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1 Background 
It may seem unusual to have such low values for masses of neutrinos, when all other particles 

like electrons, quarks, etc are much heavier, with their masses relatively closely grouped.  Given 
that particles get mass via the Higgs mechanism, why, for example, should the electron neutrino be 
105 times or more lighter than the electron, up and down quarks.  That is, why would the coupling 
to the Higgs field be so many orders of magnitude less? 

One might not be too surprised if the Higgs coupling were zero, giving rise to zero mass.  One 
might likewise not be too surprised if the coupling resulted in masses on the order of the Higgs, or 
even the GUT, symmetry breaking scale. 

Consider the quite reasonable possibility that after symmetry breaking, two types of neutrino 
exist, with one having zero mass (no Higgs coupling) and the other having (large) mass of the 
symmetry breaking scale.  As we will see, it turns out that reasonable superpositions of these fields 
can result in light neutrinos (like those observed) and a very heavy neutrino (of symmetry breaking 
scale, and unobserved). 

2 Fundamental Math Concept Underlying the Seesaw Mechanism 
Consider a real, two dimensional space with a matrix (tensor) expressed in one set of 

orthonormal basis vectors (primed) for that space as 

 
0 0

0 100

 
=  
 

ɶM  . (1) 

Now, if we consider a new set of basis vectors, rotated by an angle φ from the original basis, 
then the matrix components change, of course, and can be found by 

 
2

2

cos sin 0 0 cos sin

sin cos 0 100 sin cos

100sin 100cos sin
.

100cos sin 100cos

φ φ φ φ
φ φ φ φ

φ φ φ
φ φ φ

−     
=      −     

 
=  − 

M

 (2) 

Note how this matrix looks if φ is small, say φ = 2°, with cosφ = .99939 and sin φ = .03490. 

 
.122 3.488

3.488 99.878

 
=  − 

M  , (3) 

and we get the upper left diagonal term almost 3 orders of magnitude smaller than the lower right 
term, which is approximately the same as the original such term.  The off diagonal terms equal the 

geometric mean of the diagonal terms, i.e., ( )( )2 2100cos 100sinφ φ , and are not as small as the 

upper left term, but significantly smaller that the lower right one.   

The fundamental point is that by starting with a matrix of form like (1), and transforming to 
another basis, which is rotated by a small angle from the original, we get a matrix of form like (3). 
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3 Dirac vs Majorana Mass Terms in the Lagrangian 
We don’t know a great deal, experimentally, about neutrino mass, but on general theoretical 

grounds, two distinct classes of neutrino mass terms are allowed in the Lagrangian of electroweak 
interactions.  These are called Dirac and Majorana mass terms. 

Note that Majorana mass terms have nothing to do with the Majorana representation in spinor 
space.  One can use any representation for the fields of which Majorana and Dirac mass terms are 
composed. Neither do Majorana mass terms imply the associated particles/fields are Majorana 
fermions, of which you may have heard. Majorana fermions are their own anti-particles. More on 
this in Sect. 5. For now, we will assume that both Dirac and Majorana mass terms contain only 
Dirac type particles (in any representation we like.) 

The Dirac mass terms, which are the usual terms dealt with in introductory quantum field 
theory (QFT), have form 

 ( )D L R R Lm ν ν ν ν− + , (4) 

 and Majorana mass terms, which may look unfamiliar to the uninitiated, have form 

 ( ) ( )1 1
2 2

L c c R c c
M L L L L M R R R Rm mν ν ν ν ν ν ν ν− + − + , (5) 

where sub/superscripts L and R designate left or right hand chirality, and the superscript c represents 
charge conjugation.  That is, 

Lν   destroys a LH chiral neutrino and creates a RH antineutrino, 

Lν   creates   “   “       “         “        and  destroys “   “        “  , 
c

Lν creates   “   “       “         “        and  destroys “   “        “   (does same as Lν ), 
c

Lν destroys “  “       “         “         and creates   “    “        “  (does same as Lν ), 

and for R subscript, interchange L ↔ R everywhere above. 

Note that the subscript always refers to particles.  For a non conjugated field, no overbar means 
destroys particles, overbar means creates particles, and antiparticle actions for the same field are 
just reversed from particle actions (particle ↔ antiparticle, LH ↔ RH, destroy ↔ create). 

Charge conjugating a field has the same effect on particle/antiparticle and creation/destruction 
as an overbar (overbar is effectively a complex conjugate transpose [plus a γ0 multiplication]).  That 
is, the overbar and the superscript “c” have the same effect.  The charge conjugation merely lets us 
have the overbar (row) operator effect in a non overbar (column) vector.  In fact, the symbol L Lν ν  is 

used by some for the c
L Lν ν  term of (5), with similar changes for other terms, where one must keep 

in mind for such notation that inner product in spinor space is implied, even though there is no 
obvious transpose term (row vector on left) in L Lν ν . 

Note that the first term in (4) destroys a RH particle and creates a LH one.  The Feynman 
diagram for this term shows a RH particle disappearing at a point and a LH particle appearing.  
Thus weak (chiral) charge is not conserved, as a LH neutrino has +1/2 weak charge and a RH 
neutrino has zero weak charge. Lepton number, however, is conserved, as we started with a neutrino 
(not an anti-neutrino) and ended up with a neutrino. 
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Somewhat similarly, the first term in (5) creates two LH neutrinos out of the vacuum and thus 
also does not conserve weak charge.  But, importantly, it does not conserve lepton number (which 
the Dirac terms do.) We started with zero neutrinos and ended up with two neutrinos. 

               Wholeness Chart 1. Weak Charge and Lepton Number Conservation 

 Dirac mass terms Majorana mass terms 

Conserves weak charge? No No 

Conserves lepton number? Yes No 

 

Mathematically, charge conjugation of the field, where C is the charge conjugation operator, 
can be expressed as 

 2 * 2c c T TC i C iν ν γ ν ν ν ν γ= = = =  , (6) 

which needs some study in spinor space to fully understand, but doing so would lead us astray from 
the task at hand. 

With all this in mind, we can then express (4) and (5) in terms of a mass matrix M as (where 

“h.c.” means hermitian conjugate of the prior term) 

 ( )1
. .

2

c
c L

mass L R
terms R

h c
ν

ν ν
ν
 

= − + 
 

L M  (7) 

with 

 
L
M D

R
D M

m m

m m

 
=  
 

M  . (8) 

(As we will see, the matrix in (8) is the neutrino space analog of the matrix in (3) of Section 2.) 

Hermitian conjugates of fields are as follows 

 h.c. h.c. h.c. h.c.c c c c
L L R R L L R Rν ν ν ν ν ν ν ν←→ ←→ ←→ ←→ , 

so (7) becomes (taking the complex conjugate transpose of the first term in (7) for the second) 

 ( ) ( )1 1

2 2

c
Lc cL

mass L R L R c
terms R R

νν
ν ν ν ν

ν ν
   

= − −   
   

L M M , (9) 

which, for our identification of the effects of cLv  and νR (both destroy RH particles and create LH 

antiparticles), and and andc c c
R L R L L R, ,ν ν ν ν ν ν , yields (4) plus (5). 

4  See-sawing 
Suppose, as suggested earlier, that Higg’s or GUT symmetry breaking only gave Majorana 

mass to neutrinos.  That is, coupling to the Higgs (or Higges) was not done in a way that led to 
Dirac mass terms.  So, the mass matrix would be diagonal, unlike (8), of form 
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0

0

m

M
ν 

=  
 

ɶM , (10) 

and our Lagrangian mass terms would look like 

 ( )1
. .

2mass
terms

N h c
N

ν
ν  

= − + 
 

ɶL M , (11) 

where we have represented the fields directly coupled to the Higgs by (ν  N)T.  In other words, ν 
and N are the mass eigenstates for our neutrinos. 

On the other hand, the weak eigenstates νL andνR (and their conjugates) of (7), which are linear 
superpositions of ν and N, interact directly via the weak force, and represent what we detect in weak 
interaction experiments (ignoring in this context the fact that νR has zero weak charge and does not 
so interact.) 

Finding (10) from (8) is just an eigenvalue problem, with mν and M the eigenvalues.  That is, 
we could think of our fields in two different, but essentially equivalent, ways: 1) a mix of Majorana 
and Dirac mass terms with the column vector of fields in (7), or 2) pure Majorana mass terms 
associated with the mass matrix of (10), whose associated fields are represented by the different 
column vector (ν  N)T. 

Heuristically, finding (ν  N)T from (νL
c νR)T can be thought of as “rotating” our basis vectors in 

an abstract space until we find an alignment giving the fields vector the components (ν  N)T. 

Assuming that is the case in the real world (we have no way of knowing via experiments to 
date), what would the mass matrix (10) look like in order to give us the kind of masses (either mD or 
perhaps L

Mm ) that we see?  Remember we are looking for a reason why neutrino mass is so much 
lower than that of other particles. 

That reason posits that the field components of the vector in (11) are the ones directly coupled 
to the Higgs field.  It works best if the mass mν = 0, as that means there is no Higgs coupling for the 
ν field, but there is such coupling for the N. (And (10) then becomes the analog of (1) in Section 2.)  
Note that if we took mν ≠ 0, but mν << M, we would still be left with our original problem, which is 
“why is one mass so much smaller than the others?”.  Having zero mass is easier to explain (no 
coupling) than extremely low mass (extremely small coupling.) 

4.1 The “Shortcut” Analysis 

Given the treatment of Section 2, we can immediately draw conclusions about the magnitudes 
of the four components of (8), given (10) with the upper left component equal to zero and the (ν  
N)T basis being close to the (νL

c νR)T basis.  That is, we have the mass hierarchy we need, 

 0R L
M D MM m m m≈ >> > ≈  , (12) 

where the Dirac mass mD is the geometric mean of the left and right Majorana masses, the diagonal 
components of (8).  That is, 

 2R L
M M Dm m m=  . (13) 

Note that for given value of mD, a higher value for R
Mm  means a lower the value for LMm  and 

vice versa.  This is the reason for the name “see-saw mechanism”.  
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4.2 The Formal Eigenvalue Analysis 

The simple “deduce by analogy” method of the prior section allows us to see, relatively easily, 
the essence of the see-saw mechanism.  But to fully quantify it, we need the following more 
rigorous analysis.  

The characteristic equation for the eigenvalue problem solution of (8) is 

 ( )( ) ( )2
0L R

M M Dm m mλ λ− − − = , (14) 

with eigenvalues, 

 ( ) ( ) ( )2 2
1,2

1 1
2 2 4R L R L R L

M M M M M M Dm m m m m m mλ = + ± + − −  . (15) 

For λ1 = mν = 0, we must have the minus sign in (15) and 

 2R L
M M Dm m m=  , (16) 

which, not surprisingly, is the same as (13). 

Then, we would have, with the plus sign in (15) for λ2 = M, 

 
1

2

0

.R L
M M

m

M m m

νλ

λ

= =

= = +
 (17) 

We’ll work out the eigenvector N (i.e., for λ2) expressed in the (νL
c νR)T basis and leave the 

simpler case ν eigenvector (i.e., for λ1) for the reader. 

From the eigenvalue problem for (7) and (8), with the eigenvalue λ2 of (17) we get the two 
equations 

 
( )( )

( )( )
0

0 .

L R L c
M M M L D R

c R R L
D L M M M R

m m m m

m m m m

ν ν

ν ν

− + + =

+ − + =
 (18) 

This yields 

 c D
L RR

M

m

m
ν ν=  , (19) 

and an eigenvector 

 
D

RR
M

R

m

mN
ν

ν

 
 =
 
  

  . (20) 

Some care is needed to note that the top component here is really the νL
c field with the 

fractional factor indicating the size of the νL
c field compared to the νR field.  That is, N is really a 

superposition of the two fields, such that if νR has a coefficient of one in that superposition, then the 
νL

c field has a coefficient of / R
D Mm m .   In other words, in (18), the symbol νR really stands for the 

coefficient (effectively, the magnitude) of the νR field, not the field itself (which the location in the 
column vector denotes.) 
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Note also that, up to here, we have ignored the Hermitian conjugate half of (7), which we will 
have to include.  So our true N will also include that, and is, in terms of the fields themselves, rather 
than as a two component vector, expressed as 

 ( ) ( )c cD
R R L LR

M

m
N

m
ν ν ν ν= + + +  . (21) 

Similarly, the other eigenvector is found to be 

 ( ) ( )c cD
L L R RR

M

m

m
ν ν ν ν ν= + − +  . (22) 

If we now assume (to be justified below) 

 R
M Dm m>>  , (23) 

then N is composed almost entirely of νR (and its similar sibling νR
c), from (17) and (23) is very 

heavy, and is thus effectively sterile.  Conversely, νR can be thought of as composed almost entirely 
of N.  Similarly, ν is composed almost entirely of νL (and νL

c), and conversely, νL is almost entirely 
composed of the weightless ν. 

From (16), one sees that for a given value of mD, a higher value for R
Mm  means a lower the 

value for L
Mm , and vice versa, and thus, the name “see-saw mechanism”.  Further, from (21) and 

(22), the higher the value for RMm , the more νR → N and νL → ν. 

Approached in a different way, given RMm  and L
Mm , mD will be the geometric mean of those two 

masses, and will generally be closer to the lower of the two.  (If 100R
Mm =  and 1L

Mm = , then mD = 

10.)  Further, if (23) holds, from (16), we have 

 0 (but not 0)L
Mm ≈  , (24) 

and from (17), 

 .R
Mm M≈  (25) 

Thus, the mass hierarchy appears naturally as 

 0R L
M D MM m m m≈ >> > ≈  . (26) 

These results match those of the simpler approach of Section 4.1. 

The R
M Dm m>>  Assumption 

An astute reader, who hadn’t read Sections 2 and 4.1, might question if we have gained 
anything.  We originally sought a reason why the known Dirac mass mD is so small compared to 
other masses.  We got that via the eigenvalues analysis above, but in the process, we had to make 
another, seemingly arbitrary, assumption (23).  With this assumption, we appear merely to be 
substituting one mass hierarchy problem for another.  That is, we now have to ask why mD turns out 
to be so much smaller than RMm . 

The answer is this.  If we start with the mass matrix (10) with one field having zero mass 
(uncoupled to Higgs particle(s)), 



 7 

 
0 0

0 M

 
=  
 

ɶM , (27) 

and do a slight “rotation” in the 2D space of (ν  N)T, we end up with a matrix like (8) with the 
characteristic (23),  which served as our initial assumption, but which is justified if we started with 
(27).  Our assumption boils down simply to assuming a small transformation. 

5 Distinction between Majorana Mass Terms, Particles, and Representation 
The adjective “Majorana” is applied to three distinctly different things, which we need to 

distinguish between. 

The first use most people see of this term is for one of three representations of Dirac matrices 
and spinors. The three representations are Dirac-Pauli (the Standard Rep), Weyl, and Majorana. As 
noted at the beginning, this use of “Majorana” has nothing to do with the Majorana mass terms of 
this article. Everything in this article can be done in any one of the three representations. 

Herein, we so far have been dealing with the second use of the term regarding Majorana vs. 
Dirac type mass terms in the Lagrangian, i.e., (4) and (5). The neutrinos and Dirac matrices in these 
terms can be represented by any one of the three representations above. 

The third use of the term refers to type of neutrino. A Majorana particle is defined as a particle 
that is its own antiparticle.  A Dirac particle, on the other hand, has an antiparticle that is distinctly 
different from it. Typically, in almost all of one’s study of QFT, one deals with Dirac type particles. 

Neutrinos are the only particles that can be either Dirac or Majorana types. All other fermions 
are known, from experiment, to be Dirac fermions. No experiments to date (Jan 2012) have been 
able to determine if neutrinos are Majorana or Dirac particles. Double beta decay experiments may 
one day be able to do this. 

As an aside, Majorana particles are easiest to handle mathematically in the Majorana 
representation.  

Note that the neutrinos we deal with in our mass terms can be either Dirac or Majorana 
neutrinos, but both type mass terms would need to involve the same particle type. From (4) and (5), 
we see that the particles in each type term are represented by the same symbols, i.e., they represent  
the same particle type (Dirac or Majorana) in both type mass terms (Dirac and Majorana). 

In summary, we can have 

• Majorana representation in spinor space (it or one of other 2 reps can be used for any of below) 

• Majorana vs Dirac mass terms in Lagrangian (both together can be used with either particle 
type below) 

• Majorana vs Dirac type particles (Majorana is its own antiparticle) 

6 Comments on Lepton Number Conservation 
With regard to Majorana vs. Dirac type mass terms in the Lagrangian, we saw (see Wholeness 

Chart 1, pg. 3) how both types of terms do not conserve weak charge. We also saw that the 
Majorana mass terms lead to non-conservation of lepton number, whereas the Dirac mass terms lead 
to conservation of lepton number. These results were specifically for Dirac neutrinos in both types 
of mass term, where Dirac neutrinos have a lepton number +1, and Dirac antineutrinos have a 
lepton number of –1. 
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However, what if the neutrinos we are dealing with in experiment are actually Majorana 
neutrinos? Then neutrinos and anti-neutrinos would have the same lepton number, since they are the 
same particle. But this number would have to be its own negative, since quantum numbers for anti-
particles have opposite sign of those for particles. Zero is the only number that works, so we could 
conclude that Majorana particles have lepton number zero. 

Therefore, for Majorana neutrinos in both types of mass terms, all interactions solely from mass 
terms of either form will result in no change of lepton number. So, if we are dealing with Majorana 
neutrinos, the “No” we have in the last row, last column of Wholeness Chart 1 will change to a 
“Yes”. Prior to this, we had been assuming we were working with Dirac neutrinos. 

However, consider a typical interaction such as 

 for Majorana neutrinon p e ν ν ν−→ + + =  (28) 

where what we usually consider a Dirac anti-neutrino with lepton number –1, is now a Majorana 
neutrino with lepton number 0. Thus, we started with a neutron having zero lepton number, but end 
up with products having a net +1 lepton number (from the electron in (28)). We conclude that even 
though Majorana neutrinos in the Lagrangian mass terms (both Dirac and Majorana mass terms) 
will not lead to lepton number violation, interactions of Majorana neutrinos will. 

Thus, we will have lepton number non-conservation for i) Dirac neutrinos if, and only if, 
Majorana mass terms exist in the Lagrangian or ii) Majorana fermions regardless of what mass 
terms are in the Lagrangian. 

7 Possible Physical Scenarios 
There are three possible scenarios, assuming both neutrino types exist. 

Possibilities for both Dirac and Majorana neutrinos existing in nature 

1) Dirac and Majorana fermions both interact weakly, and what we see in experiments is a 
blend of both. (Not considered likely by most.) 

2) Only Dirac neutrinos interact weakly, and we don’t ever see Majorana neutrinos in any 
experiments. 

3) Only Majorana neutrinos interact weakly, and we don’t ever see Dirac neutrinos in any 
experiments. 

Possibilities if only one type exists in nature 

4) Dirac neutrinos exist, but no Majorana ones. 

5) Majorana neutrinos exist, but no Dirac ones. 

If the See-Saw Mechanism is True 

If the see-saw mechanism exists, then we have both type mass terms of (4) and (5), and with  

 0R L
M D MM m m m≈ >> > ≈ , (29) 

and for which we could have, in one scenario, Dirac neutrinos represented by νL and νR if only 
Dirac neutrinos exist. Alternatively, we could instead have Majorana neutrinos represented by those 
symbols. In either case, our interaction terms would include the symbols νL and νR, along with 
intermediate vector boson fields. 
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For mD much larger than L
Mm , the mD mass term would not play a role in the theory at energy 

levels of the present day. So we would effectively see neutrinos, be they Dirac or Majorana 
neutrinos, as having mass LMm , i.e., as having mass of the Majorana mass terms in L. 

8 Summary of See-Saw Mechanism 
See-saw MechanismTheory 

The (common textbook) treatment covered in Section 4.2 began with a general, non-diagonal 
mass matrix, looked at finding the mass eigenvalues of that matrix, and examined the relationships 
engendered between the masses.  However, looking at it somewhat in reverse, as in Section 4.1, can 
be helpful pedagogically. 

That is, start with the mass eigenstates fields ν and N, the ones coupled directly to the Higgs 
field (with ν having zero coupling), and the diagonal mass matrix (27).  The weak eigenstates fields 
νL and νR (and their charge conjugation fields) are superpositions of the ν and N fields. 

We then ask “If we transform (ν  N)T into the (νL
c νR)T, what would the transformed mass 

matrix look like?”  Well, if nature has chosen to make this a slight transformation (a small 
“rotation” in the 2D space of the fields), which is reasonable, then we would get a mass matrix with 
a very small upper left diagonal term LMm , a very large lower right diagonal term RMm , and off 

diagonal terms mD which are each the geometric mean of the diagonal ones, as in (16).  We would 
have a “see-saw” relation between the masses, and could readily have neutrino masses L

Mm  of the 

order observed.  For a greater “rotation” in 2D fields space, the greater would be the “see-saw” 
effect (bigger L

Mm  and lower R
Mm ), and also the greater the value of mD. 

The neutrinos we see in experiments could be either Dirac or Majorana types, though either 
type would have both forms for Majorana and Dirac mass terms in the Lagrangian. 

––––––––––––––- 

For further pedagogic explanations of topics in quantum field theory by the same author, see 
www.quantumfieldtheory.info . 

 


