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1 The Correlation Function in Quantum Field Theory 

1.1 What It Is Mathematically 

In Mukhanov and Winitzki, pg. 51 unnumbered equation, and also, pg. 78, (6.48), the expectation value for 

vacuum fluctuations for a real scalar field φ is defined as a correlation function εφ, in the vacuum, between two 
different spatial locations x and y at the same time t. 

 ( ) ( ) ( )0 0,t ,tφε φ φ− =x y x y . (1) 

Note that, if φ has local maxima at x and y, εφ will have a higher value there than if it has a local maximum at 
x and close to a null value at y. In the first case, the value of φ at x is highly correlated with that at y, whereas in the 

second case, it is not. So, in general, εφ (x – y) represents the correlation between different locations x and y of the 
field φ. 

If φ represents a sinusoid, the highest correlations will occur between points separated by exact multiples of 
the wavelength of the sinusoid. A given peak is one wavelength from the next peak.  

But generally φ is not a pure sinusoid. In any case, of course, if x = y, we would get maximum (full) 
correlation. 

Note further, that (1) represents the vacuum expectation value (VEV) of the bilinear (correlation) operator 
φ (x,t)φ (y,t). It is usually interpreted as the correlation one would expect to measure, on average, in the vacuum, 
between vacuum fields. We comment on this interpretation in Section 6. 

Using φ as 
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in (1), we have 
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1.2 What It Means in the Physical World 

The correlation function (3) involves integration over all wave numbers k and hence may be visualized as 
correlating two points in physical space for a wave composed of all (an infinite number) wave length waves 

superimposed. Note that the amplitude of each wave is diminished by a factor of 1 / ωk  . (For reasons why this is 

true of Klein-Gordon waves, see Klauber, pg. 47, “Normalization Factors” and “Relativistic Invariance of 
Probability” sections. Non-relativistic [Schroedinger or macro/classical] type waves do not have this factor.) 
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2 Deriving the Correlation Function 

2.1 First Way to Derive Correlation Function 

From (3), we have (where destruction operators destroy the vacuum, i.e., result in zero), 
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Since ak destroys the vacuum, we have 
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We evaluate (7) using polar coordinates in k space. (See Klauber, pg. 436, Fig. 17.4.) We now take the symbol 
k = |k|, rather than the 4 momentum vector as it was used in exponents of (2) to (7), and θ is the angle between k 
and (x – y). Integration over k is from 0 to ∞, θ from 0 to 2π , and φ from 0 to π. Thus, 

 ( )3 2d k sin d d k cosθ φ θ θ= ⋅ − = −k k x y x y . (8) 

With (8), (7) becomes 
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or 
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all of which, from (1) to (12), Mukhanov and Winitzki do in one step in the middle of page 51. 

2.2 Second Way to Derive Correlation Function 

From (5), we have 
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Aside: Note that a ket in eigenstate k′, in k space, is effectively a Dirac delta function with a peak at k′. 

 ( ) ( )in  space basis  is a normalization factorA Aφ δ′ ′= −k k k k . (14) 

So, a number operator operating on (14) will leave the number of particles per unit k in the ket of 3-momentum, 
which is the delta function. That is, 

 ( ) ( )†
a a aφ φ δ φ′ ′ ′′= = −k k k kkk k kN . (15) 

Note that we have a discrete state/ket in (15) but we are working with the continuous fields case math. Via 
analogy with the discrete fields case1, we can intuit that, given (15), then 
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End of aside. 

 Thus, with (16) in (13) in we have 

                                                 
1 See Klauber, pg. 59, (3-81). 
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which is the same as we found in the first row of (7). The rest follows as before in (7) to (12). 

2.3 Third Way to Derive Correlation Function 

Starting again from (5), we have 
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but now consider operating on the bra (not the ket) with ak. This yields 
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which is the same as we found in the first row of (7). The rest follows as before in (7) to (12). 

2.4 Fourth Way to Derive the Correlation Function 

Note that (1) is simply the particle form of the propagator as shown in Klauber, pg. 72, (3-116) and elsewhere, 
where ty = tx = t, i.e., 
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In the reference, this is shown to equal 
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which for, equal times, as in (1) where ty = tx = t, is simply 
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as expressed in the last row of (7). 

3 Evaluating the Correlation Function 

We can consider the value of (12), repeated below, for convenience. 
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3.1 Massless Field Case 

Since 

 2 2 2 where  k m kω ω− = = ± = ±k kk , (24) 

for the massless case, (12) becomes 
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The cosine of infinity term can vary between –1 and +1 and depends on where (what k value) at very large k 
values we choose to cutoff the cosine oscillation and call it the end. (Its average value for a large number of random 
endpoints is zero.) If we just ignore that term, we get an effective evaluation of the correlation between two points x 
and y. 
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22
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The correlation varies quadratically with the inverse of L, the distance between x and y. Note when x = y, the 
correlation is infinite, which makes some sense since a field at any point is completely correlated with itself at that 
point (at the same time). 

3.2 Estimate for the Massive Field Case 

Relation (12) is not so easy to evaluate when 0m ≠ , as then we have  
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and there doesn’t seem to be an integration table formula available for (27). Numerical integration appears in order 
for a precise solution at given L. However, we can get an estimate for (27), and Fig. 1 can help demonstrate how. 

In the top row of Fig. 1, where m = 0, we can see that in the integration, all but the shaded area on the right 
side of the vertical axis will cancel out (ignoring the arbitrary cutoff we might chose on the far right and far left to 
approximate infinity). For the lower rows of Fig. 1, the shaded region just to the right of the vertical axis 
approximates the total integral value, i.e., it is of the same order. So our job is to approximate the total integral by 
getting a good estimate of the region of integration of the curve from 0 to π. 
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Figure 1. Plots of the Integrand 
2 2

k
sinkL

k + m
vs kL 

 
In the top row of the figure, the curve from 0 to π is half of a pure sine wave. In the lower rows, a half sine 

wave is a reasonable (of the same order) approximation over that range. From the figure, we can see the amplitude 
of that approximate since wave is reduced for higher m or L. Note that the integration in (27) is over k, but to 
simplify, the plots of Fig. 1 are shown as over kL. So given our approximations, we will estimate the integral of the 
entire integrand in (27) as that of a sine wave over k from kL of 0 to π, whose amplitude varies with m or L. 

To start, we will use the symbol kf to denote the value of k when kL = π, and note that the integral over k in the 
region of interest can be estimated with the help of the following. 
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For a sine curve of amplitude 1, as in the top row of Fig. 1, (28) gives us the area under the curve from kL = 0 
to π  (k from zero to π/L). For other amplitudes, as in the 2nd and 3rd rows of Fig. 1, we need to multiply (28) by the 
maximum value (the sine curve amplitude) of the integrand, which is the value of the amplitude at the mid point 

where kL = π/2. We label the k value at this point as km. (The subscript m can stand for (local) maximum, mid-
point, or main contributing wave number to the area.) So, 
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 So using (28), (29), and (30) to estimate (27), we have 
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or finally, 
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Note this checks with our earlier result (26) for m = 0, as it should since our assumption of a pure sine wave 
over the region kL = 0 to π is precisely correct in that case. 

3.3 Conclusions for Behavior 

3.3.1 With respect to m, L 

Note for m << L (large separation and/or small mass), εφ effectively varies inversely with the square of L. For 

m >> L, it effectively varies with the inverse of the cube of L. As L → 0, εφ (L) → ∞, and the correlation function, 
as defined in (1), is infinite. 

3.3.2 With respect to wave number 

Note from Fig. 1 that of all waves, the largest (main) contributor to the correlation is the one with wave 

number km. And, we can relate εφ to km, instead of L, via use of (29) in (32), i.e., 
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3.3.3 With respect to m and km 

One commonly sees, as in Mukhanov and Winitzki, pg. 51, (4.34), km taken as simply k in (34). Given that, 

one can surmise that for m << k (km really), εφ effectively varies directly with the square of km; for m >> k (km 

really), directly with the cube of km. 

All of this Section 3, from pg. 5 to pg. 7, is done in one step in Mukhanov and Winitzki in eq. (4.34). 
 

4 Correlation Function for Discrete States 

Consider the discrete real field (which has finite volume boundary conditions) 
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in the correlation function (1) (repeated below for convenience) 
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The effect of the creation/destruction operators is the same as for the continuous case of (3) through (6) except 
the commutation relations give us a Kronecker delta instead of the Dirac delta function. 
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which parallels (7). In fact, as is well known, in the limit V → ∞ in the last row of (37), with appropriate boundary 
conditions, we have 

 ( ) ( ) ( )
( )

( ) 3
3discrete to continuous

1 1 1 1

2 22

i iVe e d
Vφ φε ε

ω ωπ
⋅ − ⋅ −→∞− = → − =∑ ∫

k x y k x y

k kk

x y x y k , (38) 

which corroborates our previous result (7). 

5 More on the Physical Interpretation of the Correlation Function 

Fig. 2 can help us to get a better feeling for what we are really measuring with our correlation function εφ (L). 

Note from the LHS of Fig. 2, we could find a correlation function for a single plane wave, if we desired. But 
that is not what we have done in prior sections, which is represented by the RHS of the figure. 

 

Figure 2. Showing What We Are Really Finding with εεεεφφφφ (L) (The RHS Above) 
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We have started with the φ of (2), which is a superposition of an infinite number of plane waves, in all 

directions, with all possible wave numbers |k|. That is what we found in (32) and other expressions for εφ (L). We 
are determining the correlation between any two points x and y, given the form of φ in (2), an integration over all 

possible waves of eigenvector k. Each eigenwave is modulated only by the factor 1 / ωk  and otherwise all such 

waves contribute equally. Note that εφ (L) is the same for any two points a distance L apart. 

6 Interpretation of Correlation Function for Vacuum 

Note several things. 

1. The correlation function ( )φε −x y is independent of time. i.e., it is not fluctuating. It is the same for any time 

t. It may be hard to see how it can represent “fluctuations” occurring in time in the vacuum or anywhere, as vacuum 

fluctuations are often portrayed. But the underlying field φ from which we determine εφ is oscillating (fluctuating.) 

It may be argued to behave like a typical plane wave function for a free particle in non-relativistic quantum 
mechanics (NRQM) of form 

 i t i
state A e eωψ − + ⋅= k k x

k , (39) 

which varies in time, but the probability density 

 † †  constant in timestate state A Aψ ψ = =kk . (40) 

That is, the particle/state itself oscillates in time, but anything we might detect like particle position probability 
does not. In fact, phase (such as would change with time) is irrelevant with respect to any measurements, so there 
seems to be little chance of detecting any sort of fluctuation in time of states existing in the vacuum. If they cannot 
be detected, one could argue that, for all practical purposes, they are not there. 
  
2. The correlation function represents the correlation between locations in a particular wave/state/particle φ (in 
the vacuum or otherwise). It is not related to a pair of particles, which might be popping into or out of the vacuum, 
as is commonly depicted. Not only is the correlation function representative of a single particle (comprised of all 
possible eigenstates superimposed), rather than a pair, it is static. It does not pop in and out of existence over time. 
  
3. What seems to be happening in determining the correlation function appears different in each of the different 
approaches of Sections 2.1 to 2.4. The interpretation in each case is different. 

First Way to Derive Correlation Function 

In Section 2.1, our ket and bra remain vacuum states, and a non-zero correlation function arises in (6) from the 
operator commutation relation. That gives us a delta function, which is a number and has no effect on the vacuum 
ket or bra. The delta function gives us the result of (7). 

So one could argue we are determining the correlation function for the vacuum, and if this is non-zero, it 
implies there are fields/particles in the vacuum. A pure zero number of fields in the vacuum should give rise to a 
zero correlation function. 

Indeed, the ½ quanta of the vacuum arise from the non-commutation relations as well. (See Klauber, pg. 54, 
(3-54).) So the source of the infinite (or at least enormous) energy in the vacuum and the source of the correlation 
function are the same, the non-commutation of creation/destruction operators.2 

                                                 
2 The means for elimination of the ½ quanta energy in the vaccum suggested by Klauber (footnote pg. 50) also eliminates 
vacuum fluctuations. That is, it yields a zero value for (1). It simply incorporates mathematically valid solutions to the field 
equations (Klein-Gordon here) that have not been previously incorporated into QFT. 
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Second Way to Derive Correlation Function 

In Section 2.2, we do not use the commutation relations to convert the †a a ′k k  to †a a′ kk plus a delta function. 

Instead we simply act directly on the vacuum with †a a ′k k . See (17) and (18). This implies we are creating a particle 

then destroying it all at the same time t. We get the same result. 

From this perspective, we are not measuring the correlation of fields in the vacuum, but the correlation 
between the state we create and the state we destroy, which are the same. That is, the correlation function represents 
a correlation of a non-vacuum field φ with itself, and is not a measure of what is going on in the vacuum. 

Third Way to Derive Correlation Function 

In Section 2.3, we again do not use the commutation relations, but employ †a a ′k k to create a ket state via †a ′k  

and a create a bra state via ak. See (19) and (20). 

From this perspective, we are again not measuring the correlation of fields in the vacuum, but the correlation 
between a created state and itself. That is, it is not a measure of what is going on in the vacuum. 

Fourth Way to Derive Correlation Function 

In Section 2.4, the same correlation function is seen to be simply the equal times Feynman propagator for a 
real field (both events are at time t). See (21) to (23). 

Propagators arise naturally in QFT via the Dyson-Wicks expansion, and represent virtual particles mediating 
interactions between real particles3. Such propagators do not simply pop in and out of the vacuum all alone, but are 
always linked to other real particles in interactions4. 

Thus, one could argue that the correlation function, as defined in (1), does not represent a characteristic of the 
vacuum existing in the absence of real world particles. 

As an aside, the correlation function (1) with non equal times is not static but fluctuates in time. It is, of 
course, simply the Feynman propagator. This may be the reason propagators are sometimes referred to as vacuum 
fluctuations, or correlation functions. 
  
Conclusion: There are other interpretations to 0 0φφ  than that of a correlation function arising from vacuum 

fluctuations. 

 
4. Consider, instead of the real field of (2), which is chargeless (i.e., the particle is its own antiparticle), a 

complex field (the particle has a distinct antiparticle),which has charge. Should the correlation function be †φ φ  or 

φφ? 

One would expect the latter, as it is correlating the field with itself, rather than its complex conjugate. But that 
ends up with (ak + bk

†)(ak + bk
†) type terms in the correlation function (1), rather than (ak + ak

†)( ak
† + ak) type. 

That is, from (1), 

 ( )( ) ( )† † † † † †0 0 terms of form 0 0 0 0 0a b a b a a a b b a b bφφ → + + = + + + =k k k k k kk k k k k k  (41) 

In that case all terms have akak,  akbk
†, bk

†ak  or bk
†bk

† that either destroy the vacuum (leave zero) or form a ket 
different from the bra, thereby ending up with zero. That is, there is zero vacuum correlation for a complex field 
(associated with particles like electrons and quarks). 

                                                 
3 The term real field means the field is a real, not complex, function of space and time. The term real particle means a particle 
that is not virtual. 
4 We are ignoring “vacuum bubbles” that do arise naturally from the Dyson-Wicks expansion. See Klauber, Section 8.4.8, pg. 

234. Such vacuum bubbles always consist of three virtual particles, however, not a single one, as εφ relates to. 
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Additionally, nothing like φφ (for complex fields) appears anywhere in QFT. Not in the free theory; and not in 
the interacting theory. It plays no role in determining the transition amplitude for real world interactions. The 
transition amplitude, derived from the state equation of motion, has no φφ terms in it. 

Conclusion: There is no correlation for a complex (charged) field with itself, as determined by (1), i.e., 0 0φφ . 

Further, φφ plays no role in any transition amplitude. 

On the other hand, if we were to use †φ φ  instead of φφ in (1), then we are not correlating a field with itself, but 
with its complex conjugate. Is that a meaningful correlation? 

Still further, if we were to evaluate †0 0φ φ , we would find a correlation only between b type particles and 

not a type. That is, 

 ( ) ( ) ( )† † † † † † †0 0 terms of form 0 0 0 0a b a b a a a b b a b bφ φ → + + = + + +k k k k k kk k k k k k . (42) 

All of these yield zero except the †b bk k  term. So, no matter which of the ways of Section 2 we use to evaluate 
†0 0φ φ , the result will only apply to b type particles and not a type, i.e., only to antiparticles and not particles. 

(Similarly, †0 0φφ  would only apply to particles and not antiparticles.) 

Conclusion: It is hard to conclude we get a meaningful correlation function from †0 0φ φ if only antiparticles, and 

not particles, are correlated. 

 
5. Wouldn’t we want the correlation to be with respect to probability density at various points x and y? Isn’t the 
important thing how correlated what we measure (detect the particle) is, rather than something we can’t measure 
(the field itself)? 

If we are talking about what we measure, should we be correlating probability density ρ (x, t) with ρ (y, t), 
rather than φ (x, t) with φ (y, t)? For a relativistic quantum scalar field theory, this is (43). (See Klauber, Sect. 3.7 to 
Sect. 3.81., pgs 61- 64, and Sect. 5.6, (5-62),  pg. 149.)  

 ( )† †iρ φφ φ φ= −ɺ ɺ  (43) 

For a real field, ρ is zero everywhere and for all time, and thus it is surely so for the vacuum. This led to the 
interpretation of (43) as charge density. 

For a complex field, we get, for a single particle state (Klauber, pg. 62, (3-91)) 

 ( ) ( )( )1 1
a bN N

V V
ρ φ ρ φ= − → =∑ k k

k

k k , (44) 

where there are no ½ terms in the probability (charge) density ρ, so there is no contribution from the vacuum. Thus, 

 ( ) ( )0 0 0 0 0 0,t ,tρ ρ ρ= → =x y . (45) 

Conclusion: For the vacuum, there is no correlation between probability densities, i.e., from one point to another in 
what we should be able to measure experimentally. 

6. φ (x,t)φ (y,t) is not a measurable, in the usual quantum sense. φ (x,t)φ (y,t) implies we can measure some 
quantity that is evaluated at two different points. But all measurables in QFT, like energy density, 3-momentum 
density, charge density, etc are measurable at a single point, i.e., related to φ (x,t)φ (x,t) at the same x at the same 
time t.  Both field factors in any QFT bilinear operator similar in form to φφ are evaluated at same event for 
measurable quantities. 

Conclusion: φ (x,t)φ (y,t) is not a quantum measurable/observable. 
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7. It is interesting that, for the massless case of (26), the correlation falls off like the photon radiation intensity 
from a charged point source radiating in all directions isotropically. I am not sure what this might imply. 

8. As an aside, one would think the vacuum could not have any states in it, or ak|0〉would not = 0. 

7 Possible Conclusions 

From Section 6, reasonable arguments could be made that the correlation function for a real scalar field φ, 

( ) ( ) ( )0 0,t ,tφε φ φ− =x y x y , does not represent fluctuations in fields residing in the vacuum, since there are 

different ways to derive the final result, which comprise creation of states.  

For complex fields φ, i.e., fields associated with charged particles, the different possible definitions of εφ lead 

to 1) zero (for ( ) ( )0 0,t ,tφε φ φ= x y ), 2) inclusion of antiparticles, but not particles (for 

( ) ( ) ( )†0 0,t ,tφε φ φ− =x y x y ), or 3) inclusion of particles, but not antiparticles (for 

( ) ( ) ( )†0 0,t ,tφε φ φ− =x y x y ). 

Correlation of probability densities at two locations x and y, at the same time t in the vacuum, yields zero. This 
is true for any form of φ, not just that of (2). That is, it would be true if, for example, φ represented a Gaussian wave 
packet. There is no vacuum correlation for probability density. In fact, probability density for the vacuum is 
identically zero. 

Further arguments could also be made that εφ does not represent a measurable quantity. 


