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Chapter 5. Vectors: Spin 1 Fields

QED/FIELD THEORY OVERVIEW: PART 1

Wholeness Chart 5-4. From Field Equations to Propagators and Observables
Heisenberg Picture, Free Fields

Spin 0 Spin % Spin 1
2
Classical o [01 = £ a"4, -L(0,4,) (0" 4*
Lagrangian 4)0 _ K( 0,00%¢ - 1 p ¢) Nbone. l\gacroscoplc spinor fields not 2 - u 2( veau )( )
density, free observed. Mo
ty, for photons

2" quantization,
Postulate #1

Bosons: Quantum field £
Spinors: Dirac eq from RQM

(or equivalently, H) same as classical, fields are complex, and K =1.
with states — fields. Deduce £ from Dirac eq; H from Legendre transf.

QFT Lagrangian

0 _ YAy 27 1/2 _ —(.n _a :
density, free £, (50,415 - ¢) L' =y(io-my  d=y“0, As above for classical.
L 1 into the Euler-Lagrange equation yields |
o 2 _ .
Free field (aaa +H )¢ =0 (zyaﬁa —-m)y =0 (6a8a + ,uz)A'u =0 photon =0
equations (aaaa + #2 );ﬁ =0 (0w y” +my)=0 Y= ‘//TYO AR = 4H for chargeless (photon)
0 0
Conjugate 0 04 i or 04 | s+~ I
momenta 7o = o¢ =0T = o4t =g |z =iy =0 =~y
0_ 0, 01t 0
Hamiltonian My =md+70 ¢~ 4 2 V2 V2 2 27l Z gLk _ g
density (44T 1. 2% 0o — T ¥V—4 0 =7u e
=\9¢ +Vo Vo+pud'e
Free field p =¢" + ¢ v=y +y
ree fie A" = A% + A" (photon)
solutions ¢T - ¢T+ i ¢T* V= +y
1 —1, = m 7ipx
. #(x) =Z (a(k)e ikx v Z VEp (Cr(p)“r(p)e
Discrete k 2V rp AH —
(Plane waves, . 1 " 7= Z m_(4 (p)v.(p) oI Py /—2Vwk r r
constrained to ¢ (x)= Z (b(k)e s VE, .
volume V) k 2V oy . +g/‘(k)aT(k)e’ )
ik +cl )7, (P)e™) T
+a' (k)e™) T
S O [ LIS
dk il 4 (2”)3 E »(P)U, (P A# _
o) =| ﬁ(a(k)e r v
Continuous 2(27) o +d] )y, (™) |3 [ KKy, e
eigenstates ¥ iloe 3 r r
+b"(k)e™) Z _[d3p _ r 2(27) o
(Plane waves, = m_|—==(d, (p)v,(p)e ** _
novolume  |¢1(0) = [—A——pe | FNC BT +gf ()a (k)e™)
constraint) A 2(27r)3 Wy +ot ) (p)e’px) r=0,1,2,3 (4 polarization vectors)
+ . r r
+a' (k)e"™)

spinor indices on uy, vy, and

suppressed. »=1,2.
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2" quantization
Postulate #2

Bosons: [gfﬁr (x.t).7, (y,t)} = [gfﬁrﬂs — 7zs¢r} =i6"(6(x—y), ¢"=any field, other commutators = 0.

Spinors: Coefficient anti-commutation relations parallel coefficient commutation relations for bosons.

Bosons: using conjugate momenta expressions in 1 yields |

E(?rllllarllllltlitralllt:rs : . : ati [Ay (.0, 4" (Y, t)]
(intermediate [ ¢(x,t), ¢T (y,t)} = zé‘(x - y) Not needed for spinor derivation. >
step only) =-ig" o(x-y)
Bosons: Using free field solutions in 1 with 3D Dirac delta function (e.g., for discrete solutions,
o (x - y) = % 5 (eiik”'(xfy) 1 oK (xy) ) ), and matching terms, yields the coefficient commutators | .
n=—oo
Coefficient 1/ 4(k).a" (i) | = [ b(k).6" (k)] || ().l ()], = (0). (0)], | [a(kast k)]
discrete = Ok’ = Sr50pp’ =000 Go=—1 123 =1
continuous =5(k-k') =6,56(p-p') =¢,6,56(k-Kk')
Other coeffs All other commutators = 0 All other anti-commutators = 0 All other commutators = 0
The Hamiltonian Operator
Substituting the free field solutions into the free Hamiltonian density Ho, integrating Ho = JHod3x, and
using the coefficient commutators 1 in the result, yields |. Acting on states with Ho yields number operators.
Ho > o (No(k)+d+ Ny(k)+ 1) | Y E (N, (p)=5+N, (p)~3) kak(Nr(k)%)
Kk p.r K
Number N, (k)=a' (k)a(k) Nr(p):c; (p)e, () N, (k)=¢, a,t (K)a, (k)
operiors | ()= ()5 (k) 5(0)=4,' (9)4, () e
Creation and Destruction Operators
Evaluating Ny (k) a(k) |[nx) (similar for other particle types) with 1 and the coefficient commutators yields |
creation al (k). b (k) ch (p). err (p) arJr (k)
destruction a(k), b(k) ¢, (p). d,(p) a, (k)

Normaliz factors

lowering a(k)|n)= \/a [ =1 ¢ (p) V/V’P> =10) as with scalars
raising al (k) |ng) =~ +1]n, +1) cj (p) |0) = l//,,,p> as with scalars
tot particle num N(¢):Z(Na (k)_Nb(k)) N(W):Z(NV (p)—ﬁr(p)) N(Ay):ZNr(k)
k p.r k,r
tot particle num:
lowering p=¢" + ¢ w=y +y” A**
raising ¢ =g 1o v=y+y A"~
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Four Currents and Probability

fourrZ?rrre)nts JH =i ( AHTAY — 4 AaT)
operators #=(pi)=-i(#"4s-9T) | =(p0)=Wr"v ;
" = 0 for photons (Aa = Aa)
Jou= 0
Emphasis in field theory is usually on the number of particles (N(Kk) operator), and particle probability
densities are rarely used. For completeness, however, and to make the connection with quantum mechanics,
they are included below. (Antiparticles would have negative values of those below!)
A(x1)-
Single particle N ,
gle P <¢(x,t)|]0 (x,t)|¢(x,t)>
probability As at left, but with Dirac j° ab = 0 for chargeless particl
density (not Note integration over x', not x s at felt, but with Lirac /- above. O ChATECICss particies.
operator) For type a plane wave, p =%
Charge, not Scalar type b particle — negative p. Photons — p= 0.
probability Led to conclusion that /° is really proportional to charge probability density.
Observables
Observable operators like total energy, three momentum, and charge are found by integrating corresponding
density operators over all 3-space. (For spin Y4, electrons assumed below with g = - ¢)
H By=Y o (N (k) + N, (k) | By =25 (N, (p)+ N, (p) By =2 AN, (K)
k p.r k,r
P; =3- P=Kk(N,(k)+ N, (k)) P=3"p(N,(p)+N,(p)) P=>kN, (k)
momentum k p.r k,r
s qj'u = C](P,j) q(j’u —(constant)) — a#S’u =0 0 for photons
Isod3x: Is0d3x=
" 0 for photons
¢ a2 (Na (k) =N, (k) —e2 (N, (p)- N, (p)) P
k p.r
Spi llo; O .
pin operator =3, =— i=123
for RQM states | N/A 200 o magnitude = 1 for photons,
and QFT fields o; =2D Pauli matrices
Helicity operator T.p
for RQM states | N/A ﬁ helicity eigenstates
and QFT fields P
Spin operator ts wd? . _
for QFT states N/A Jl// va x magnitude = 1 for photons,
Helicity operator ] Zep 43 C
for QFT states N/A I 4 |p| ya x helicity eigenstates
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Bosons, Fermions, and Commutators

Operations on states with creation, destruction, and number operators above yield the properties below.

Properties of
states:

nq (k) =0,1,2,...,00
So, spin 0 states bosonic.

nr(p) = 0,1 only

So, spin Y states fermionic.

nr(k)=0,1,2,...,00
So, spin 1 states bosonic.

Bosons can only
employ
commutators

Fermions can

If anti-commutators used
instead of commutators with
Klein-Gordon equation
solutions, then observable (not
counting vacuum energy)
Hamiltonian operator would
have form

Ho®=0 and Ho’ |gK) =0 ,ie.,

Commutators lead to 2 or more
identical particle states co-existing in
same multiparticle state. Anti-
commutators lead to only one given
single particle state per multi-particle
state.

Therefore, commutators cannot be
used with spin 2 fermions.

Same as spin 0.

only employ o
anti- all scalar particles would have | This is further proof that we need
commutators Zero energy. commutators with bosons.
Hence, we cannot use
anticommutators with spin 0
bosons.
The Feynman Propagator
Creation and destruction of free particles (& antiparticles) and their propagation visualized below.
time time time time time time
Y Y y y y y
Feynman ) ,' AN / i Y
: k V4 \\\ / [ p S
diagrams \ y N S z, S
\\\\ /// [.z <:)
X X - !
X X X X
b
a) ty<tx ) Ex<ty a) ty<ty b) tx<t a) <ty by tx<ty
Sten 1 If <ty T{q)(x)qfr (y)} = gi)(x)qfr (v).ie., the ¢ (») operates first, and should be placed on the right.
ep
Time ordered  |Iftx<ty, T {;iﬁ(x)qfr ( y)} =g (¥)#(x), ie, the ¢ (x) operates first, and should be placed on the right.
operator T'
Note that ¢ (x) commutes with ;151r ( y) forx # y. [Fermion fields anti-commute. ]
Transition <0|T{¢(x)¢’f (y)}|0>:iAF <0|T{V/a (x)v7ﬂ (y)}|0>:iSFaﬂ <0|T{A# (x)AV (y)}|0>:iDF/’V
amplitude ] The above vacuum expectation values (transition amplitudes) represent both
(double density . . .
) 1) creation of a particle at y, destruction at x, and . )
inx and y) . . . . } transition amplitude = Feynman propagator
2) creation of an antiparticle at x, destruction at y
Step 2

Propagator in
terms of two
commutators

By adding a term equal to zero to the Feynman propagator above, it can be expressed as
vacuum expectation values (VEVs ) of two commutators (anti-commutators for fermions)

iAp (x - y) =
(0l #" (x)." () ]| 0) 1y <
(0|[¢“(y),¢’(x)}|0> Ix <ty

iSFaﬂ (x—y) =
(Ol v (x) 75 ()] 10) 1 <t

_<0|[‘/7+ (y),t//;(x)]+|0> Ix <ty

iDp*" (x—y) =
(44 ()4 ()] 1y <t

(ol 47 ()4 (x)]|0) 1, <ty
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Step 3

As 3-momentum
integrals

With the coefficient commutation relations, the above two commutators/anti-commutators
(for each spin type) can be expressed as two integrals over 3-momentum space

Definition of
symbols for

[V/a(x)"/’ﬂ(y)] =iSap (x=y) | 4# (), 4" (v) |2 D" (x- )
(67 ()0 () ]=in~ (x=») | =[5 () vz ()

] =iS;ﬂ(x—y) |:AV+(y),A'u7(x)}=iD'”V*(x_y)

commutators .\
+lp(x v)
$zk(x—y) 3
1
i =—— [ d’k o) I TP jpave _guvipt
2(27) N
+ ot v+ . A= o= PUV— : : +_ o
A", ST, D*V™ represent particles; A, S, D represent anti-particles. Symbols §™ =8 "op
Although fields such as ¢ are operators, because of their coefficient commutation relations, each integral
above is a number, not an operator. The expectation value of a number X is simply the same number X.
(0[X]0)=X(0|0)=X. So, the Feynman propagator will also be simply a number (no brackets needed.)
Step 4 . . .. . .
A Contour integral theory (integration in the complex plane) permits the above two integrals
X i confour (for each spin type) over real 3-momentum space to be expressed as contour integrals.
integrals
S i: . /IVi —
it = : iD .
X— v —ik(x—
- e—ik(x—y) A I ﬁ+m) p(x=) d4p Figh e ! (x=») e
d'k 4 m? 4Jct 2 2
(207 K =i o (o) Ci
photon=0
Step 5 Taking certain limits with contour integrals in the complex plane yields a single form for the
As one integral Feynman propagator that works for any time ordering and will prove more convenient.
Ap(x—y)= Spap (x= )= D" (x=y)=
in physical —zk(x ) —ip(x—y) —ik(x—y
space I d4k I /ﬂ + m) d4p _g/lV e ( ) d4k
(27 4 K-y +ie 2,;)4 —m* +ig (27r)4 K> +ie
in momentum _ 1 p+m -gh
Ap (k = 2. SFaﬂ(p) 2 2. D#V (k 2g
space k™ —u” +ie p-—m"+ig k* +ig




