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Remaining terms
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(All time independent terms in summation with +%  mupt@ RHY.

All terms with & +y) in the exponents of the LHS must equal zerohaHS only has terms ix (
—v). Fhe-enly-way t The LHS of (3-47) matches the Rl each coefficient commutator in the
first row equals one. Subtleties in justifying tlzet the only way to interpret (3-47) are shown in
Appendix E.

The commutation relations fakak'T andbkbk'Jr in (3-45) to (3-47) are the same as (3-41). QED.

If you are ambitious, have extra time, and/or syriphve to prove everything to yourself, do
Prob. 7 to derive the continuous solution commusatd (3-41).

End of coefficient commutation relations proof

Appendix E: Justifying (3-47) Conclusions

Note that (3-47) is one term in a sum okewhere for each term ik there is an additional one
in —k. Writing out two such terms leads to
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At this point, we could adopt a reasonable postutse doefficients in (2) not having the same 3-
momentum have zero commutators, and those that dah@game 3-momentum all have the same
commutator values. That would give us (3-41) and teawlir present day (good) theory of QFT.

If we were to be thorlugh however, and repeat pgtecess of (3-42) to (3-47) for other

()

commutators, such asp,¢' |=0, we would find other relations between coefficientnmutators
that would lead inevitably to (3-41). You can takg word for this, work it out yourself (which is
tedious), or see my solution on the book websitteuChap. 3 (URL on pg. xvi, opposite pg. 1).

End of change to book. Material below found on basbsite.

Working It Out in Detail
Instead of (3-42), use one of the other relation@i40), wheregd =g, @ =¢',
(04 ]=0. 3)

So instead of (3-43), we have
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Instead of (3-45), we get
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which gives us the same coefficient commutatorwits (3-45). Note that had we included thé& —
part of the summation in (5) we would not have texdhs from that with exponents matching any
terms in (5) shown above. (For example the firgimten (5) with k - — k, becomes

(ayhe-hea)e eacrae)e fhoxrksy) e exponent of which matches none of the tem(§))

Bottom line: We don’t have to worry about thek—part of the summation in drawing our
conclusions (see underbrackets) in (5)..

Instead of (3-46), we get
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which gives us the same results as (3-46). Similasoning as used to ignore theterms in the
summation in (5) apply to (6).

Instead of (3-47), we get (including thé-as we did in (1) above)
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Or re-written
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Using (9) in (2), we find
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and thus with (5), (6), and (10), we get (3-41).
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