagram as representing the cross section of a capacitor, 

which extends out of the page. There is a charge distributed along the inner part of the slit, and an opposite charge 

distributed around the outer circumference. These charges result in potential lines and field line perpendicular to those 

potential lines, as shown in the middle row lefthand diagram. 

We take v to represent potential lines and u to represent field lines. If you have not previously analyzed an 

electrostatic potential problem using complex variables, simply note that in such cases, for 2D, we can represent the 

potential and filed lines as the real and imaginary parts of a complex variable. Here, call that complex variable wɶ , so our 

3rd mapping can be described by 

    x y x yw u iv u u , v v ,      ɶ . (41) 

The relations u = u(x, y) and v = v(x, y) can be complicated to deduce and vary with the parameters T and p1
+. 

We do not derive them here, but merely note below how they depend in general on -space, as well as on T and p1
+. 

By convention, we take u = 0 on the u line intersecting  = 1 ( = ‒∞), and consider u increasing as we travel 

counterclockwise around the slit (which is counterclockwise around the disk circumference, as well). We label the final 

u after going once around the slit as uf. So, for one trip around the slit, we have u = uf. 

Also, by convention, we take the potential v on the boundary of the slit to equal 1, and on the outer boundary of the 

disk equal to zero. 

Things to note: 

1. The potential and field lines where the slit is close to the disk circumference (above the slit) are packed tightly, 

whereas on the other side of (below) the slit they are widely spaced. So, the u above the slit has a greater 

value than the u below the slit, even though T is the same for both above and below the slit. 

2. If we increase T, the slit gets longer, so the u above the slit would be even greater than it was compared to 

the u below the slit. The net effect is an increase in uf. Thus, uf is a function of T and increases, or decreases, 

with it.  

  
f f f fu u T T , u T , u          (42) 

This can, alternatively, be thought of via electrostatics, where the boundary of the slit has, for the same charge 

per unit length, a greater total charge if it is larger. Thus, we would get more field lines emanating from it. 

3. If we increase p1
+, as noted above, the slit moves inward toward the disk center. This spaces out the u (field) 

lines above the slit, and tightens them up below it. Hence, u above the slit is less, and u below the slit is 

more. Similarly, u around the disk circumference from  = ‒∞ ( = 1) to  = +∞ (= ‒1) in the top half of the 

plane is reduced when p1
+ increases. We label this u as utop. 

  1 1 1top top top topu u p p u p u
       . (43) 

We then plot the u and v values around the slit and around the  disk circumference in the bottom row lefthand 

diagram. That space is wɶ -space and completes our map from -space to wɶ -space. 
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Note in the wɶ -space diagram that time increases on the u axis (v = 0,  disk circumference) until we get to  = +∞, 

then it decreases to = ‒∞ at uf. Along the v = 1 line (slit boundary), time increases from Q to Qˊ, then decreases from 

Qˊ to Q, although u increases continually along that line (and the u axis, as well). 

6.4 The Final Mapping: from ɶw -space to -space. 

We now carry out the final mapping, which is simply a rolling up of the rectangle in the bottom row lefthand diagram 

into a canonical annulus. This results in the final two diagrams of the bottom row, which are the same thing, but we 

simply need two such diagrams to label all the quantities we want to label in a legible way. 

Mathematically, the rolling up is expressed as the mapping from wɶ -space to -space of 

 

2 2 2 2

2f f f f

f

w v u v
i i

u u u ui u
e e e r e r e

u
  


   

  
 

    

ɶ

.  (44) 

Note that for v = 0, r = 1, which is what we see in the middle diagram of the bottom row in Fig. 11. 

We use the symbol r for the inner radius of the annulus in -space, i.e., 

  
2

at 1 boundary of slit fu
v , r r e



   , (45) 

and the angular distance from  = ‒∞ to  = +∞ in the increasing u direction as , i.e., 

 at =,     . (46) 

Note the following: 

1. The inner radius r of (45) increases in -space if uf increases. In the last section, we learned that uf increases 

when T increases and decreases when T decreases. See (42). Thus, 

    
fr r u r T T , r T , r         . (47) 

For T  ∞, r  1, and the annulus in the bottom row righthand diagram becomes very thin. 

2. From (44), we see that  depends on uf, and thus, on T, but it also depends on u. The quantity  of (46) has 

the u value utop as defined in the prior sub-section. So, 

 2
top

f

u

u
   


  . (48) 

As we noted in the prior section, utop decreases as the slit moves away from the disk circumference in  space, 

and the slit moves away for an increase in p1
+. See (43). So, 

    1top fu ,u p , T      .  (49) 

3. To find the precise functional relationship between the r, parameters of -space and T, p1
+ of w-space, we 

would need to find the precise functional dependencies of u and v in wɶ -space on x and y in -space, i.e., 

    x y x yu u , v v ,     . (50) 

We do not do that here. 

6.5 Summary 

To find the amplitude for the interaction of Fig. 11, we need to integrate over all values of T and p1
+, the 

independent variables, which are the moduli in w-space. 

Integration over all independent variables is invariant under any analytic mapping. The physics is the same. We just 

change the parameters. So, the amplitude, the square of whose absolute value is the probability of the interaction, is the 

same when calculated from any of the diagrams in Fig. 11. 

Thus, whereas T and p1
+ are the moduli for the first string diagram of Fig. 11, r and  are the moduli for the last 

diagram. To get the amplitude we integrate over all r and all . Note this is not the same as integrating over r and  in 

-space for given r and . We must effectively add (integrate) every possible -space diagram, each having different r 

and . 
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7 Appendix: A Natural Log Relation 

        z zi i
z z z zln z ln r e ln r ln e ln r i

         (51) 
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i /
z z z z

ln z ln r e ln r

ln z ln r e ln r ln r i

/ ln z ln r e ln ir ln r i







  


 

   

      

     

  (52) 

From the first row in (52), in z-space (H ), we have z = x = +∞ (rz = ∞ and z = 0). and thus, ln z = ln (rz) = ∞.  

From the second row in (52), we have z = x = ‒∞ (rz = ∞ and z = ), and thus, ln z = ln (rz) +i = ∞.  

From the third row in (52), we have z = iy = +∞i (rz = ∞ and z = /2), and thus, ln z = ln (rz) +i/2 = ∞. 

Due to the minus signs in (10), we will get w =  = ‒∞ for P1 in w-space, but a semi-circle of infinite radius with 

ends at ‒∞ and +∞ in z-space. 

 

 


