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1 The Correlation Function in Quantum Field Theory

1.1 What It Is Mathematically

In Mukhanov and Winitzki, pg. 51 unnumbered equatiand also, pg. 78, (6.48), the expectation vidue

vacuum fluctuations for a real scalar figids defined as a correlation functima. in the vacuum, between two
different spatial locations andy at the same time

£o(x=y) =(0[@(x.t) ¢y 1)[0). (1)

Note that, ifghas local maxima atandy, &, will have a higher value there than if it has ealonaximum at
x and close to a null value wtIn the first case, the value gfatx is highly correlated with that &t whereas in the
second case, it is not. So, in genegglx —y) represents the correlation between differenttlonax andy of the
field @

If grepresents a sinusoid, the highest correlatiofisoatur between points separated by exact muliple
the wavelength of the sinusoid. A given peak iswagelength from the next peak.

But generallyg is not a pure sinusoid. In any case, of course # y, we would get maximum (full)
correlation.

Note further, that (1) represents the vacuum espiect value (VEV) of the bilinear (correlation) optor
p(x,D)@(y,b). It is usually interpreted as the correlation evauld expect to measure, on average, in the vacuum
between vacuum fields. We comment on this integpiet in Section 6.

Using gas

p(x.t) = (27:)3/2j \/2;( (ake'“‘x +af<re”°‘)d3k Mukhanov and Winitzki (4.22), pg. 48 (2)

in (1), we have
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1.2 What It Means in the Physical World

The correlation function (3) involves integratiomeo all wave numberk and hence may be visualized as
correlating two points in physical space for a wawnposed of all (an infinite humber) wave lengtaves
superimposed. Note that the amplitude of each wsadaminished by a factor df/ \/E . (For reasons why this is

true of Klein-Gordon waves, see Klauber, pg. 47pofriNalization Factors” and “Relativistic Invarianaé
Probability” sections. Non-relativistic [Schroedargr macro/classical] type waves do not haveftéu®or.)



2 Deriving the Correlation Function

2.1 First Way to Derive Correlation Function

From (3), we have (where destruction operatorgogsthe vacuum, i.e., result in zero),
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Sinceay destroys the vacuum, we have
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We evaluate (7) using polar coordinate ispace. (See Klauber, pg. 436, Fig. 17.4.) We radw the symbol
k = k|, rather than the 4 momentum vector as it was usedponents of (2) to (7), ardlis the angle betwedn
and & —y). Integration ovek is from 0 towo, &from 0 to 27, andgfrom 0 to7z Thus,

d°k =k?sin6dgdd k{x-y) =k|x-y|cos . (8)
With (8), (7) becomes
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all of which, from (1) to (12), Mukhanov and Wirkizlo in one step in the middle of page 51.

2.2 Second Way to Derive Correlation Function

From (5), we have

gp(x-y)= akak e eXYdk'd%|0). (13)

Aside: Note that a ket in eigenst&tein k space, is effectively a Dirac delta functisith a peak ak'.
|@:)=Ad(k-k') (ink space basjs A isa normalization fac. (14)

So, a number operator operating on (14) will letheenumber of particles per uiitin the ket of 3-momentum,
which is the delta function. That is,

Na(K)|) =afa|a) = o(k -Kk)|a) (15)

Note that we have a discrete state/ket in (15)wautare working with the continuous fields case matia
analogy with the discrete fields csee can intuit that, given (15), then

Discrete Fields Case Contirous Fields Case
a0 |0) =v1| @) ag[nge) =Vn+1(n+ Jg) ap| 0=\3(k-K)|a). (16)
a %) =v1]0); a [ng)=vn|(n- D)) a|@) =3(k-k)[0

End of aside.
Thus, with (16) in (13) in we have

! See Klauber, pg. 59, (3-81).
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ep(x~y)=——(0f FJ' akak e*eYd%'d%|0)
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which is the same as we found in the first rowf The rest follows as before in (7) to (12).
2.3 Third Way to Derive Correlation Function
Starting again from (5) we have
£p(x - 50| \/_.[ akak e *e¥Yd3k'd%|0)
(19)

ake'kx Yd3kdi/a(k -k')|a)
o ] {506H)
but now consider operating on the bra (not the \kit) a,. This yields
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which is the same as we found in the first row@f The rest follows as before in (7) to (12).

Ik —k') e eYd3k'd3k.

2.4 Fourth Way to Derive the Correlation Function

Note that (1) is simply the particle form of thepagator as shown in Klauber, pg. 72, (3-116) dsewnere,
wheret, =t, =t, i.e.,

for t, <t, (particle) (de(x)¢'(y)|9 (3 11§ and 3 1)8 inKlauk

(21)
where in the present cage s real, gzes @.
In the reference, this is shown to equal
1 e—ik(x—y)
iA* (x-y) =(0]¢(x) ¢ (y)|0)= 5| d*k (3- 129 in Klaube (22)
e 2(2n) &
or ty<ty
which for, equal times, as in (1) wheye=t, =t, is simply
:eO:]_
—i(wt-at) +ikifx-y)
1 e e
- 3J dk =&,(x-y), (23)
2(2n) 2



as expressed in the last row of (7).

3 Evaluating the Correlation Function

We can consider the value of (12), repeated beimngonvenience.

2 .
N 1 k_smk|x—y|
eollx=¥) =0 %[ oy )% (12)
3.1 Massless Field Case
Since
af —k?=m? where k = +|k| = +ay , (24)
for the massless case, (12) becomes
eolix )= e K SNKX Yy form=0, ie. k|
< k[ x-y]
k=00
_ 2 +oosink|x—y| 1 cosk|x—y||
(27)°70  |x-y]| ok = 2n2x— y\I sink|x - yjdk = 2=y |x-y| |k:0 (25)
- 1 -
S PXT (1-cose).

The cosine of infinity term can vary between —1 atidand depends on where (whkatalue) at very larg&
values we choose to cutoff the cosine oscillatioa eall it the end. (Its average value for a largmber of random
endpoints is zero.) If we just ignore that term,ge¢ an effective evaluation of the correlationAmsn two pointx
andy.

ol vy a T M0 L=k (26)

The correlation varies quadratically with the irsepfL, the distance betweenandy. Note wherx =y, the
correlation is infinite, which makes some senseesi field at any point is completely correlatethviiself at that
point (at the same time).

3.2 Estimate for the Massive Field Case
Relation (12) is not so easy to evaluate whenO0, as then we have
eo(lx-v) = L= 22 Z(S:kbi_y'jdk
\/k |X y| . (27)
_ k
- (2n)2x—yj-\/k2 2 ZLJ.\/k2+m2

sinkLdk  L=[x-y]|.
and there doesn’t seem to be an integration tabfaula available for (27). Numerical integratiorpaprs in order
for a precise solution at givén However, we can get an estimate for (27), and Fan help demonstrate how.

sink|x —y|dk = (2”1

In the top row of Fig. 1, whenmm = 0, we can see that in the integration, all het$haded area on the right
side of the vertical axis will cancel out (ignoritige arbitrary cutoff we might chose on the fahtignd far left to
approximate infinity). For the lower rows of Fig, the shaded region just to the right of the vatftiaxis
approximates the total integral value, i.e., ibighe same order. So our job is to approximatetdked integral by
getting a good estimate of the region of integratibthe curve from O ter
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Figure 1. Plots of the Integrand LsinkL vskL
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In the top row of the figure, the curve from O7as half of a pure sine wave. In the lower row$adf sine
wave is a reasonable (of the same order) approkimater that range. From the figure, we can seeathplitude
of that approximate since wave is reduced for higheor L. Note that the integration in (27) is overbut to
simplify, the plots of Fig. 1 are shown as okker So given our approximations, we will estimate ititegral of the
entire integrand in (27) as that of a sine wave &feom kL of O to 77 whose amplitude varies with or L.

To start, we will use the symbk{ to denote the value &fwhenkL = 7z and note that the integral ovein the
region of interest can be estimated with the héh@ following.

IT
—coskL|L

k=" 1
kL= - -[o LsinkLdk = L( cos77+cos0) = .

l_|r\>

(28)
0

For a sine curve of amplitude 1, as in the top ob\Wig. 1, (28) gives us the area under the curomkL = 0
to 77 (k from zero to77L). For other amplitudes, as in th¥ and ¥ rows of Fig. 1, we need to multiply (28) by the
maximum value (the sine curve amplitude) of thegrmand, which is the value of the amplitude atrttie¢ point

wherekL = 772. We label the&k value at this point aky,. (The subscriptm can stand for (local) maximum, mid-
point, or main contributing wave number to the gr&a,

T T
knl== - kp=—-. 29
=2 - ko (29)

Thus, the height of the function (integrand of (27, is the

estimate of sine curve amplitudeL. (30)
2 2
(k) +m

So using (28), (29), and (30) to estimate (27) haree
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T

Note this checks with our earlier result (26) for= 0, as it should since our assumption of a pure wave
over the regiokL = 0O to s7is precisely correct in that case.

3.3 Conclusions for Behavior
3.3.1 Withrespecttom,L

Note form << L (large separation and/or small magg)ffectively varies inversely with the squarelLofFor

m >> L, it effectively varies with the inverse of the eubfL. AsL - 0, £¢,(L) - o0, and the correlation function,
as defined in (1), is infinite.

3.3.2 Withrespect to wave number

Note from Fig. 1 that of all waves, the largest ifmhaontributor to the correlation is the one witlave
numberky. And, we can relateyto ky, instead ot via use of (29) in (32), i.e.,

m

1 L= 1
£,(L)=—% Do#Ha gy (L)s—2L , (33)
e o )
1+ 2K, 1+ ———
T m 2K,
or
2k2,

(34)

3.3.3 Withrespect to m and km

One commonly sees, as in Mukhanov and Winitzki,5g.(4.34) ky taken as simplk in (34). Given that,
one can surmise that fon << k (ky, really), &, effectively varies directly with the square lgf; for m >> k (ky,
really), directly with the cube dfy,

All of this Section 3, from pg. 5 to pg. 7, is daneone step in Mukhanov and Winitzki in eq. (4.34)

4 Correlation Function for Discrete States

Consider the discrete real field (which has finitdume boundary conditions)



(a(k)e ™ +a'(k)e*) (35)

_ 1
Oy Pra

in the correlation function (1) (repeated belowdonvenience)
£o(x=y) =(0l(x.t) ¢ly.1)[0). (1)

The effect of the creation/destruction operatothéssame as for the continuous case of (3) thré@jgbxcept
the commutation relations give us a Kronecker daktead of the Dirac delta function.

ol =GOL X g (v J 0, @)

As with the parallel continuous case, sia@@lestroys the vacuum, we have

5k e —ikx |ky|0>

fxy) =5 (02 N 2 x/ZwK
=% 2_1e-lwe'kv|o>=$z el d g )
k

=1
__Z |k[(b< y
k

which parallels (7). In fact, as is well known,the limitV - oo in the last row of (37), with appropriate boundary
conditions, we have

1

_ _ 1 i —y _ _ 1 Ik y
£p(X y)—vg Ee b )Dgsgetgtp:omntigugg £l y)_(ZIT)S‘[ 2‘*& " - 39

which corroborates our previous result (7).

5 More on the Physical Interpretation of the Correlation Function

Fig. 2 can help us to get a better feeling for whatare really measuring with our correlation fimeis, (L).

Note from the LHS of Fig. 2, we could find a coatgbn function for a single plane wave, if we dedirBut
that is not what we have done in prior sectionschvis represented by the RHS of the figure.

L —1— | —1 —
» g ¥ —
y% 3rd dimension ,? ﬁ?‘ﬂ 2u0r;§2rlr(l)?mte
y suppressed f %“ A plane waves
= " shown
- peaks of real 1/ i‘
—{ | part of planeé_/_/ 7
| | — waves of ]
given wave
number
Finding correlation for one wave Finding correlation for all plane
in eigenstatd at distancé waves of all eigenstates at once

Figure 2. Showing What We Are Really Finding with £5(L) (The RHS Above)
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We have started with the of (2), which is a superposition of an infiniterniber of plane waves, in all

directions, with all possible wave numbekg [That is what we found in (32) and other expssifor&, (L). We
are determining the correlation between any twantgoi andy, given the form ofpin (2), an integration over all

possible waves of eigenvector Each eigenwave is modulated only by the fadtby/«) and otherwise all such

waves contribute equally. Note thgj(L) is the same for any two points a distabha@art.

6 Interpretation of Correlation Function for Vacuum
Note several things.
1. The correlation functiom¢(|x —y|) is independent of time. i.e., it m®t fluctuating. It is the same for any time

t. It may be hard to see how it can represent ‘flatons” occurring in time in the vacuum or anywhexs vacuum
fluctuations are often portrayed. But the undedyfield ¢from which we determinegyis oscillating (fluctuating.)

It may be argued to behave like a typical planeesawnction for a free particle in non-relativisiaantum
mechanics (NRQM) of form

Usate = Ake_im‘teﬂm ) (39)
which varies in time, but the probability density
UILatel//state = AI A = constant in tim. (40)

That is, the particle/state itself oscillates mdi but anything we might detect like particle fosi probability
does not. In fact, phase (such as would changetimit) is irrelevant with respect to any measuremlieso there
seems to be little chance of detecting any sofiuofuation in time of states existing in the vaguuf they cannot
be detected, one could argue that, for all pragticgposes, they are not there.

2. The correlation function represents the correlabetween locations in a particular wave/state/gartp (in
the vacuum or otherwise). It is not related to & phparticles, which might be popping into or aitthe vacuum,
as is commonly depicted. Not only is the correfationction representative of a single particle (posed of all
possible eigenstates superimposed), rather thair,atps static. It does not pop in and out ofs¢ance over time.

3. What seems to be happening in determining the letioa function appears different in each of thifedent
approaches of Sections 2.1 to 2.4. The interpoetati each case is different.

First Way to Derive Correlation Function

In Section 2.1, our ket and bra remain vacuum stated a non-zero correlation function arises )rfr@n the
operator commutation relation. That gives us aadeibction, which is a number and has no effecthenvacuum
ket or bra. The delta function gives us the resiu{f).

So one could argue we are determining the corogldtinction for the vacuum, and if this is non-zeito
implies there are fields/particles in the vacuunmpuke zero number of fields in the vacuum shoula: gise to a
zero correlation function.

Indeed, the %2 quanta of the vacuum arise from dmrecommutation relations as well. (See Klauber,5g.
(3-54).) So the source of the infinite (or at leasbrmous) energy in the vacuum and the sourckeeotarrelation
function are the same, the non-commutation of ieatestruction operatofs.

2 The means for elimination of the ¥z quanta enenghé vaccum suggested by Klauber (footnote pgak®) eliminates
vacuum fluctuations. That is, it yields a zero eafar (1). It simply incorporates mathematicallyigaolutions to the field
equations (Klein-Gordon here) that have not beeripusly incorporated into QFT.
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Second Way to Derive Correlation Function

In Section 2.2, we do not use the commutationimlatto convert theaa. to al.a, plus a delta function.

Instead we simply act directly on the vacuum V\apra;[ . See (17) and (18). This implies we are creatipgréicle
then destroying it all at the same tim&Ve get the same result.

From this perspective, we are not measuring theeladion of fields in the vacuum, but the correlati
between the state we create and the state we ylestiich are the same. That is, the correlatiorction represents
a correlation of a non-vacuum fiefelwith itself, and is not a measure of what is gaingn the vacuum.

Third Way to Derive Correlation Function

In Section 2.3, we again do not use the commutattations, but emplo;akall, to create a ket state v'aq;’,
and a create a bra state sja See (19) and (20).

From this perspective, we are again not measuhiagorrelation of fields in the vacuum, but theretation
between a created state and itself. That isnbisa measure of what is going on in the vacuum.

Fourth Way to Derive Correlation Function

In Section 2.4, the same correlation function isnst be simply the equal times Feynman propadatoa
real field (both events are at tirtje See (21) to (23).

Propagators arise naturally in QFT via the Dysomri&iexpansion, and represent virtual particles atedy
interactions between real particleSuch propagators do not simply pop in and othefvacuum all alone, but are
always linked to other real particles in interantfo

Thus, one could argue that the correlation functaandefined in (1), does not represent a charsiiteof the
vacuum existing in the absence of real world plagic

As an aside, the correlation function (1) with rexgual times is not static but fluctuates in tinteis] of
course, simply the Feynman propagator. This magheaeason propagators are sometimes referredacasim
fluctuations, or correlation functions.

Conclusion: There are other interpretations((nmq 0> than that of a correlation function arising fromcuum
fluctuations.

4. Consider, instead of the real field of (2), whichdhargeless (i.e., the particle is its own antiga), a
complex field (the particle has a distinct antifde),which has charge. Should the correlation fiamcbe @ or
o2

One would expect the latter, as it is correlatimg field with itself, rather than its complex cogége. But that

ends up with & + ka)(ak + ka) type terms in the correlation function (1), ratkiean @, + akT)( a. + a) type.
That is, from (1),

(0@ 0) -  terms of form( {(aﬂ: +q<)(a;+q<)| p=( Qagakuakh +bKakT+q(bK)| 0= (41)

In that case all terms haagay akka, kaak or kaka that either destroy the vacuum (leave zero) anfarket
different from the bra, thereby ending up with zefbat is, there is zero vacuum correlation foromplex field
(associated with particles like electrons and gsiark

% The ternreal field means the field is a real, not complex, functibspace and time. The temeal particle means a particle
that is not virtual.
* We are ignoring “vacuum bubbles” that do ariseirally from the Dyson-Wicks expansion. See KlaulSaction 8.4.8, pg.

234. Such vacuum bubbles always consist of threealiparticles, however, not a single oneggeelates to.
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Additionally, nothing likegp (for complex fields) appears anywhere in QFT. Mdhe free theory; and not in
the interacting theory. It plays no role in detarimg the transition amplitude for real world intetians. The
transition amplitude, derived from the state equmatf motion, has ngpterms in it.

Conclusion: There is no correlation for a complekafged) field with itself, as determined by (193,.,i(0|¢¢|0}.
Further,gpplays no role in any transition amplitude.

On the other hand, if we were to ugkp instead ofppin (1), then we are not correlating a field witself, but
with its complex conjugate. Is that a meaningfurelation?

still further, if we were to evaluatfd]¢'¢|0), we would find a correlation only betwebrtype particles and
notatype. That is,

(0l¢'d0) -  terms of form( {(az+bK)(ak +QI)| p={ péaljak +a,bl+h,a, +q(qj)| € (42

All of these yield zero except tHQhI term. So, no matter which of the ways of Sectiome2use to evaluate
<0|(0T¢| 0), the result will only apply td type particles and nat type, i.e., only to antiparticles and not particle
(Similarly, <0|(a(pT|0> would only apply to particles and not antipartcje

Conclusion: It is hard to conclude we get a medningprrelation function fror‘r(0|(aT¢| 0> if only antiparticles, and
not particles, are correlated.

5. Wouldn't we want the correlation to be with respcprobability density at various pointsandy? Isn't the
important thing how correlated what we measureedethe particle) is, rather than something we tcar@asure
(the field itself)?

If we are talking about what we measure, shouldoeecorrelating probability densi(x, t) with o(y, t),
rather thanp(x, t) with ¢(y, t)? For a relativistic quantum scalar field thedhis is (43). (See Klauber, Sect. 3.7 to
Sect. 3.81., pgs 61- 64, and Sect. 5.6, (5-62),149.)

p=i(@ -¢'9) (43)
For a real fieldp is zero everywhere and for all time, and thus surely so for the vacuum. This led to the

interpretation of (43) as charge density.

For a complex field, we get, for a single partisfate (Klauber, pg. 62, (3-91))

0T (Na0)-N(K) - (alela) = (44)

where there are no %2 terms in the probability (@endensityp, so there is no contribution from the vacuum. Thus

Oeld=0 - (de(xt)a(y)[9=0. (45)

Conclusion: For the vacuum, there is no correlaietween probability densities, i.e., from one ptinanother in
what we should be able to measure experimentally.

6. @(xH)e(yt) is not a measurable, in the usual quantum sepet) g(y,t) implies we can measure some
quantity that is evaluated at two different poirBsit all measurables in QFT, like energy densityn@mentum
density, charge density, etc are measurable atghespoint, i.e., related t@(x,t) g(x,t) at the same at the same
time t. Both field factors in any QFT bilinear operatimilar in form to g are evaluated at same event for
measurable quantities.

Conclusion:g(x,t) ¢(y,t) is not a quantum measurable/observable.
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7. ltis interesting that, for the massless case 6§, (the correlation falls off like the photon raitia intensity
from a charged point source radiating in all diets isotropically. | am not sure what this migimipiy.

8. As an aside, one would think the vacuum could aeehany states in it, @|Oywould not = 0.

7 Possible Conclusions

From Section 6, reasonable arguments could be tedehe correlation function for a real scalatdie
£,(x-y)=(0|p(x.t)@(y t)|0), does not represent fluctuations in fields regjdim the vacuum, since there are
different ways to derive the final result, whichhmarise creation of states.

For complex fieldsy i.e., fields associated with charged particles, different possible definitions &f,lead
to 1) zero (for £,=(0|p(x.t)g(y.t)|0), 2) inclusion of antiparticles, but not particlegfor
£,(x-y)=(0]¢ (x.t)(y 1)|0)), or 3) inclusion of particles, but not antipaes (for
£p(x=y) =(0]e(x.t) ¢ (y.1)[0)).

Correlation of probability densities at two locatsox andy, at the same timiein the vacuum, yields zero. This
is true for any form ofg not just that of (2). That is, it would be trdigfor example grepresented a Gaussian wave
packet. There is no vacuum correlation for proligbdensity. In fact, probability density for theasuum is
identically zero.

Further arguments could also be made &paioes not represent a measurable quantity.



