(Two Different Bosons, Two Different Fermions, or a Boson and a Fermion)

Example	Not interacting with each other	Interacting with each other	
Individual particle wave functions	At right $1=e^{-}$ and $2=e^{+}$	$\Psi_{1}(1, t)=\Psi_{1}\left(\vec{r}_{1}, t\right)$ and $\Psi_{2}(2, t)=\Psi_{2}\left(\vec{r}_{2}, t\right)$	Can't write wave functions individually
Total sys wave function	As above		$\Psi(1,2, t)$ or $\Psi(2,1, t)$ whichever we like.
Symbolically		Can express by multiplying individual wave functions. $\Psi(1,2, t)=\Psi_{1}(1, t) \Psi_{2}(2, t)$ or whichever we like.	
Math expression		Cannot express in terms of individual wave functions multiplied. Must determine separately for each case using $H_{\text {total }}$ and the Schroedinger eq.	

Identical Particles, 2 Particle Systems

	Bosons	Fermions	Compare
Individual particle w.f. if not interacting	$\begin{aligned} & \Psi_{1}(1, t)=\Psi_{1}\left(\vec{r}_{1}, t\right) \text { and } \\ & \Psi_{2}(2, t)=\Psi_{2}\left(\vec{r}_{2}, t\right) \end{aligned}$	$\begin{aligned} & \Psi_{1}(1, t)=\Psi_{1}\left(\vec{r}_{1}, t\right) \text { and } \\ & \Psi_{2}(2, t)=\Psi_{2}\left(\vec{r}_{2}, t\right) \end{aligned}$	same
System w.f., pretending we can label particles	$\Psi(1,2, t) \text { or } \Psi(2,1, t)$ whichever we like.	$\Psi(1,2, t) \text { or } \Psi(2,1, t)$ whichever we like.	same
	For special case of not interacting with each other $\begin{aligned} & \Psi(1,2, t)=\Psi_{1}(1, t) \Psi_{2}(2, t) \\ & \Psi(2,1, t)=\Psi_{1}(2, t) \Psi_{2}(1, t) \end{aligned}$	For special case of not interacting with each other $\begin{aligned} & \Psi(1,2, t)=\Psi_{1}(1, t) \Psi_{2}(2, t) \\ & \Psi(2,1, t)=\Psi_{1}(2, t) \Psi_{2}(1, t) \end{aligned}$	same
Actual system w.f. where we can't label parts	$\Psi_{+}(1,2, t)=\Psi(1,2, t)+\Psi(2,1, t)$	$\Psi_{-}(1,2, t)=\Psi(1,2, t)-\Psi(2,1, t)$	different
Can identical particles be in same state?	Yes. If so, $\Psi_{+}(1,1, t)=2 \Psi(1,1, t)$ (We can normalize to get rid of the " 2 " factor.)	No. If so, $\Psi_{-}(1,1, t)=0$ (And if there is no wave function, there are no particles.)	different
Particle exchange operator	$P_{12} \Psi_{+}(1,2, t)=\Psi_{+}(2,1, t)$	$P_{12} \Psi_{-}(1,2, t)=\Psi_{-}(2,1, t)$	same
Eigenvalue of particle exchange operator P_{12}	$\begin{aligned} P_{12} \Psi_{+}(1,2, t) & =\Psi_{+}(2,1, t) \\ & =\Psi(2,1, t)+\Psi(1,2, t) \\ & =\Psi_{+}(1,2, t) \\ \text { eigval } & =1 \end{aligned}$	$\begin{aligned} P_{12} \Psi_{-}(1,2, t) & =\Psi_{-}(2,1, t) \\ & =\Psi(2,1, t)-\Psi(1,2, t) \\ & =-\Psi_{-}(1,2, t) \\ \text { eigval } & =-1 \end{aligned}$	different

