Distinguishable Particles, 2 Particle Systems

	Example	Not interacting with each other	Interacting with each other
Individual particle wave functions	At right, $1 = e^-$ and $2 = e^+$	$\Psi_1(1,t) = \Psi_1(\vec{r_1},t)$ and $\Psi_2(2,t) = \Psi_2(\vec{r_2},t)$	Can't write wave functions individually
Total sys wave function	As above		
Symbolically		$\Psi(1,2,t)$ or $\Psi(2,1,t)$ whichever we like.	$\Psi(1,2,t)$ or $\Psi(2,1,t)$ whichever we like.
Math expression		Can express by multiplying individual wave functions. $\Psi(1,2,t) = \Psi_1(1,t)\Psi_2(2,t) \text{ or}$ $\Psi(2,1,t) = \Psi_1(2,t)\Psi_2(1,t)$	Cannot express in terms of individual wave functions multiplied. Must determine separately for each case using H_{total} and the Schroedinger eq.

(Two Different Bosons, Two Different Fermions, or a Boson and a Fermion)

Identical Particles, 2 Particle Systems

	Bosons	Fermions	Compare
Individual particle w.f. if not interacting	$\Psi_1(1,t) = \Psi_1(\vec{r_1},t)$ and $\Psi_2(2,t) = \Psi_2(\vec{r_2},t)$	$\Psi_1(1,t) = \Psi_1(\vec{r_1},t)$ and $\Psi_2(2,t) = \Psi_2(\vec{r_2},t)$	same
System w.f., pretending we can label particles	$\Psi(1,2,t)$ or $\Psi(2,1,t)$ whichever we like.	$\Psi(1,2,t)$ or $\Psi(2,1,t)$ whichever we like.	same
	For special case of not interacting with each other $\Psi(1,2,t) = \Psi_1(1,t)\Psi_2(2,t)$ $\Psi(2,1,t) = \Psi_1(2,t)\Psi_2(1,t)$	For special case of not interacting with each other $\Psi(1,2,t) = \Psi_1(1,t)\Psi_2(2,t)$ $\Psi(2,1,t) = \Psi_1(2,t)\Psi_2(1,t)$	same
Actual system w.f. where we can't label parts	$\Psi_{+}(1,2,t) = \Psi(1,2,t) + \Psi(2,1,t)$	$\Psi_{-}(1,2,t) = \Psi(1,2,t) - \Psi(2,1,t)$	different
Can identical particles be in same state?	Yes. If so, $\Psi_+(1,1,t) = 2\Psi(1,1,t)$ (We can normalize to get rid of the "2" factor.)	No. If so, $\Psi_{-}(1,1,t) = 0$ (And if there is no wave function, there are no particles.)	different
Particle exchange operator	$P_{12}\Psi_{+}(1,2,t) = \Psi_{+}(2,1,t)$	$P_{12}\Psi_{-}(1,2,t) = \Psi_{-}(2,1,t)$	same
Eigenvalue of particle exchange operator P ₁₂	$\begin{aligned} \overline{P_{12}\Psi_{+}(1,2,t)} &= \Psi_{+}(2,1,t) \\ &= \Psi(2,1,t) + \Psi(1,2,t) \\ &= \Psi_{+}(1,2,t) \\ eigval &= 1 \end{aligned}$	$P_{12}\Psi_{-}(1,2,t) = \Psi_{-}(2,1,t)$ = $\Psi(2,1,t) - \Psi(1,2,t)$ = $-\Psi_{-}(1,2,t)$ eigval = -1	different

by Robert D. Klauber www.quantumfieldtheory.info