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Confor mal Transfor mations

Simple definition: A _conformal transformation preses angles between lines.

Example of atransformation (which may or may not be conformal):

Consider a 2D Cartesian coordinate system paintéal @n a flat elastic surface. The transformation
stretches the elastic and in so doing, stretchesctiordinate grid line spacing. (The gird lines ¢an
altered, i.e., elongated and/or twisted, in any neinof ways depending on how the stretching isiedrr
out.)

Any line between two coordinate points gets alteted. If two such lines cross at an angle, a
conformal transformation (a stretching of the etdsteeps this angle the same after the transfoomat
(stretching) as it was before.

Example of a non-confor mal transformation: Stretched horizontally only.

X2 X2
X?=2 X?=2
Transformation
XZ:l (2,1) —— X2:1 /’@1)
20 Jeo | 0 e
x=1 Xx'=2 Xx'=3 Xl=1  x=2
I X mleter sti(;k I I X rr;eter sti(;k I
(dsf = (d®)* + (dx¥)? (dsy = a(dx)* + (dhd)?

Figurel. Elastic Sheet and Its Coordinate Grid Stretched in x* Direction by Factor of a

Note ds is the physical length measured in meter sticksvéen two points dx' (and dx®) is the
coordinate difference determined by the coordigaid numbers between those same two points.

The physical distance the point with coordinate®)(Z from the origin on the RHS of Fig. 1 is 3
meters. Sals (As really) between these two coordinate points is€ens. It has been stretched from 2

meters on the LHS. But the coordinate differedxs(Ax* really) between the two points on the RHS is still
2, as it was on the LHS.

Note from
(d92=(ad)"+(a®)*  CFasomar. (o= a( & +( B, (1)

wherea is the_scaling factor, we have, for the horizofite with the arrow head on RHS in the example of
Fig. 1,

! dsis sometimes called the line element.



Fordx’=0, ds= adkx  where on RHS of Fig. 1 a=g (2)

But how about the angle between the two lines shawtim arrow heads in Fig. 1? What happens to
that angle as the stretching (transformation) axZttow doegon the LHS compare witlr on the RHS?

Note that

phys distance opposite side =1:1x2 tang = phys distance oppsid'&e: 1 dx?

phys distance adjacent side ﬂ phys distance adjant 3 adx
- (3)

tang=

azrg

Thus, we see that the angle between the two liseshanged by the transformation, and this
transformation isiot conformal.

Example of a conformal transfor mation: Stretched horizontally and vertically by the saamsount.

X2 X2
X2=2 X2:2
Transformation (2,1)
X2=1 (2,1) — x2=1 /
20 eo | a ol20)y1
xt=1 Xx'=2 x!=3 xt=1  x!=2
X rr;eter stic;k I X nf;eter sticlk I
(dsf = (dx)? + (d¥)* (d9? = &(dxy + ai(dxd?

Figure 2. Elastic Sheet and Its Coordinate Grid Stretched in Both x* and x? Directions
by Same Factor of a

Fig. 2 is similar to Fig. 1 except it is also stietd in the vertical direction by the same scalaugora
as in the horizontal direction. That is, the stnetg is isotropic, the same in all directions. Thas the
RHS of Fig. 2,

2 2 - 2 2
(09 =(a) +(a®)’  ofaemaer. (a?= al( & +( &°), @)
and
. . . 2 . .
tang= phys d!stance opposne S'Qe_:ﬁiz 5 tang = phys dl.stance opfm'slﬁze: 15_ ad¥ _5
phys distance adjacent side  2x! phys distance adjamEnt 3 adxt
(5)
a=g.

Hence, the isotropic transformation of Fig. 2 iafcomal.

Nomenclature and Metrics

Note we can re-write (1) and (4) in terms of thetrioay; (with the special case Cartesign= g; =
Diag (1, 1)).



3

(a9 =(ad) + ()" OPEHTRA. (o= g dedeq bxte] by %}{1 J[Zi]

, ) ) I 2 a2 | ax
(ds)” = 2(dd) +(ad)” oBHIMeh, (df= g dx d;([ dx a%{ JL)@] (6)

(ds)® = az((dxl)2 +(dx2)2) 0 PEHTMNN, (ds)® = g dx dk = &g dx dx:[ dx cf% %{1 J!Z;}

Example of Non-uniform Stretching

In the prior examples the stretching was uniforratTis, it did not vary from place to place on the
elastic sheeta was constant.

Now, consider instead a stretching that varied @tog to the coordinate location. That is, imadine
stretching state similar to the RHS of Fig. 1 (nhedbw of (6)), except that the amount of stretehies
with eitherxt, x4, or both, i.e.a is not constant, but, in general= a(x*, x°).

For illustrative purposes we will take the stretichin thex® direction (and not in the® direction), but
wherea s a function only of¢. That is,

(ds)2= az(d)g')2+( d)%)2 with & £ %) . ( 0)32=|: d dq{az(oxz) ?][j;i] @)

Gij
Fig. 3 shows this graphically.
X2 X?
X2=2 X2=2
Transformation
X2:l (2,1) — X2:l (ZA)/
0 o) 1 0
Xi=1 x=2 x!=3 Xi=1 x=2 x!=3
(d9? = (d¥)? + (d¥)? (d9?= az(xz)(dxl)2 + (dxd)?

Figure 3. Example of Non-Uniform Stretching (Dependent on x* Coordinate)
It should be obvious from Fig. 3 thatt ¢ so the transformation is not conformal.

4D: 3D of Spaceand 1D of Time
Consider now the Lorentzian (flat) spacetime witmkdwski coordinate line element relation (where
g,UV = ,7,UV = Dlag (11 _1’ _11 _1))1

(d9? = ()" ()"~ ( a®) - ( ad)” DFeHEIMen, ( )=y, d b ®)

A more general relation, for any 4D spacetime, Whdght be curved, is
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(ds) = g, ¥ d¥ . (9)

Cosmological Example
One solution to Einstein’s field equations by Frethn takes the form (with the units convention
chosen such that= 1, wheradX’ = cdt=dt),

(092 =(at? - 2(§{(0d) -( aR)’-( 0d?) omesiaseston. ( gé= 9 d b (10)

To get a feeling for (10), one can think in ternisao analogy with Fig. 2. The spatial 3D universe i
flat in (10) like the 2D elastic sheet in Fig. 2s Aime evolves, the expansion (stretching in Fig. 2
increases, and the 3D expansion is isotropic. 3§ewiis a conformal transformation of space caaily
throughout time.

The spatial coordinates in the universe can begioof as “fixed to the fabric of the universe” \ehi
the distance between coordinate points increases towe. By “fixed to the fabric of the universeew
mean given 3D coordinates’ ()¢, xX°) at the center of a galaxy are fixed to that aerifthe center of each
galaxy is like a point on the coordinate grid (thjpoint (2,1) in Fig. 2), and it keeps the samerdomte
grid numbers throughout the expansion. But the ighyslistance (the integral afs) between two points
(two galaxies) is the number of meter sticks we day out between the two galaxies to measure faow
apart they are. Thudsbetween two points grows over time, biutstays the same.

Thinking in terms of 4D, the expansion/stretching nhot isotropic, however, since no
expansion/stretching is going on with the time duatet. It has naa(t) scaling factor in front of it in (10).
Thus, if we were to pldtvsx* (t on the vertical axis), we would get a figure likg.3, witht instead of¢.
Thus, in 4D, it appears that the transformatiofil@j is not isotropic and not conformal.

Note thatt is defined as the time on a standard clock at@uyrdinate point in the universe. We
assume no gravitational effects bas most of the universe is empty space with nidgiggravitational
fields.t is like the usual time coordinate in a Lorentzpacetime that we ourselves are fixed to.

A Trick Used in Cosmological Analyses

It turns out that analysis of the universe’s expamss simplified if we can modify our coordinatad)
somewhat by using a different coordinate valuetifoe than the time on standard clocks at 3D coaitdin
grid points.

Note that, just adx" between grid lines in any of Figs. 1 to 3 does notthe RHS, equal one meter,
we can, whenever we like, simply take differentrdimate grids instead of the ones we have. For pl@m
on the LHS we can erase the original grid lines paiht in new ones at distances other than onermete
apart. We will then no longer have the identity mxats our metric, but something else; and our
coordinates differencesdX will be different, too. Butls between the same two physical points will be the
same. At the same point in time, the underlyingcepaill not change, and distances between pointhen
elastic sheet (points in the centers of galaxiey@main the same.

In cosmology, it can help analysis if we modify @mne coordinate grid (and leave the spatial gsd a
it is) so that it no longer measures in secondssbmething else. That is, we define a new timedioate
grid, whose numeric values we designateyi{which isnotto be confused witly,,), as

dt

a(t)

dn = R dt=a(t) dy. (11)

Note this changes (10) into

(@92= 2(3(( )~ ( A - (R ~( ). (12)
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Redefining our coordinate time variable gives 4faconformal line element relation. Points with 4D
coordinates A, x*, %, X°) will evolve conformally. Those with coordinates X, X2, x°) will not. One can
imagine (we won’t delve into it here) that this yides great advantages in analysis. After the aislg
carried out, one simply converts tipeparameter back to theparameter to get actual time as we would
measure it on standard clocks.

It should come as little surprise thrats designated as conformal time.

Note thata can be expressed as a function of /7. For analysis, it is best to choose the latted, @2)
becomes

(@92 = 2(n) ()2 - () ~( a®°~( 7). (13)
To find t at the end of analysis usimgwe simply use (see (11))
t=J'dt='|.a(/7)dr7. (14)

Note regar ding definition of conformal transfor mation

Our definition on page 1 of “conformal transfornoati was a bit abbreviated in order to keep things
simple. Implied in it, and treated explicitly in owimplified examples, we considered changes of
macroscopic lines under a transformation. To beipee a conformal transformation preserves int¢isec
angels between local (infinitesimal) line segmexttevery point.

Scale Invariant Transfor mations

Note the similarity between the first and third sowf (6), i.e., between the unstretched LHS and
isotropically stretched RHS of Fig. 2. The lattese is simply the former multiplied &7. In fact, the
gquantity

2
(d_sj =(d)* +(ad)” is the same for ang. (15)

a
Similarly, for 4D, as in (13)

(dsz =(dn)* - ()" = ()~ (ad)° s the same for any. (16)

In both (15) and (16), the entire space is scaedhb same scaling facterin all directions. This is a
scaling transformation.

It turns out, in classical (non-quantum) field theahat a scaling transformation, which resultsain
relation like (16), leaves the whole theory unclehgrhat is, the theory is invariant under a tramaation
of scale. It has no characteristic length scale viMdook at an example of this shortly.

Simple definition: If the governing equations ofji@en theory retain the same form under a scaling
transformation, that theory is a scale invariarbtly.

Scale invariance and conformal invariance typic@iith few exceptions) imply one another. Having
one far more often than not, means having the o{fiey to imagine an angle preserving transfornmatio
that is not a stretching in all directions by tlaeng factoir.)

Note that quantum field theories (QFTs) do not galhe have scale invariance. For example, the
coupling strength of the electromagnetic fietldncreases as one gets closer to a charge sowheasuan
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election. (This is in addition to the inverse sgukaw with distance effect. In QED, what was a sileed
constant in front of that law now changes with alise between charges.) QED depends on length scale.

Further, the field equations of QFT are generally scale invariant, unlike classical theory. An
example is shown below, after the following claakfeld theory example.
Example of classical field theory scaleinvariance

Maxwell's equations in the absence of charges oreais take the form of wave equations (17),
where, to make things a little clearer, we do rsstae units where the speed of ligg one.

0 0E_10°E 00B_10°B
o o & ot oxok ot
(17) is usually interpreted withbeing standard clock time in a Cartesian coordisgstenx. So, the

grid linesx in this case represent physical distances measnreteter sticks and represents time in
seconds.

(17)

Now consider the scaling transformation to the 4iinpd coordinate system of (18) wheteis a
constant andl andx’' are simply coordinate grid numbers and not diiredicators of seconds or meters.

t=At X =Ax" . (18)
Putting (18) into (17), we have
10 0E_110% 100B_1108 (19)
A2oxtax!t 2 A% at? A% o PaZat?

The A's cancel leaving the exact same form of the wapetons int’ andx’' as int andx. That is, we
have the exact same theory in terms of any 4D foam&d coordinates where the transformation was a
scaling transformation. This is a scale invariaueotry.

Example of a quantum field theory that is non-scale invariant

Consider the free scalar field equation of quantietd theory, i.e., the Klein-Gordon equation (waer
“scalar” here is unrelated to “scaling” as usedvah@nd again, we do not assume units whexed# are
one),

10% 0 dp  mic?
1079 _ 0 o0, - 0. 20
¢ at>  ox ox n (20)

Substitution of (18) into (20) yields

110 10 6¢7+m202

A%at2  AZaxiox! ok

p=0. (21)

This time theA’s do not drop out and the form of the equatiorsd¢aled (primed) coordinates is not the
same as for the unscaled equation (20). Thusigtimst a scale invariant theory.

Example of a free quantum field theory that is scale invariant

Suppose we had a massless scalar fielt) sd in (20). Then thel’s in (21) would cancel leaving the
same equation form as in (20). Thus, a masslesst@@ar quantum field theory is scale invariant.
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Example of interacting quantum field theory QED that is non-scaleinvariant

In quantum electrodynamics (QED), the governintgdfexjuations for the interaction between charged
fermion fields ¢ (like electron fields) and the electromagnetields of photonsA, are (where we
apologize for skipping back to units where 72 = 1, as those are the more familiar units one llyssaes
when working in QED)

. 0 0 0
H_ 2 —mly=-ey? and — A =- o 22
(uy 2 jw Yy o o IV (22)
Using scaling transformation (18), we find (22) bees
1. u 0 _ ——ayH 10 90 u__ H,
(/]Iy w7 m)z/l— ey" A,y  and V25X, 307 A =—aiyty (23)

The A's in (23) do not cancel, so QED is not scale ifam@r This corroborates, from a different angle,
what we said earlier, about QED not being a scalariant theory.
Another aspect of scaleinvariant theories

A field theory can be scale invariant if we scate just the coordinates, but the field also. Tisain
addition to (18), we also scale the field by theapzetera raised to some powel i.e., (wWhereprepresents
any field and the prime does not mean differerdrgti

@ =1%. (24)

In (18) and (19)d = 0. The massless case we examined in (21) ada ka0. In the more general
cased of (24) need not be zero to have a scale invatiedry.

In a scale invariant theory having a solution ®fileld equation ag(x*), A°@(1x*) is also a solution.

Conformal quantum field theories

In quantum field theory, the terms scale-invariteld theory and conformally invariant field theory
are typically used interchangeably, and generaligrred to as simply a conformal field theory (CFT)

Note that CFTs often have a value tbthat differs from the correspondimgof the classical field
theory. The additional contributions dappearing in CFTs are known as anomalous scalingresions.

Final note on general sense of scaleinvariance

We have focused on scale invariance for dimensodrspace and time. A theory can also be termed
scale invariant if it is unchanged with respectbtber variables such as energy. For energy, theryhe
would look the same at any energy level. This isegally not true of QFTs, as the coupling paranseter
the e/m, weak, and strong forces depend on enexgy. IThe theories of these interactions are netgn
scale invariant (They are not conformal field thesrn Given the inverse relation between
momentum/distance and energy/time, this should heotsurprising, since these theories are not scale
invariant with respect to spacetime.

Further, an object (rather than laws, i.e., thecgy) also be considered scale invariant if somiifea
of it does not change as length, or other variablsgaled.

2 See R.D. KlaubeStudent Friendly Quantum Field TheoB) ed. (Sandtrove 2013), egs. (7-18) and (7-19)186.
% The term “anomalous” typically refers to disparitibetween corresponding classical and quantuchtfiebries.



