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1 Background

It may seem unusual to have such low values forsegasef neutrinos, when all other particles
like electrons, quarks, etc are much heavier, Withr masses relatively closely grouped. Given
that particles get mass via the Higgs mechanisny, wan example, should the electron neutrino be
10° times or more lighter than the electron, up angrdquarks. That is, why would the coupling
to the Higgs field be so many orders of magnitus?

One might not be too surprised if the Higgs couplivere zero, giving rise to zero mass. One
might likewise not be too surprised if the coupliregulted in masses on the order of the Higgs, or
even the GUT, symmetry breaking scale.

Consider the quite reasonable possibility thatradt@nmetry breaking, two types of neutrino
exist, with one having zero mass (no Higgs coupliagd the other having (large) mass of the
symmetry breaking scale. As we will see, it tuons that reasonable superpositions of these fields
can result in light neutrinos (like those observad(l a very heavy neutrino (of symmetry breaking
scale, and unobserved).

2 Fundamental Math Concept Underlying the Seesaw Mechanism

Consider a real, two dimensional space with a mafiensor) expressed in one set of
orthonormal basis vectors (primed) for that space a
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Now, if we consider a new set of basis vectorsateat by an anglefrom the original basis,
then the matrix components change, of course, andbe found by

A= cosp sinp|| 0O O} cop - sig
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Note how this matrix looks iis small, say= 2°, with cog=.99939 and si= .03490.

[ 122 3.488;
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-3.488 99.87
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and we get the upper left diagonal term almostd&i® of magnitude smaller than the lower right
term, which is approximately the same as the acaigsuch term. The off diagonal terms equal the

geometric mean of the diagonal terms, i\#J,OOcoé qo)( 1003iﬁ¢)) , and are not as small as the
upper left term, but significantly smaller that fbever right one.

The fundamental point is that by starting with atnmaof form like (1), and transforming to
another basis, which is rotated by a small anglmfthe original, we get a matrix of form like (3).
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3 Dirac vs Majorana Mass Terms in the Lagrangian

We don’'t know a great deal, experimentally, aboemtrino mass, but on general theoretical
grounds, two distinct classes of neutrino mass seaire allowed in the Lagrangian of electroweak
interactions. These are called Dirac and Majoraaas terms.

Note that Majorana mass terms have nothing to dio thie Majorana representation in spinor
space. One can use any representation for ttds fadl which Majorana and Dirac mass terms are
composed. Neither do Majorana mass terms implyagsociated particles/fields are Majorana
fermions, of which you may have heard. Majorananfens are their own anti-particles. More on
this in Sect. 5. For now, we will assume that bDitac and Majorana mass terms contain only
Dirac type particles (in any representation we.)ike

The Dirac mass terms, which are the usual terms dealt witintroductory quantum field
theory (QFT), have form

—-m, (VLVR +I7RVL) ) (4)
andM ajorana mass terms, which may look unfamiliar to the umated, have form
_%mfbl (|7|_V|_c U ) ‘—%mﬁ (VRVRC + I7RCVR) ' (5)

where sub/superscriptsandR designate left or right hand chirality, and thpexscriptc represents
charge conjugation. That is,

v, destroys a LH chiral neutrino and creates a Rithautrino,

I7L Creates 113 [1] 1] 1] and dws 113 113 113 ,
v, ‘creates “ “ “ “ and dests “ * “ (does same &3 ),
v, destroys “ “ “ “ and creates “ “ (does same ag ),

and forR subscript, interchande<— R everywhere above.

Note that the subscript always refers to particlésr a non conjugated field, no overbar means
destroys particles, overbar means creates partiahes antiparticle actions for the same field are
just reversed from particle actions (particteantiparticle, LH— RH, destroy— create).

Charge conjugating a field has the same effectastigie/antiparticle and creation/destruction
as an overbar (overbar is effectively a complexXugate transpose [plusya multiplication]). That
is, the overbar and the superscrigt have the same effect. The charge conjugatioreinédets us
have the overbar (row) operator effect in a norrleae(column) vector. In fact, the symhbgly, is

used by some for thg ‘v, term of (5), with similar changes for other term#$iere one must keep

in mind for such notation that inner product inrgpi space is implied, even though there is no
obvious transpose term (row vector on leftyjmw, .

Note that the first term in (4) destroys a RH mdetiand creates a LH one. The Feynman
diagram for this term shows a RH particle disappgaat a point and a LH particle appearing.
Thus weak (chiral) charge is not conserved, as ankHfrino has +1/2 weak charge and a RH
neutrino has zero weak charge. Lepton number, heryessconserved, as we started with a neutrino
(not an anti-neutrino) and ended up with a neutrino
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Somewhat similarly, the first term in (5) create® tLH neutrinos out of the vacuum and thus
also does not conserve weak charge. But, impdytahtdoes not conserve lepton number (which
the Dirac terms do.) We started with zero neutrizod ended up with two neutrinos.

Wholeness Chart 1. Weak Charge and L epton Number Conservation

Dirac mass terms Majorana mass terms

Conserves weak charge? No No

Conserves lepton number? Yes No

Mathematically, charge conjugation of the field,emnC is the charge conjugation operator,
can be expressed as

ve=Cv =iy’ ve=viCc=v'iy (6)

which needs some study in spinor space to fullyewstdnd, but doing so would lead us astray from
the task at hand.

With all this in mind, we can then express (4) &in terms of a mass matri47 as (where
“h.c.” means hermitian conjugate of the prior term)

1, . V,.°©
- :—E(VLVR )/I/I(V;) + hc. 7)
with
L
/l//:[mM mg} . (8)
m,

(As we will see, the matrix in (8) is the neutrisiwace analog of the matrix in (3) of Section 2.)
Hermitian conjugates of fields are as follows
V20 i N v VAN s R N VIR i s R VS V- S 7
so (7) becomes (taking the complex conjugate ti@sespf the first term in (7) for the second)

L = (7, 7 )M(VLC] e VR)/I//(VLCJ , )

terms 2

which, for our identification of the effects of and v (both destroy RH particles and create LH
antiparticles) vs andv, vy and/ VS andrg, yields (4) plus (5).

4 See-sawing

Suppose, as suggested earlier, that Higg's or Guiingetry breaking only gave Majorana
mass to neutrinos. That is, coupling to the HiggsHigges) was not done in a way that led to
Dirac mass terms. So, the mass matrix would bgodial, unlike (8), of form
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~ 0
A = {m“ } , (10)
0 M
and our Lagrangian mass terms would look like
1, —\ ~(V
L =——(V N | M + hc., 11
e =57 N) (Nj (D)

where we have represented the fields directly @b the Higgs by N)'. In other wordsy
andN are the mass eigenstates for our neutrinos.

On the other hand, the weak eigenstateandk (and their conjugates) of (7), which are linear
superpositions of andN, interact directly via the weak force, and repnésehat we detect in weak
interaction experiments (ignoring in this contehe fact thatk has zero weak charge and does not
So interact.)

Finding (10) from (8) is just an eigenvalue probjesith m, andM the eigenvalues. That is,
we could think of our fields in two different, bessentially equivalent, ways: 1) a mix of Majorana
and Dirac mass terms with the column vector ofdgein (7), or 2) pure Majorana mass terms
associated with the mass matrix of (10), whose cstsal fields are represented by the different
column vector ¢ N)'.

Heuristically, finding ¢ N)" from (1.° r)" can be thought of as “rotating” our basis vectors
an abstract space until we find an alignment givivegfields vector the components ).

Assuming that is the case in the real world (weehaw way of knowing via experiments to
date), what would the mass matrix (10) look likeorder to give us the kind of masses (eittmgror
perhapsmy; ) that we see? Remember we are looking for a reasty neutrino mass is so much
lower than that of other particles.

That reason posits that the field components ofvdator in (11) are the ones directly coupled
to the Higgs field. It works best if the masg= 0, as that means there is no Higgs couplinghfer
v field, but there is such coupling for thie (And (10) then becomes the analog of (1) in $aci.)
Note that if we tookm, # 0, butm, << M, we would still be left with our original problemwhich is
“why is one mass so much smaller than the otherd®dving zero mass is easier to explain (no
coupling) than extremely low mass (extremely sroallpling.)

4.1 The “Shortcut” Analysis

Given the treatment of Section 2, we can immediadeaw conclusions about the magnitudes
of the four components of (8), given (10) with tingper left component equal to zero and the (
N)" basis being close to the f 1r)" basis. That is, we have the mass hieramayeed,

M=nm>>m >m, =0, (12)

where the Dirac massy is the_geometric meawt the left and right Majorana masses, the diabona
components of (8). That is,

mamy =my* . (13)
Note that for given value afp, a higher value fom, means a lower the value fon, and
vice versa. This is the reason for the name “s@eraechanisth




4.2 The Formal Eigenvalue Analysis

The simple “deduce by analogy” method of the psection allows us to see, relatively easily,
the essence of the see-saw mechanism. But to duifntify it, we need the following more
rigorous analysis.

The characteristic equation for the eigenvalue lgratsolution of (8) is

(mh =2)(mf -2)-(my)" =0, (14)
with eigenvalues,
A= 3 o )2 4G+ ) 4ot -m,?) (15)
For A, =m, = 0, we must have the minus sign in (15) and
mumy =my” (16)

which, not surprisingly, is the same as (13).
Then, we would have, with the plus sign in (15)Ag= M,
A,=m, =0
A, =M =m} +m, .

We'll work out the eigenvectoN (i.e., for A,) expressed in theu® 1g)" basis and leave the
simpler case’ eigenvector (i.e., fod;) for the reader.

17)

From the eigenvalue problem for (7) and (8), witke eigenvaluel, of (17) we get the two
equations

(s = (s + iy ))vi + moy =0

R R L (18)
mwe + (= (m +my))ve=0.
This yields
Vi :%VR , (29)
and an eigenvector
m,

—Dy
N=lm} F| . (20)

I/R

Some care is needed to note that the top compdmmet is really they © field with the
fractional factor indicating the size of thg® field compared to theg field. That isN is really a
superposition of the two fields, such thavi#fhas a coefficient of one in that superpositioentthe
u ° field has a coefficient ofn, /ny; . In other words, in (18), the symbm really stands for the

coefficient (effectively, the magnitude) of thg field, not the field itself (which the location the
column vector denotes.)
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Note also that, up to here, we have ignored thenHian conjugate half of (7), which we will
have to include. So our tridwill also include that, and is, in terms of theldis themselves, rather
than as a two component vector, expressed as

N=(VR+|/,§)+&|;(VL+VE) . (21)
my
Similarly, the other eigenvector is found to be
V=(VL+VE)—%(VR+V;) . (22)

If we now assume (to be justified below)

mg; >>m, (23)

thenN is composed almost entirely of (and its similar siblingz"), from (17) and (23) is very
heavy, and is thus effectively sterile. Conversekcan be thought of as composed almost entirely
of N. Similarly, vis composed almost entirely af (and v.°), and converselyy, is almost entirely
composed of the weightless

From (16), one sees that for a given valuengf a higher value fom| means a lower the
value for m},, and vice versa, and thus, the name “see-saw misohia Further, from (21) and
(22), the higher the value fon; , the morevk — N and v, — V.

Approached in a different way, given|; andm,, mp will be the geometric mean of those two

masses, and will generally be closer to the loweéhe two. (If m} =100 and m}, =1, thenmp =
10.) Further, if (23) holds, from (16), we have

m, =0 (but not 0}, (24)
and from (17),
m} =M. (25)
Thus, the mass hierarchy appears naturally as
M=nl>m >m, =0, (26)

These results match those of the simpler approgSledion 4.1.
The m} >>m, Assumption

An astute reader, who hadn’t read Sections 2 afig Might question if we have gained
anything. We originally sought a reason why thewn Dirac massnp is so small compared to
other masses. We got that via the eigenvalueysisabove, but in the process, we had to make
another, seemingly arbitrary, assumption (23). hWhis assumption, we appear merely to be
substituting one mass hierarchy problem for anotA¢rat is, we now have to ask wing turns out

to be so much smaller thanf; .

The answer is this. If we start with the mass mgtt0) with one field having zero mass
(uncoupled to Higgs patrticle(s)),
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and do a slight “rotation” in the 2D space of (), we end up with a matrix like (8) with the
characteristic (23), which served as our initsgumption, but which is justified if we started hwit
(27). Our assumption boils down simply to assunarggnall transformation.

5 Distinction between Majorana Mass Terms, Particles, and Representation

The adjective “Majorana” is applied to three distin different things, which we need to
distinguish between.

The first use most people see of this term is for of three representations of Dirac matrices
and spinors. The three representations are Dirat-Rlae Standard Rep), Weyl, and Majorana. As
noted at the beginning, this use of “Majorana” hathing to do with the Majorana mass terms of
this article. Everything in this article can be dan any one of the three representations.

Herein, we so far have been dealing with the seem®dof the term regarding Majorana vs.
Dirac type mass terms in the Lagrangian, i.e.a@ (5). The neutrinos and Dirac matrices in these
terms can be represented by any one of the thpeesentations above.

The third use of the term refers to type of newtrih Majoranaparticle is defined as a particle
that is its own antiparticle. A Dirac particle, tre other hand, has an antiparticle that is dififin
different from it. Typically, in almost all of ong’'study of QFT, one deals with Dirac type particles

Neutrinos are the only particles that can be eiiesic or Majorana types. All other fermions
are known, from experiment, to be Dirac fermions. &kperiments to date (Jan 2012) have been
able to determine if neutrinos are Majorana or ®©particles. Double beta decay experiments may
one day be able to do this.

As an aside, Majorana particles are easiest to lbanththematically in the Majorana
representation.

Note that the neutrinos we deal with in our masssecan be either Dirac or Majorana
neutrinos, but both type mass terms would needuolve the same particle type. From (4) and (5),
we see that the particles in each type term anesepted by the same symbols, i.e., they represent
the same particle type (Dirac or Majoranapath type mass terms (Dirac and Majorana).

In summarywe can have
* Majorana representation in spinor space (it orafrether 2 reps can be used for any of below)
* Majorana vs Dirac mass terms in Lagrangian (bogetteer can be used with either particle
type below)
» Majorana vs Dirac type particles (Majorana is igantiparticle)

6 Comments on Lepton Number Conservation

With regard to Majorana vs. Dirac type mass tenmthé Lagrangian, we saw (see Wholeness
Chart 1, pg. 3) how both types of terms do not eores weak charge. We also saw that the
Majorana mass terms lead to non-conservation edhepumber, whereas the Dirac mass terms lead
to conservation of lepton number. These resultewpecifically for Dirac neutrinos in both types
of mass term, where Dirac neutrinos have a leptomber +1, and Dirac antineutrinos have a
lepton number of —1.
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However, what if the neutrinos we are dealing withexperiment are actually Majorana
neutrinos? Then neutrinos and anti-neutrinos wbalk the same lepton number, since they are the
same particle. But this number would have to bews negative, since quantum numbers for anti-
particles have opposite sign of those for particzeso is the only number that works, so we could
conclude that Majorana particles have lepton nurabe.

Therefore, for Majorana neutrinos in both typesnalss terms, all interactions solely from mass
terms of either form will result in no change gbten number. So, if we are dealing with Majorana
neutrinos, the “No” we have in the last row, lastumn of Wholeness Chart 1 will change to a
“Yes”. Prior to this, we had been assuming we waoeking with Dirac neutrinos.

However, consider a typical interaction such as
n-p+e +v v =v for Majorana neutrin (28)

where what we usually consider a Dirac anti-neatsith lepton number -1, is now a Majorana

neutrino with lepton number 0. Thus, we startedhwaitneutron having zero lepton number, but end
up with products having a net +1 lepton numbem(ftbe electron in (28)). We conclude that even
though Majorana neutrinos in the Lagrangian masaggboth Dirac and Majorana mass terms)
will not lead to lepton number violation, interacts of Majorana neutrinos will.

Thus, we will have lepton number non-conservation ij Dirac neutrinos if, and only if,
Majorana mass terms exist in the Lagrangian oM#jorana fermions regardless of what mass
terms are in the Lagrangian.

7 Possible Physical Scenarios
There are three possible scenarios, assuming leoitnimo types exist.

Possibilities for both Dirac and Majorana neutriegssting in nature

1) Dirac and Majorana fermions both interact weakdgd what we see in experiments is a
blend of both. (Not considered likely by most.)

2) Only Dirac neutrinos interact weakly, and we ‘tl@ver see Majorana neutrinos in any
experiments.

3) Only Majorana neutrinos interact weakly, and dan’'t ever see Dirac neutrinos in any
experiments.

Possibilities if only one type exists in nature

4) Dirac neutrinos exist, but no Majorana ones.
5) Majorana neutrinos exist, but no Dirac ones.
If the See-Saw Mechanism is True

If the see-saw mechanism exists, then we havetppémass terms of (4) and (5), and with
M =} >>m, >, =0, (29)

and for which we could have, in one scenario, Dmaatrinos represented by and vk if only
Dirac neutrinos exist. Alternatively, we could ieatl have Majorana neutrinos represented by those
symbols. In either case, our interaction terms wadatlude the symbol$; and vk, along with
intermediate vector boson fields.
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For mp much larger thanm, , themp mass term would not play a role in the theoryregrgy
levels of the present day. So we would effectivee neutrinos, be they Dirac or Majorana
neutrinos, as having mass, , i.e., as having mass of the Majorana mass tems i

8 Summary of See-Saw Mechanism
See-saw MechanismTheory

The (common textbook) treatment covered in Secfi@began with a general, non-diagonal
mass matrix, looked at finding the mass eigenvatidbat matrix, and examined the relationships
engendered between the masses. However, lookihga@nhewhat in reverse, as in Section 4.1, can
be helpful pedagogically.

That is, start with the mass eigenstates fieldmdN, the ones coupled directly to the Higgs
field (with v having zero coupling), and the diagonal mass mé2i). The weak eigenstates fields
V. and vk (and their charge conjugation fields) are supetipos of thev andN fields.

We then ask “If we transformv( N)T into the ¢1° w)', what would the transformed mass
matrix look like?” Well, if nature has chosen toake this a slight transformation (a small
“rotation” in the 2D space of the fields), whichresasonable, then we would get a mass matrix with

a very small upper left diagonal term;,, a very large lower right diagonal term|, and off
diagonal termsnp which are each the geometric mean of the diagones, as in (16). We would
have a “see-saw” relation between the masses, aund ceadily have neutrino massas, of the
order observed. For a greater “rotation” in 20d&espace, the greater would be the “see-saw”
effect (biggermy, and lowerny; ), and also the greater the valueef

The neutrinos we see in experiments could be elflie&c or Majorana types, though either
type would have both forms for Majorana and Diraasmterms in the Lagrangian.

For further pedagogic explanations of topics inrjum field theory by the same author, see
www.quantumfieldtheory.info




