Scalar Quantum Fields in General Relativity

Robert D. Klauber, April 13, 2016 (copyright 2016 ©) www.quantumfieldtheory.info

Ref: Mukhanov, V.F., and Winitzki, S., Introduction to Quantum Effects in Gravity, Cambridge (2007), Chap. 5

	Minimally Coupled Non-Minimally Coupled Example		led Example	Comment			
	Real Scalar	<u>Gravity</u>	Real Scalar	<u>Gravity</u>			
Field	φ	$g_{\mu \nu}$	φ	<i>g</i> μν			
Back- ground	Physical length (more coordinate length) Physical 4D volum $dV = dx_1 dx_2 dx_3 dx_0$ $= \sqrt{-g_{11}} dx_1$	g_{11} is negative; phys value has "~" underneath g is Det $g_{\mu\nu}$; dV is coord volume					
Procedure	In standard QFT 1) $\eta_{\mu\nu} \rightarrow g_{\mu\nu}$ 2) ", " \rightarrow "; " 3) $d^4x \rightarrow \sqrt{-g}d^4x$	Choose \mathcal{L}_{grav} as in classical GR	In this example, as in 2^{nd} column, but add extra term.	In this example, \mathcal{L}_{grav} of 3^{rd} column.	In QFT we change to natural units, where $c=\hbar=1$		
Action S	$S_{m} = \int \underbrace{\mathcal{L}_{m}}_{\text{phys}} \underbrace{\sqrt{-g} \ d^{4}x}_{\text{phys } dV}$ $= \int \underbrace{\mathcal{L}_{m}}_{\text{coord coord}} \underbrace{d^{4}x}_{\text{coord coord}}$	$S_{grav} = \int \underbrace{\mathcal{L}_{grav}}_{\text{phys}} \underbrace{\sqrt{-g} \ d^4 x}_{\text{phys} \ dV}$ $= \int \mathcal{L}_{grav} d^4 x$	As in 2 nd column	As in 3 rd column	$\sqrt{-g}$ of 3) above included in \mathcal{L}_m and \mathcal{L}_{grav}		
Lagrangian $\mathcal L$	$\mathcal{L}_{m} = \sqrt{-g} \begin{pmatrix} \frac{1}{2} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} \\ -V(\phi) \end{pmatrix}$	$\mathcal{L}_{grav} = -\frac{\sqrt{-g}}{8\pi G} (R + 2\Lambda)$	$\mathcal{L}_{m} = \sqrt{-g} \begin{pmatrix} \frac{1}{2} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} \\ -V(\phi) - \frac{\xi}{2} R \phi^{2} \end{pmatrix}$	In this example, \mathcal{L}_{grav} of 3^{rd} column	Other non- min \mathcal{L}_m , \mathcal{L}_{grav} could have other terms in $R_{\alpha\beta\gamma\delta}$		
Free field V	$V\left(\phi\right) = \frac{1}{2}m^2\phi^2$		As in 2 nd column		"Free", but ϕ , grav coupled		
Total \mathcal{L}	$\mathcal{L} = \mathcal{L}_{m} + \mathcal{L}_{grav}$	$\mathcal{L} = \mathcal{L}_{m} + \mathcal{L}_{grav}$	As in 2 nd column	As in 3 rd column			
Variation of S	From $\delta S = 0$, where \mathcal{L}_{grav} has terms in $g_{\alpha\beta,\mu\nu}$ due to R , one gets the Euler-Lagrange eqs below. Gravity eq has an extra term beyond the more familiar Euler-Lagrange eq due to 2^{nd} derivative terms in \mathcal{L}_{grav} . Note the math derivation is based on the integrand used with d^4x , so it uses $\mathcal{L} = \mathcal{L}\sqrt{-g}$.						
Euler- Lagrange equation	$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \phi_{,\mu}} - \frac{\partial \mathcal{L}}{\partial \phi} = 0$	$-\partial_{\mu}\partial_{\nu}\frac{\partial \mathcal{L}}{\partial g_{\alpha\beta},_{\mu\nu}}$ $+\partial_{\mu}\frac{\partial \mathcal{L}}{\partial g_{\alpha\beta},_{\mu}}-\frac{\partial \mathcal{L}}{\partial g_{\alpha\beta}}=0$	As in 2 nd column	As in 3 rd column	From $\delta S = 0$		
Note:	Derivation to get gravity result below is laborious. See Mukhanov & Minitzki pgs. 229-232.						

	$\left(\sqrt{-g}g^{\alpha\beta}\phi_{,\beta}\right)_{,\alpha}$	$G_{\alpha\beta} + g_{\alpha\beta}\Lambda$	$\left(\sqrt{-g}g^{\alpha\beta}\phi_{,\beta}\right)_{,\alpha}$	As in 3 rd	From Euler-					
Equation of motion	$+\sqrt{-g}\frac{\partial V}{\partial \phi} = 0$	$= R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} R + g_{\alpha\beta} \Lambda$ $= 8\pi G T_{\alpha\beta}$	$\left(\sqrt{-g}g^{\alpha\beta}\phi_{,\beta}\right)_{,\alpha} + \sqrt{-g}\left(\frac{\partial V}{\partial \phi} + \xi R\phi\right) = 0$	column w different $T_{\alpha\beta}$	Lagrange equation					
Stress- energy part of above		$T_{\alpha\beta} = \frac{2}{\sqrt{-g}} \frac{\partial \mathcal{L}_m}{\partial g^{\alpha\beta}} = \phi_{\alpha} \phi_{\beta} - g_{\alpha\beta} \left(\frac{1}{2} g^{\mu\nu} \phi_{\mu} \phi_{\nu} - V(\phi) \right)$		$T_{\alpha\beta} = \frac{2}{\sqrt{-g}} \times$ $\begin{pmatrix} \partial_{\mu} \partial_{\nu} \frac{\partial \mathcal{L}_{m}}{\partial g_{\alpha\beta},_{\mu\nu}} \\ -\partial_{\mu} \frac{\partial \mathcal{L}_{m}}{\partial g^{\alpha\beta},_{\mu}} \\ + \frac{\partial \mathcal{L}_{m}}{\partial g^{\alpha\beta}} \end{pmatrix}$	$\leftarrow \mathcal{L}_m$ in 5 th column from "Lagrangian \mathcal{L} " row above, 4 th column					
Covariant form of eq of motion	$\phi_{;\alpha}^{;\alpha} + \frac{\partial V}{\partial \phi} = 0$	$G_{\alpha\beta} + g_{\alpha\beta}\Lambda$ $= R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta}R + g_{\alpha\beta}\Lambda$ $= 8\pi G T_{\alpha\beta}$	$\phi_{;\alpha}^{;\alpha} + \frac{\partial V}{\partial \phi} + \xi R \phi = 0$	As in 3^{rd} column w different $T_{\alpha\beta}$	Gravity field eq of motion above already covariant					
Above are	GR version of Klein-Gordon eq	Einstein's field equation								
Procedure	E/m Interactions with (Complex) Scalar Field Initially as above with free field, but now need complex scalar field, as real scalar field is charge:									
Action S	$S_m = \int \mathcal{L}_m d^4 x$	All gravity as above in free scalar field								
Free field Lagran- gian $\mathcal L$	$\mathcal{L}_{m} = \sqrt{-g} \times \left(\frac{1}{2} g^{\mu\nu} \phi^{*},_{\mu} \phi,_{\nu} \right) $ $\left(-\frac{1}{2} m^{2} \phi^{*} \phi \right)$				For free field $V(\phi^*, \phi) = \frac{1}{2}m^2\phi^*\phi$					
Interaction \mathcal{L}_m	with $\phi, \mu \to D_{\mu} \phi$ $\mathcal{L}_{m} = \sqrt{-g} \times \left(\frac{1}{2} g^{\mu\nu} \left(D_{\mu} \phi \right)^{*} D_{\nu} \phi \right) - \frac{1}{2} m^{2} \phi^{*} \phi$				$D_{\mu} = \partial_{\mu} + iA_{\mu}$					
Re-write interact \mathcal{L}_m	$\mathcal{L}_{m} = \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \phi^{*},_{\mu} \phi,_{\nu} - \frac{1}{2} m^{2} \phi^{*} \phi - \frac{1}{2} g^{\alpha\beta} i A_{\alpha} \left(\phi^{*} \phi,_{\beta} - \phi \phi,_{\beta}^{*} \right) + \frac{1}{2} g^{\alpha\beta} A_{\alpha} A_{\beta} \phi^{*} \phi \right)$									
Interaction $\mathcal{L}_{e/m}$	$F_{\mu\nu} = A_{\nu;\mu} - A_{\mu;\nu} = A_{\nu,\mu} - A_{\mu,\nu}$ Standard QFT $\mathcal{L}_{e/m} = -\frac{1}{16\pi} \eta^{\alpha\beta} \eta^{\mu\nu} F_{\alpha\mu} F_{\beta\nu} \rightarrow -\frac{1}{16\pi} g^{\alpha\beta} g^{\mu\nu} F_{\alpha\mu} F_{\beta\nu}$									
Total \mathcal{L}	$\mathcal{L}_{=}\mathcal{L}_{m}+\mathcal{L}_{grav}+\mathcal{L}_{e/m}$									
Equations of Motion	Use above \mathcal{L} in Euler-Lagrange eq for 3 fields, ϕ , $g_{\mu\nu}$, and A_{μ} . Get 3 coupled eqs.									