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2            
          Wholeness Chart 1. Comparing Different Sign Conventions for the Minkowski Metrics 

 Common Relativity Text Convention Common QFT Text Convention 
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  Same as at left 

4D position 

vector 

x = (ct, x, y, z) = (x, x1, x2, x3)  

x = (‒ct, x, y, z)= (x, x1, x2, x3) = (‒x, x1, x2, x3) 

x = (ct, x, y, z) = (x, x1, x2, x3)  

x = (ct, ‒x, ‒y, ‒z)= (x, x1, x2, x3) = (x, ‒x1, ‒x2, ‒
x3) 

         Covariant form has opposite sign of at left. 

Metric                      

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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0 0 0 1


 

   
  

 negative of metric at left 

Position vector 

length squared = 

interval squared 
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ft

opposite sign from leftcdt dx dy dz   

Proper time  
on an object 

 

            

           

2 2 22 2 2

2 2 2 22 2 0 1 2 3

0 1 2 3
0 1 2 3

  for 0    (correct sign)

Other notation:

cd ds cdt dx dy dz

dx dy dz , d d

cd ds dx dx dx dx

dx dx dx dx dx dx dx dx
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  for 0    (correct sign)

Other notation:
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Note: String theory texts commonly use the relativity form of the metric instead of the QFT form. 

  

4-vector 
w = (w, w1, w2, w3)  

w = (w, w1, w2, w3) = (‒w, w1, w2, w3)  

w = (w, w1, w2, w3)  

w = (w, w1, w2, w3) = (w, ‒w1, ‒w2, ‒w3) 

     Covariant form has opposite sign of at left. 

Magnitude of a        

4-vector  
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Same as at left for contravariant form. 

Covariant form has opposite sign of at left. 

4-velocity 

squared 
(u)2 = uu = ‒ c2    Massive particles. (u)2 = uu = c2    (Just as (ds)2 had opposite sign) 

4-momentum 

↓ Valid for all particles     Massive particles p= mu.  

0

11 2

22 2

33
1

E / cp

pp mc
p E

pp v

p cp



   
   
        
              

 

Same as at left for contravariant form. 

Covariant form has opposite sign of at left. 

4-momentum 

squared 

(p)2 = pp = ‒ m2c2  Massive and massless particles. 

2
2 2

2

i iE
p p p p m c

c


       

(p)2 = pp = m2c2    Massive and massless particles. 

2
2 2

2

i iE
p p p p m c

c


      

Invariance 

Length of 4-vector invariant. (Same for all inertial 

observers.) Laws of nature have same form for all 

observers. 

Same invariance as at left. 

Example of 

invariant law 
 

du
F m

d





      covariant form  

du
F m

d


 
   

Same as at left. 

   
du

F m
d





  covariant form  

du
F m

d


 
   

Spacetime Diagrams 

Interval   

 Inside light cone 
Timelike  ct > x 

 (s)2 negative 

Timelike  ct > x (same as at left) 

(s)2 positive 

Outside  
Spacelike  ct < x 

(s)2 positive 

Spacelike  ct < x  (same as at left) 

(s)2 negative 

On surface 
Lightlike  ct = x 

 (s)2 = 0 

Lightlike  ct = x  (same as at left) 

               (s)2 = 0   (same as at left) 
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Explicit Time Dependence    
Consider the Hamiltonian in non-relativistic theory. 

          2

2
1 e.g., or  i i i i i i

i

mM mM
H x ,x m x V x V x G G V x mgx

r x
      ɺ ɺ   (1) 

There is no time dependence, explicitly in H, only dependence on xi and its time derivative. Yet, as a particle moves 

in the potential field, the potential and kinetic energy of the particle changes in time. A comet moving towards the 

sun sees its potential energy become less (more negative) while its kinetic energy increase (it goes faster). 

For example, the potential changes as the particle (comet) moves even though there is not explicit time 

dependence in V. This is because x, the solution to the problem (the particle motion as a function of time), is a 

function of time. 

    where the problem solution  i i iV x x x t . (2) 

V is an implicit (indirect) function of t, but not an explicit function of t. 

Now consider a planet in orbit around a star. Normally the potential V it feels is constant in time, since it is at 
a fixed radius and the star’s gravity field is not changing. But suppose the star goes nova and blows off mass over 

time. That changes the potential V at the planet’s orbital distance. (We imagine the planet stays in the same place 

during the nova, which in reality does not happen.) 

But a solar physicist could model the change in potential of the star as it loses mass, as a function of time, i.e., 

find a mathematical form for M(t). Then, we would have 

  iV x ,t , where V is an explicit function of time. (3) 

What does this mean for derivatives? Well, 

 
   

0 0
i iV x V x ,t

t t

 
 

 
. (4) 

How about total derivative of V with respect to time, which includes implicit plus explicit changes in V with 

time? 

 
             

0 0

i i i i i i i i i i

i i i

dV x V x dx V x V x dx dV x ,t V x ,t dx V x ,t

dt dt t dt dt dt tx x x
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. (5) 

Note that quantities like H are often expressed as functions of momentum and position, rather than velocity 

and position. Consider a Hamiltonian, for example, with time dependent potential, 

      2

2
1i i i iH p ,x ,t m p V x ,t  . (6) 

Then the total derivative would be 

 
 

�
0in 

this case

i i i i

i i

dH p ,x ,t H dp H dx H

dt dt dt tp x

  
  

 


 . (7) 

We have looked primarily at the simplest case of non-relativistic classical particle theory, but the same sort of 

total derivative relation of (7) is true for all parts of physics, including QFT. 
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Unitary Operators A Brief Look     
Consider the complex number 

 ie cos i sin    ,            (8) 

 
 
which represents a unit length vector in 2D complex space at an angle  from the horizontal in the ccw direction. Its 

length squared, like any complex number, equals the number multiplied by its complex conjugate. 

  †2
1

i i i il e e e e      . (9) 

Now multiply (8) another complex number ei.     

 
 ii ie e e
   

 , (10)       
which is a unit length vector at an angle of  + . ei has rotated our original vector by an angle . We can think of ei as 

a rotation operator in complex space. Whatever the quantity multiplied by i in the exponent is the amount the original 

vector (complex number) is rotated by. The length of the original vector does not change. 

For a complex vector of length A, 

 iAe  , (11) 

 
 ii ie Ae Ae
   

   (12) 

the vector is rotated  degrees without changing its length A. To reverse the operation of (12), do the following. 

 i i i ie e Ae Ae     . (13) 

e‒i is the inverse operator of ei. It is also its complex conjugate. That is the definition of a unitary operator. 

 
1 † 1 † 1

i iU e U e U U U U U       . (14) 
  

In general, a unitary operator U 

1. has an inverse equal to its complex conjugate transpose, U†U = 1  (U‒1 = U†), 

2. which implies it leaves the length of the vector it operates on unchanged. 

Unitary operators commonly take the form of e with an imaginary exponent. They are used all of the time in quantum 

theories, since, when operating on a state vector (wave function, ket, ), they leave the length of the vector unchanged. 

For example, in NRQM, 

 
�

† † † † †

† † †

probability = 1  operates to the left here

1

1

dV U U U

U U dV dV

     

   

   

  



 

  (15) 

The “length” of the “vector”  is the square root of the probability. For the old vector  or the transformed vector ˊ, 

the length is the same. After the transformation, just as before, it equals one. 

It is common in quantum theories to transform states to different forms for various reasons, including to obtain a 

form that is easier to analyze. When this is done, the total probability remains unchanged, which is essential, as any total 

probability other than one is a problem. 

Any transformation with a unitary operator, such as ei in (10) for example, is called a unitary transformation. It 

obeys what is called unitarity. 

In addition to simple numbers, the exponent can include other operators (like H, for example), such as, where O 

stand for “operator”, 

 often written as  (but  doesn't act on )itH iHte e H t O . (16) 

Now let’s look at the solution to Problem 12 in Solutions to Problems for Student Friendly Quantum Field Theory, 
Vol. 1. 


x

i y
e)
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Time Derivatives in Quantum Theory  

1 An Example of the Equation of Motion in the Schrödinger Picture 

Let’s look at the time derivative of the expectation value of the x-direction 3-momentum in NRQM in the S.P, 

where the s super and subscripts indicate we are working in the S.P. 

          

�

 1 1
1 1 1

0

S
S S S

S SS S

dp p
i p ,H p p t

dt t
   



      
              (2-32) [26] SFQFT 

Consider the operator form of the momentum and the Hamiltonian in natural units where ℏ=1, 

      
2 2

1 1 1 1 2 1

1 1

2 2 2

S p
p i H V x V x V x

m m mx x x x

   
        

   
.  

 (17) 

Insert (17) into (2-32). 
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dt x x

V x
V x V x
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  (19) 

 
 

1

1

dp V x

dt x





  (20) 

We need to raise the index on ̅p1 to get what we would measure with Cartesian coordinates. That entails a 

change in sign, so 

 
   1 1

1 1

d p V x d p V x

dt dtx x

  
   

 
  (21) 

The expectation value of the total time derivative of the momentum equals the expectation value of the force 

(the negative of the gradient of the potential energy). This is Newton’s second law, for what we expect to measure. 
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Bottom line: The relation (2-32) above, where momentum does not depend explicitly on time, i.e., 

 1
1
S

S S

dp
i p ,H

dt
      , (22) 

gives us the law of nature for momentum, i.e., the equation of motion for a particle, of F = ma. The commutator 

with the Hamiltonian gave us this result for the total time derivative of the momentum. 

The General Law for Any Operator 

See Wholeness Chart 2-4 [28]. 

 

0 usually (and always for us in this course)

S
S

S S

S S

d
i ,H

dt t

d

dt t

 
        


 


O O
O

O O

  (23) 

2 Same Example with No Potential Energy 

Suppose V = 0 in the above example. Then from (21) and what we know from before, momentum does not 

change in time (its total derivative is zero). That makes sense. If there is no potential, there is no force, so the 

momentum is unchanged. It is conserved. 

Now look at (2-32) again, or equivalently (23) where the operator is momentum in the x1 direction. We have 

no V(x) term in H, just the momentum term of (17), which has the partial derivatives with respect to x1. So, all the 

terms in the commutator of (23) have derivatives to some order with respect to x1. But such derivatives always 

commute with one another. See the middle of (18).  

In that case the commutator is zero. That means the time derivative of the expectation value of the momentum 

on the LH of (23) is zero. Momentum is conserved is the commutator is zero. And it is when V(x) = 0, which is 

what we know occurs for momentum when there is no potential (no force). Viola! 

We can generalize. 

Bottom line: If an operator commutes with the Hamiltonian, it is conserved. (At least its value as measured in the 

classical world is. That is, its expectation value is conserved.) 

3 How About Another Operator Like the Hamiltonian. 

Let’s look at (23) for the Hamiltonian, where we assume (as we will from now on) that there is no explicit time 

dependence, i.e., H ≠ H(t), so the last term in (23) is zero. 

      0S SS S

dH
i H ,H i HH HH

dt
         . (24) 

The Hamiltonian (energy we would measure, at least) is conserved. Duh … We knew this. But see how the 

general relation (23) gives us this result. Anything commutes with itself, and that includes the Hamiltonian. And 

from (23) that means the Hamiltonian does not change in time. It is conserved. 

4 The Schrödinger Picture 

As noted, all that we have done here is NRQM and is a standard part of advanced material in such courses. 

This is all in the Schrödinger picture, as NRQM is invariably taught. 

Things change a bit when we go to the Heisenberg picture, but you need to understand the S.P. and its 

expectation values and time derivatives, before going to the H.P. 

 

 


