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Special note: The material (a bit later into this document)an-eigenstates and wave packets was
developed solely by the author, who was unable to find swathrial in the literature (though it
probably exists somewhere.) Its accuracy has not been checkeukls ot

The following Wholeness Chart was originally completed owedaber 21, 2011. The material
following it was originally done as of March 13, 2010, amals never fully completed (although
almost). That material may have some errors in it, i.e.af not exactly parallel the chart below
(although it should be close.) Note that corrections have imeele as of June 1, 2016 to the %
energy vacuum terms in the continuous solutions. They hadnhiesimg a factor 0d(0).

Wholeness Chart 10-3. Discrete vs Continuous Versions of QFT

(Only Scalars Shown)

Discrete

Continuous

e+ g (k) &)

¢()—jJ7(a(k>

- 1 —ikx ikx
Field o(x) = (ak)e "™ + g (k) &)
Equations . ;\/2\{@ (bl ik y ékx)
Solutions 9 (x) ;\/T bk)e d (k) 700 = I (b(k)e—|kx+ d (k) &)
Coefficient ) , N =
Commutators [a(k). (k) J=[ b(k) B ()] = e [a(k).a'(k )] —[b(k) 8 (k)] =5k -k)
20 Mo+ 9" - 28 = (' + Do o+ 1% Yp) as at left
\ e (N () +3+ Ny (k) +3) Jea (N () +38(0) + Ny (k) + 35(0) ok
Ho Kot _pt
Nall) =2 a0k, Rlk) = b7k i) N(K) = a'(k) a(k), Ny(k) = b'(K) b(k)
Na(k), number of real particles, unitle$s’ Na(k), (num real particles}(space vol)M ~
Operator % , number of vacuum particles, unitless % , (num vacuum particle/épace vol)M
Units a(k), a'(k), unitless a(k), a'(k), M ~>?
Similar for Ny(k), b(k), b'(k), Similar for Ny(k), b(k), b'(k),
Single Particle State Relations
(Only particles, not anti-particles shown)
o' (k)10) =/ ) =| a' (K)10)=ofk ) =
Eigenstate % W (2;1)3
Creation

Eigenstate at one pointknspace, spread over
volumeV in x space.

Eigenstate at one pointknspace, spread over
universe inx space.V - o




H Operator on Non Eigen States & Wave Packets

General State
Creation,

9=clo)= X Ad (k)9

@) =clo)= Alk)l (k) &K 0)

_| 1 ik <ikyx _ e ~[[ Ak e™ Pk
CisGeneral _‘\/V(Aﬁe * /'kz e+ )>_‘Zk: R N> I ( ) (2]_[)3
State Creation
Operator CoefficientA, unitless. CoefficientA(k) units! 32 = M 32
State unitg ~** = M ** State unitg ¥ = M ¥2
Creation C= Kk _ + 3
Operator C ;Aka( ) c IA(k)a(k)d K
State Norms (g =1 (gp =1
Coefficient 21 2 3 _
Properties ;'AJ [|A®K)[ d*k=1
E?g;eir;tate Only oneAy, with A = 1. [A|/V - 11V Not very meaningful.
e—ik’x N (k) J.A(k') e—ik’x dSK
Na (k) Acting Na (k) ;A’“ J\7> ’ (27)°
g?a?eeneral 2 g 2 g kx —ik'x
1A A Z"k'ﬂ:"*' Z‘*ﬂ =AY 5{k k)| | All) - 6K
k k (277_)3
. E=<¢?<'|;“&(Na(k)+%+Nb(k)+—§)|¢?<'> E =(o(k")| [ ax Ny (k) +24(0)
e P N, (K)+15(0)6°K )
Expectation - “ +7Zk:a4< +7Zk:“4< (@ @)
Value

S K)+ 2 E={ [ Ak) - k| [ (N (k) +2(0
<;AkN;%(Na()+z <J()W J.a& N, (k)+34(0)
ik ”

gy Tl PEA g ) +30(0)0° ] A)-E d3k>
Expectation (2n)
Value =[;a&+\*ﬂdk' *32a +—$§%J<¢I¢> [ (A 8k k) +20(0) +15(0) k(g

=YAla+Yu=0+Ya | AK)] w d%k+ [ 8(0) dk=@+ [ 5(0) ' K

k k k
Multi-particle State Relations
(Only particles, not anti-particles shown)

Multi Eigen
Particles a'(k;)a' (ko) "|0>=‘(ﬂ<1 %, "> a'(ky)a’(k) -'|O>=|¢(k1) k) ">

Creation




Section 1.1 Free field solutions 3
Multi General ‘%,44,-->=(Q4C} )|0> ‘% ¢;,..>=(cqq )|0)
Creation T T =([ay(k)a () K)( A(K) d (k) PH( o)
cresion =[2A4ka (k)j[z e ()| ()0
=i sk
Particle o % o =[ A (k) e &k A(k)i & k..
Creation > J(2n)° J(2n)®
Operator
Operator C, % :M (k) C,= [ AlK)a (k) Pk
State Norms Ao =(a.9.laa.)=1 Ao =(a.a.-lga.)=1
effici 2_ 2_
et ;‘Aqk‘ =1, ;‘Ak‘ =1, etc [lA (k) d*k=1. ]| A(K)] ¢t et
N (k)| @ .2 ) N, (k)| @2 ) = N, (k) x
. g "% g -k, Fik,
Na (k) Act =N, (k 2 e n_€ € ,
on I(\/I)ulti " ( )Z%k W ;Ak W > "‘.Ah(k) (2n)° dngIA(k) (2r)° 06k,>
General
Particles State =(‘Alk‘ e +2‘Ak‘ % ¥ )|¢? 2 ) =(‘Aq(k’)‘25(k—k’)
=(\Aq F+2la, -)Iﬂm ) +2A (k) 3(k-K)+ )@ 20 .)
E=<¢& {Z@(Na k)+3+ E =(p(k;) 20(k,) -|[ @ (N, (k) +15(0)
3
Multi Eigen Ny (k) +3)|a, 2, ) By +2N (")+%15( ;‘} "|<:3k 29(k5) ..
Energy = (@ +20, + TR, T e
Expectati 1 3
e | T e dTala, o, e, 2, | 2004 k><w<;1> m(k;)kww(kl) 2(k2) )
=@ 2, D S, 20, v (0| a
k
E=(420 | X (N (k) +3 == (@20 [ (N (K) +36(0)
Multi General * Nb(k)+%)‘¢q’2¢r > * Nb(k) +%5 )d3k|¢q 24 >
Particl
gy | =Ciafar XAl ar (e A () 2] g A () e
Expectation L1y d3k+1y d3k | \
Value 1Y a +3Y ) a.2a.la2m.) [? (0)] wdk+35(0)[ar i) 24 | 2 )
k k P, + 2, + ..+ 5(0) [ @ d®k
=@t @)
k
In the energy expectation derivation for the camtims case, one finds a delta function squaredein th
Note vacuum energy part. This is undefined mathemayic8ly some perspectives, its evaluation leaves a

vacuum term of energy(k=0) which equals¢ (one particle mass). An alternative perspectivg

shown above.
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1. Solutions to Free Field Equations

For a scalar, we have

1.1 Free field solutions

=0 +0
s W
p=¢ *t9
1.1.1Discrete eigenstates (finite volume B.C.’s or palioB.C.’s)
1 ik -
Ax)= a(k )e™ + B (k )&
> v : )

1 —|kx ikx
= b(k )& &
7 (x)= X bl )™+ d (< )]

where the summation is from infinite in the negative x direction to infinite in the positive x
direction plus similar summations for the y andrections.

1.1.2Continuous eigenstates (no B.C.’s over all space)

WF—/l—sf
7 (x)= bk )& + d ( )4
J—f [ ]

where the integration ranges as the summation)ieX@ept that herk is a continuous variable.

%[a(k e+ 1k )ékX]
3)

2. Relativistic Quantum Mechanics (RQM)

In relativistic quantum mechanics (RQM{x) of (2) represents a single particle general state
that is a sum of discrete momentum eigenstatebaifdingle particle. The coefficienagk) and
bT(k) are numbers, amplitudes which, when squared, |gfeaprobability of finding the single
particle in that discrete eigenstate.

In RQM, @(xX) of (3) represents a single particle wave paclcehpnsmg an integral over
momentum eigenstates that are continuous. Thdideats a(k) andb' (k) are numbers which
represent the Fourier transform amplitudes of thersstates in the continuous momentum space.

In quantum field theory (QFT) these coefficients ant numbers but operators that each create
or destroy single particle eigenstates. Commami@QFT one employs one term in (2) to create or
destroy a single particle discrete momentum eigé@ghaving no uncertainty in its momentum, but
infinite uncertainty in its spatial location.)

2.1 Discrete Solutions

The solutions (2) in RQM are single particle gehésam of eigenstates) states, not operators, of
form (where we substitute numeridsd in RQM for operator(k) in QFT, etc.)

= 4
|>Z¢2@N zmm (4)
where|g ) has unit norm. Thatis,
—ikx
a)="% ©)

so that
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— 1 I X 47 IKX
(@la)=g [e“e™ w1, (6)
or more generally,
W( |W< J' |k>< —|kx' dS X= Jkk’ . (7)

2.1.1Probability for Discrete Solutions
For a single particle state in RQM the probabitignsity is

o LA TS o

where the subscript®i.” implies we are not integrating over space ingfiebracket. When we do
integrate, using the Kronecker delta function fetabf (7), we get

fpd3X=Z|A<F=1: 9
k
where A is the probability of measuring ti¢h eigenstate.
Note that this is the reason for the normallzatalrlors used in (2). Those factors result

in a total probability of one for a single particied A the probability for measuring tkéh
state. That is, the form of the relativistic fiedlquation gave us the form of the probability dgnsi
in the middle of (8). (See footnote 1.) The tidexivatives in (8) gave us a factor @f, and the
two terms a factor of 2. These cancel in (9) witd Zv in the denominators of the terms in (2).
TheV term in the denominator cancels in the integratiear volume in (9) and the result is a total
probability of 1.

This probability value of unity is a relativistiovariant. If we change our frame, the energy
spectrum (i.e., they values) will change (K.E. looks different for aven energy-momentum
eigenstate). But these factors cancel out in theability calculation and always result in one for
any frame. Further, th&, here are constants that do not vary with framethsoprobability of
finding any particular state is also independenwibéat frame the measurements are taken in.

As an aside, note that
(A
Q=) —F %1 (20)
(ol =3
because (unlike in NRQM) the LHS of (10) does mpiresent the integral of the probability density

over space in RQM.

2.1.2Expectation Values for Discrete Solutions

An expectation value, for energy in this exampdefaund using the probability density (8) in
parallel fashion to that of NRQM. That is, we “samch” the energy operato'r% inside the
probability density and integrate over the voluires,

E=i({eli &lao) - {eali10) = X(al(A Vi §la)= XA (12)

This is for a single particle state and equalsstlagistically weighted average of the single péatic
eigenstate energies, as it must.

! Similar to non-relativistic quantum mechanics (NRQtake the field equation (Klein-Gordon rather
than Schroedinger) and post multiply hx}> then subtract from it the same equation pre-plidtdl by

<¢|, and note the result has the form of the contynedgfuation (conservation of probability not mass or

charge in this case.) Th‘jﬁ term in this equation hagsof the form of the middle relation in (8).
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For a multiparticle stateg,@¢...) where the particles are all general rather thgaretates, the
expectation value for the total energy of all assfound by

E=i (<qopqoqqor....‘ i%‘ qopqoqqor...>’0 —< (000, ))‘ %‘ PRP: >) (12)
and turns out to be
E{otaI:Ep+Eq+_Er+"‘ (13)
i.e, the sum of expectation energies of all indiaid(general state) particles.

For a multiparticle state*qppqpqﬂ.... where the particles are all in energy eigenstaties,
expectation value for the total energy of all stasefound by

E=i (<¢Jp(aq¢r....‘ H‘(apqpq(a, >0 —< (XX })‘ H‘ PP P >) (14)
and turns out to be
Biota = Ep+ Eg+ B +. (15)
i.e, the sum of the energies of all individual (gyeeigenstate) particles.

2.2 Continuous Solutions

The continuous solutions (3) in RQM are singleipkrtwave packet states of form (where we
substitute the Fourier amplitud€k) [a continuous numerical function kf for operatola(k), etc.)

(X)) = J— j
2.2.1Probability for Continuous Solutions
For a single particle wave packet in RQM the prdliglaensity is

=i (<¢| (0'0>n.i. —<(0’0| ¢>n.i.)

A(k Ye k., (16)

' 17
& o e A et | G

1 -ik
A k ) IKX
We integrate this over space, using the Dirac del&tion relation (which is the continuous
solution case analog of (7))

Ok -K')=——— [ By, (18)

(2 )’ j
We thus find the total probability
jpd3x:j|A(k)|2d<:1, (19)
which is the correct result (k) is the properly normalized Fourier amplitdde
2.2.2Expectation Values for Continuous Solutions
The energy expectation value (with =i-% ) for the wave packet is
=|(<¢|H|¢o>—<%lH|¢>)=J|A(k)md<, (20)

which again equals the statistically weighted ageera

For a multiparticle stat p(pq@...> where the particles are wave packets, the expectadlue
for the total energy of all states turns out to be

> We note as another aside, that for wave packetRQ@QM <(0|¢ J'A(k)de #1, unlike the
corresponding result for NRQM wave packets.
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Eo =Ep+ Eg+ B+ (21)

the sum of expectation energies of all individuaves packets.
3. Quantum Field Theory (QFT)
3.1 The Hamiltonian

3.1.1Hamiltonian Density Operator

£=0,00 p-11"g'e (22)
e .,
H=Y 1g ~L=¢ p+ @ -0,00"p+ 1Py (23)
=@ +0¢' Mo+ 1%’y

3.1.2Hamiltonian Operator
Discrete solutions

H :J'Hd‘?’x:.[(@'f +0¢ Me+ ,uququ) d3x

_ 0 1 —ikx ifkx 0 ik'x
—j[kam[a(k)ek +bT(k )ék]][kla\/m[bk )ek + ak )ﬁ :IJ ﬁ (24)

+[(-ado'o+ 1Pg 9

The middle line of (24), i.e., thﬁ@*dSX part, becomes

j( _[ a(k )™+t (k )ék]][kz—_';fa& [- bk )&+ Ak )5*]} g (25

) -J_ e fatopk e e - ak )a ke 26)
, —b(k )b(k )é*e®*+ B k )d k' )& E* '

or

Note: One can shortcut the steps from here3fg {f the concern is only with finding
expectation values for energy, i.€, —<¢| H|¢) and not considering elgenvalue determlnaton,
i.e., H|@ =E|¢@. For the former case, all terms except thoseoohfa’(k )a(k )+b'(k)b(k)
will drop out as kets will not match braskmotherwise. For the latter case, terms will sugviivH
that, for example, raise the ket by one partiahe, laence there will be no eigenstate solution.

All terms in the integration in (26) result in zezrcept wherk=k’ ork=- k’. (Note that the sum
over k and k' is from negative infinity to positive infinity ithe x, y, and z directions.) Since the
volume of integration in (26) is finite and equaM, we end up with

[ dx= Z‘”‘( a(k b(-k )64 + ak )A k ¥ Bk ok ¥ bk Hatk &), @7)
Following similar steps for the next term in (24¢ get

~[0,¢/0'w*x= [ 0,09 pt*x

= [Z ﬁ[b(k) e — g (k )ékX]](; JL,[ak' )&~ B g’ )5*]} ¥ (28

:za(b(k)a(—k Je'4 + d k Jak bk )bk ¥ Ak )btk E)
k
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where we note that terms in the summation with ladind -k have a extra sign change since
k =-k' in the multiplicatiorin the second line of (28).

Similarly, for the mass term in (24) we get

[ 19/ °x=
1 —|x ikx 1 1 \=ik'x 1K X
IﬂZ(ZW[b(k) ot (k) ]J[;W[a« )8+ bk ) ]] g (29

=>4 (b(k)a( k)e™?4'+ bl )6 & - d & Jak ¥ &k )btk J&+)
k

Adding the last lines of (27),(28), and (29), ansing k*+u?=(¢,)? along with the
coefficient commutation relations,

[a(k) @ (k') |=[ b{k) B (k') |= G (discrete); = (k ~k') (continuous) (30)

we end up with

Z%(a(k)a*(k )+a (k Jak }+ B ( )bk ¥ bk )B &k )
(31)(a)
Ek:@(a (k)a(k )+L+ 15 (k ok 1+
or simply
H=Ya (Na(k)+3+Ny(k)+3). (31)(b)
k

This is the Hamiltonian operator that acts on disersolution states. If it is correct, to be
consistent, its eigen value for a state must betdked energy of the state. For example, for a
mulpiparticle state with 1 particle having energgemvalue w,, 2 particles havingy,, 1 particle
having a , we have

Ero| 0:200) = (w0, + 204+ )| 0, 2090,)
=H|g200) =Y @ (Ny(k)+1+ Ny(k )+ 1) ¢,200) (32)
k

= (npwp +nyw, + Nw, + (half integer energy states of vacm)virzpp (pq(,‘é,>

This leads us to conclude that thgandN, operators must be number operators, which aréeasit

Note that if normal ordering (where one simply ases non-commuting operators commute)
were used in the first line of (31), then we wolkée no % factors in the above.

Continuous solutions

H = J'7z’d3x I(WWD qu+yqoqo)d3x

=J(_2( ;ﬂ)sj%i@[—a(k)e-‘kX+ o (k )éﬂj([% [~ bl )e**+ d )é“]j 8 (33)

+[ (0@ D+ 179 9)dx

The middle line of (33), i.e., thfe&zﬁd?’x part, becomes
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! (- ) ikx ikx 1 \sik'x ' NIKX
a2 om ometme 051945 o

or

J. J. 1 —C(,Z(Cq(: J_ a(k)b(k' )e—ikx e—ik'x_ a(( )é ((l )éikx gx d3X d(’ d(
22m)° \Jeg o 7 | b (K )bk ) e®*+ Bk )d k' )& &~ . (35)

Using the Dirac delta function relation (18) fotdgration over all (infinite) space in the integral
over dk’ in (35) results in a relation parallel to (278, ].

[ d°x=[ S| —at bk )e*H + ak YAk )+ bk ok ¥ bk YAtk | d.(36)

a'(k)a(k ya(k—k)

Using the commutation relations (30) for the conumsicase, and evaluating the other two terms
in (33) (last line) in similar fashion to that of (28)rough (31), one ends up with the parallel
relation to (31)(b), i.e.,

H =ij(Na(k)+%5(o)+ N, (k )+35(0)) k.. (37)

This is the form of the Hamiltonian for continuous $iol states, i.e., to be used with wave
packets. Note thé(0), representing the vacuum contribution, equalsityfiand has the units of
1/ (inverse of momentum dimension to third power). 8ke 2774, this is the same as volume
units (length to third power) in physical space. $&, &(0) represents the infinite volume of all
space. Thus, the density per unit volume of spacesofdbuum energy is

Hyac _ _ vacuum energy density per
\;ac - j'cq( (%-"%) dk _j% (%+%) ok (unit volume in physical spa
(37)(a)

For a single particle state wave packet, there isneogy eigenstate of energy as the packet, by
definition is a superposition of eigenstates (of inéimiumber and infinitesimal width i space).
We discuss energy expectation values for general (igam&ate) single and multi particle states in
Section 5.

Note that the integral itk vector space of (37) is a 3D integral (in that spac, physical
space), so it can also be expressed as a scalar integral

H :j@ (N,(k)+Ny(k)) d®k  (observable Hamiltonig, (38)

Hiac =

where d°k here is an infinitesimal volume ik space.k has magnitude 21 and thus units of
1/length, sod’k has units of 1/volume. From (38), the unitsNafk) and Np(k) must be then be
volume, or Iengt?\ And thus, fromNg(k) = aT(k)a(k) andNp(k) = bT(k)b(k), a(k) andb(k) must

have units ofvvolume = Iengtﬁlz. This differs from the discrete case where all thesgatprs
were unitless.

4. Creating and Destroying General (non-eigenstateates

Questions arise in QFT as to what is created or destimyéle general solutiog(x) (or @'(X)),
which for discrete eigenstates, is a summation of teratd) eontaining a single particle eigenstate
creation/destruction operator. Does operatiog'6d on the vacuum, for instance, create an infinite
number of single particles, or a single particle casimpg an infinite number of momentum
eigenstates? If the latter, what amplitudes (whosareguare probabilities) are assigned to each
such eigenstate?
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Similar questions also arise regarding the generaimanis eigenstate solution of (3). These
are compounded by the continuous nature(®f. Does'(x) acting on the vacuum create a single
particle wave packet state? If so, what (continudwm)rier amplitude spectrum does the wave
packet have? That is, how do we determine how “spoed”’ or how “tight” the created wave
packet is?

Answer:

We do not usepT(x) to create particles, so we should not be worriediathee sum of terms in
(pT(x) for creating states. We usé(k) to create a unit normed state. Field operators (ﬁTKE)
appear in bi-linear form (such a|§(p) in all observable operators liké, and it is only these
operators that have expectation values, E.g.{ H ¢)>. In these cases all factors like
e ™ /. [2qV drop out and we are left with just number operatans things likew,).

Confusion can arise here when one considers the hetrésitment for finding the propagator in
which the relation

(o[ e)d ()]|0) = ia(x-y) (39)

was used to describe a particle created out of theuma@ty and annihilated at. This led to the
Feynman propagator, i.e., the amplitude for a alrparticle traveling frony to x. One can then
begin to think in terms ap’ as the operator to use to create and destroy states.

In reality, the propagator comes out of the math&man finding the S operator between initial
and final states. In the Interaction Picture, theatiqn of motion for the states involved the
Hamiltonian operatoH. Integrating this equation involved the Dyson-Widspansion in which
terms therein ended up containing factors of thenfof (39). The bi-linear operator form Hfled
to such factors. These factors are the propagatotsdasirtual particles betwegnandx.

One can think of these factors (i.e., of (39)) royg,hicpT creating a state githato destroys ax,
but that is not completely accurate, and as notad)ezad to confusion. In reality thed operator
does the creating, and the other factors in a péaticarm incpT lead to the correct form for the
propagator ire“®Y etc.

4.1 Discrete Eigenstates

4.1.1Creating a Single Particle State (Discrete Solut®Rorm)
Single Eigenstate for Single Particle (Discrete Solution Form)
We know that

" _ _ e—ik)"(
a'(k)|0)=|@)= > (40)

which has unit norm, and for which we employ “~" oxeo distinguish it from the dependence in
field operators such apﬁ The reason for this follows.

Aside
Suppose we wish to evaluate an expression similar jp$@6h as (41) below. Using (2) on half
of the commutator, we would have

<0|W|o>:;;(<@'(y)|%J%m(i»} (41)

The point is that the integration implied by the enmroduct of the bracket is over the
coordinates, not they coordinates. The result of (41) is a function (withoperators involved) of
y-X.

The state created _by*(k), ie., |¢g<(>”<)>, is a function of X, which is a different position
variable thanx in the ™ factor shown in (41). That is, the created stateitsaswn particular
function of position and time that is unrelated tattbf the other position dependent terntp*ln
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In QFT the accustomed manner of treating states islsitopuse the ket fornj@) without
showing, or dealing with, the inherent spacetime ddpece explicitly. We will gravitate towards
this usage as well, but for some of the derivationsfiitw directly, it can help if that spacetime
dependence is shown explicitly. The interested reaaierverlfy for hlm/herself that if the created
state depended on the same spacetime coordinaeghee “ factor |n<p then incorrect results
arise.

Each|¢g(> in (41)) has unit norm and is orthogonal to eveheosuch eigenstate. That is,

&< 42
2)="% (42)
so that
<@|W< J'elkx e P y=1 (43)
or more generally,
(@ @) =3 - (44)

In QFT the middle part of (43) is rarely expressed @amel simply uses (44).
General non-Eigen Statefor Single Particle (Discrete Solution Form)

To create a general particle state, which is a sugigastates, we would need an operator of
form

C=> Aal, (45)
k
so that
cl0)=3 Ast[0= A" )+ A7)+ A5
o NY Y N A (46)

=Al@)+ Alg)+ Alg)+ =lg) .
In (45) and (46)A is a numerical coefficient, the square of which (foyper normalization) equals
the probability of finding thé eigenstate. (See (4), (8), and (9).)

If only one term irC is used, then only one eigenstate witfj £ 1 is created. If a more general
state, comprising a sum of eigenstates, is created wheare free to select thig as we please in
order to create the particular general state we [ikevided (for conservation of probability and
correct normalization so total probability is unity)

2IAF=1. (47)
Important point: Note in QFT we have k
(Pl@)=>|AF=1 (48)
whereas in NRQM, we had (see (10), repeat(:d below)
(A= Z(M £1. (49)

3 Actually, though it is a subtle point at this ﬂa@_ik’(’> here has no energy (time) dependence in the

exponent as long as we are working in with the éldigrg picture (which we do with free fields in the
usual development of QFT.) In the Schroedingetupé; the state would have time dependence. When
going to the interaction picture (for interactinglds in QFT) the time dependence for states véllon

the interaction part of the Hamiltonian (but nat free part.)
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This is because the kets created in QFTayTahave unit norm, whereas the ket solutions to thd fiel
equations in NRQM do not.
4.1.2Destroying a Single Particle State (Discrete)
Note that the operator
D=)a (50)
k

acting on any single particle general state will Iovleat state to the vacuum. If acting on the
vacuum, each term in (50) will destroy it. That is,

(;akJI¢>=(;akjlﬂl¢1>+ Al o)+ Algy+ )
=[[;akjalﬂ>+[;ak)A2|¢z>+[;ak]As|¢3>+---] (51)

=A[0)+0+0+ ..+ 0+ A[ O+ O+ ..=| 0
(We re-normalized the vacuum on the RHS above.)

4.1.3Creating a Multi-particle State (Discrete Solutidform)

Applying operators similar in form to (45) (with figally different values forA, in each
operator) twice in succession creates a two partithte where each particle is a single particle
general state (i.e., each is a summation of mometigenstates.) Any number of such operators
may be applied to create a state of any numbearnictes, each in a general (not eigen) state.

Multiparticle states have unit norms, e.g.,
(%200 9.200) =1 (52)

4.1.4Destroying a Multi-particle State (Discrete Solutid=orm)

Application of (50) repeatedly will destroy one geml state single particle upon each
application.

4.2 Continuous Eigenstates

4.2.1Creating a Wave Packet (Single Particle State oinBouous Solution Form)

For continuous solution form states, we parallal age in 4.1 above of the creation operators
al in (2) to create a general creation operator. t§Nbere is no such thing as an eigenstate of
continuous solution form.) We use the operatorg3into create a single particle wave packet
composed of an integral of continuous momenta sig¢es. That is, by analogy,

C= j ok Ak B (k), (53)

which can be seen with the aid of the table below.
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Discrete Solution Form

Continuous Solution Form

Eigenstate creatio a*k|0) :|¢i’<> _ e-iKX> aT(k)|0> :|¢g<> _ oikx
operator N m
General state C= y _ +
creation operator ; Al C ‘J.dk Ak R (k)
clo e—iklx e—ikzx
= = +A|—— )+ ..
1=c19-4%7)* 4 %5 9=clo
General state =Ala)+ 'é?|¢2>+ =J.dk AK) gk
_ Z A( e—IkX> (277.)3
=W

A(k) is the Fourier amplitude, which is a numericahtbouous function ok, and which we can
choose as we like to create the wave packet shegieed.

4.2.2Destroying a Wave Packet (Single Particle StateCaintinuous Solution Form)

Once again, by analogy, we have a wave packetudtisin operator

D=.|'dka(k),

which can be seen with the aid of the table below.

(54)

Discrete Solution Form

Continuous Solution Form

Eigenstate ik ol
destruction ak|¢{<>:ak _>:|o> a(k)|¢{<>:ak :|o>
operator W (2m)?
General state

destruction D=2 a D= J' dka(k )
operator K

4.2.3Creating a Multi-Wave Packet State (Multi-partici@ontinuous Solution Form)

Applying operators similar in form tG@ of (53) (with typically different Fourier spectfgk) in
each operator) twice in succession creates a twiwlpastate where each particle is a wave packet.

4.2.4Destroying a Multi-Wave Packet State (Multi-parteel Continuous Solution

Form)

Application of (54) repeatedly will destroy one vegwacket particle upon each application.

5. Probability and Expectation Values in QFT
As described in footnote 1 on page 5, we can déterm continuity (conservation) equation,

i.e., a 4D current divergence equal to zero, irilainfiashion to what was done in NRQM to find the
probability conservation relation. Take the fielguation (Klein-Gordon rather than Schroedinger)
and pre multiply by¢/ , then subtract it from the complex conjugate Ki@iordon equation post
multiplied by ¢, and note the result has the form of the contyneguation

ap(ivper

T +[ |:.l|'0p6r = j('Jper#/.( =0 (55)

where

13
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poper = Joper - (d@o @ ¢) j:)per = j'operI = (¢T¢,i_ ¢T #’) . (56)

We use the subscript “oper” to distinguish betwtarp of RQM, which represented the numerical
particle density, ando,,., of QFT, which is composed of operators and isefoge itself an
operator. We also use a prime pf),., for reasons which will be seen. We derive belosingle
particle densityperator o, that is closely related t@y,,.

5.1 Probability Density for Discrete Solutions in QFT

Note that from (2)p,,,, has the form

Poper = [ZZJ—N][ZJ_ J_J ( ?&j:](kz ZZ*K' 3\;}

—|kx

|k><
( N N](Zﬂ/— W
The third term in (57) will cause us problems laver We can circumvent those problems by
noting that ;.. is not the only entity that satisfies the contip@iquation (55).

Take the field equation (Klein-Gordon here) awstmultiply it by ¢/ , then subtract that from
the complex conjugate field equatipre multiplied by ¢. You obtain agog,., and jg,, that satisfy
the continuity equation (55), for which

P =i (@0 0-00d)  I"'=-(ad, - 0e). (58)
XXX Need to check signs here XXXhe complete form for the probability density cgter should
then be a linear combination @f,,., and ;... We take this to be the average of the two, i.e.,
poper poper
2

In (59), not only do terms like the third one ir7Y5ancel out, but the entire bottom row in (57)
does as well. Thus, we find

AR T ) -

5.1.1Single Particle Probability Density (QFT, Discrete)
Single Particle Eigenstate

Hence, for a single particle in an eigenst{a@,), the numerical probability density is the
expectation value of the corresponding operator,

= <¢&” | poper' @"> = <¢&”( )~()|popex X )| @" ( 5()> . (61)

All terms in (60) withk k" will result in different particles (in orthogonsiates) in the bra and
ket, and drop out, leaving

(57)

]+ (termsina’ b",. and,a, )

poper (59)

> (a'a, -b'by) D UNL (k)= Ny (k)
— k — K
p={d] v @)= (4| v |#) (62)
_1
-

Note that the bracket integration ovrcauses only terms wheike=k' to survive. This also
results in the cancellation of factors in the nuatens and denominators, and the severing of
dependence ox

The final result in (62) is what we would expedthe total probability is the integral pfover
the volume and equals unity. Note that an anigarstate would have a negative probability
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density (from theNy(k) operator) and a total probability of negativeeon This led to the
interpretation ofp as charge density (probability of finding the giveharge at any particular
location) and its integral over volume as the patantiparticle charge.

Note further, that probability density in QFT foruait norm ket is not invariant, due to the
relativistic change in volum¥ for a different frame. But total probability isvariant (and always
equals one), since in the integration over volutimeV factors cancel.

Single Particle General State
For a general single particle state, composedsoparposition of eigenstates, where

|9 =Ala)+ Ale)+ Alp)+ ... (63)

we have, ignoring anti-particles for simplicity,

£ = (@ Poper| @) = (A KX)] Popel X)| P(X) =

P o el by e o

To help in evaluating (64), look initially at ontlie first two terms in each of the ket and thetrigh
hand operator summations.

Cq(ak e|kx]

2 o W

(64)

—|k X

Z'Ak 7~ > 1st two terms =

C(.f( ay e —ikyx a& a iky X e—ik1$< élkzx
= 65
P, W o, f]‘\lw”’*zfv> (©9)
W, e —ik; X Ak | > w, € ik, x e|k2x>
Pa, W 24, \/_ | W
The two summations (ik andk') on the left side of (64) look like
elkl)( é'kli " 1 é’kzx
2 . 66
<|“¢2 +<ﬁ;mJﬁth (66)

If we take the bra-ket, i.e., the integral over of (64), using (66) and the last line of (65), get
(including all terms, not just the first two)

1
PG LA A (67)
k k"
which is the probability density. If we integrate@ver all space to get total probability, we find
J.pdV=Z|A<|2=1, (68)
k

which is what it should be, and also equals tha& tmimber of particles.

Parallel remarks to those made above with regardingle particle eigenstates for total
probability, antiparticle charge/probability degsiaind invariance apply to general single particle
states, as well.
5.1.2Multiple Particle State Probability Density (QFT, iBcrete)

All Particlesin Eigenstates
For a multi particle state in which all particle® & eigenstates, such as
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9 =|w200) (69)
we have

P = (8,200 oper| 0,204, - (70)

Any operator acts on a multi particle ket one péetiat a time, much like a derivative on a
product of fucntions. Hence, for a destructionrap® a,., one would have

N
29, (kz aququ ¢4> + ¢p2¢q[;ak'¢rj> |

with a parallel relation for the action aﬁ on the bra. When (71) is used with (60) in (&l kets

are destroyed (become equal to zero) except tlowsehich k' equals the eigen momentum of one
of the particles. This leaves only those eigen mwm terms inside (70), and thus we have a
relationship similar to that for a single partieigenstate (62), i.e.,

22| a200)=
‘ (72)

+

> (a'ya b by) D UNL (k)= Ny (k)
i |9 =(@200|~ Y, |#%200) (72)
_1+2+1_4
vV

The integral of this over the volume vyields a tqiedbability of 4, which for 4 particles, might
make sense in some sort of way. Since this integpaals the number of particlgs,can thus be
more properly interpreted as particle number dgnsit charge density) where antiparticles have
negative numbers.

In QFT, which invariably deals with multiparticléages it is more advantageous to focus on the
number operators. In fact, we can think of thaltotimber operator as the integral 0p,,, over

the volume.
N = [ PoperdV =3 (N, (k )= N, (€ ). (73)
k

Particlesin General States

Consider multi particle states where the partickgs in general (non eigen) states, i.e.,
‘%Z%qor> , where, for example,

%)=

> Ac e_w> , (74)
AW,

and similar relations hold for the other partidleshe multi particle state.
When (71) and its parallel relation for the bra ased in (70), we get a term similar to (67) for
each ket term on the right side of (71), i.e.,

ik'x

o] ),

Sik"x

(75)

" eik'x ” e—ik"x ”
D R

When we integrate (75) over all space we get
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_ A Ac
dV = 1+ 20, 4 §—— 76
[pav=1+ Jkk(; T@,j%(;‘* 2%}% (76)

or

A =12+1=4 (77)

Joav=3]oal 23] Al +X

Relation (75) is cumbersome to say the least, vase(é7) is quite simple and equals the total
number of particles. In QFT, it turns out to beariably simpler to focus on the number operators,
for which

Number of particles {pdv = j((pi Poper( X)) @) X
= Expectation value of number operator

= (g3 (@ a - b by )| B = (e T (N (K )= Ny (K )| (78)
k k
=n,-n,.
In our example,
3Ny (K )= Ny (K ))
_ 1+2+1

\Y
For a multi particle stat¢¢>:‘(Ap1¢p1+ AyPort ) 2( APat At ) > in which the
particles are in general, not eigen, states, we hav
D (N(k)= Ny (k)
P = Poper| @) = (A —, 9

(A’231+ A§2+ sz)s"' __)+2( A§l+ A§2+ A§3+ _),+ .
\Y
_1+2+...  Total num of particles
v Vv '
Again, we can consider the total particle numbesrafor as having the form in (73).

(80)

5.2 Probability Density for Continuous Solutions in QFT

The continuous solution probability density and bemoperator relations are developed below
in direct parallel with the discrete solutions depenent above. Note that, in analogy with (60)
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aT( k!) eik'x , cq(ra(k ) e —ik"x )
=2 dk ok
For [I J2ae Joem)? }[ J2we Jc2n)? ]

(81)

b'(k') €&k* wb(k") €
-2 | —= dk’ dk” |,
(J J2ae |J2m)? / V2o J(2m)?
and as before, the numerical probability densityésexpectation value of (81),

= (A %)| Poper X)| (X)) - (82)

5.2.1Single Particle Wave Packet Probability Density (QFContinuous)
Consider| qo) as a single particle wave packet where, if fongicity we ignore antiparticles,

—ik "X
Ak™) k"),
[y £ >

where proper normalization foA(k™ ) is assumed. As an aside, note that (need to refireda,
a’, and N, operator action on continuous ket before here)

(gx)a’ (k" ak")| %)= A (k" )AK") (84)
and this is only non-zero whed =k".
By analogy to (67), we have probability density

|A%)= (83)

ik”x

_ 1 T n n
p=—F— (k')—=—=&' A" )k (85)
o 10 o e
Integrating (85) over all space (and using the ®dalta relation (18)) results in
[ padv =[] Ak’ ) ok =1, (86)

This equals the total probability of finding a degvave packet somewhere over all space and looks
familiar to what we have seen in non-relativistimgtum mechanics. It also equals the number of
particles. Thus we may define a number operator as

N =jp0perdv=j( NL(k - Nk ) & (87)
in analogy with (73) for discrete solution statesl @onsonant with (37).

5.2.2Multiple Particle General State (QFT, Continuous)

Consider continuous solution multi particle statdeere the particles are in general (non eigen)
states, i.e.}¢p2¢q¢r> , Where, for example,

%)=

[ oAK™) e dk"'>, (88)
(2m)°

and similar relations hold for the other partidleshe multi particle state. By analogy to (75)

|kx

ik ‘X
1 [ o ARET %

= (89)
(2m)? ( gk gk
+ quT(k')—dk'J [J-cq("—qA(k" )d<"J +
V24, @ NVIAY @
Thus,
[oav=[ Al «+2f[ Al &+]|, p|" =1+2+1= 2 (90)
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This, again, equals the number of particles andden

Number of particles {pdv = J'<qo| Poper (X)) X
= Expectation value of number operator

=(¢|[(a"(k)a(k)=b"(k )b(k))dk | @) = (e [ (Na (k )= N, (k )) k| )

=na_nb.

(91)

6. Action of Hamiltonian on States (QFT)

6.1 Discrete Eigenstates (QFT)
We treat only the general state particle casehaseigen state particle case is a special case
where allA, are zero except one, with that one having an atesseblue (modulus) of 1.

6.1.1General Single Particle State (QFT, Discrete)

For the Hamiltonian ofError! Reference source not found., and again concentrating for
simplicity only on particles (and not anti-partig)e&kets, the energy expectation value is

E={dH|9
ikX
:<;A{jv 2t (NaK )3+ Nk )+3)

=;&;@'&r®k'=;\&\za&-

In the last line we ignored thewyzcontributions from the vacuum.

For an eigenstatkp) =| ¢ ) all but one coefficient in (92) equals zero, andhage E = E= ) .
6.1.2General Multi Particle State (QFT, Discrete)

For multi particle states where at least some @fddrticles are in general states, we have

E=(AH|9) =(%200| X @ (Na(K' )+ 3+ Ny(K' )+ 3)| 9,200, (93)
3

eik’")"(
; A N> (92)

With the Hamiltonian operator acting on the ketheesa, operator did in (71), this results in
E=Ya (Al +2.A1 Af)= B 2B+ . (°4)
k

wherein the total expected energy value equalsuie of the expectation energies for each particle
in the state, and we have again ignored the vaaamuribution.

For all particles in eigenstates of energy, thdtioes toE = w, + 2w, + &, .
6.2 Continuous Eigenstates

6.2.1Single Particle Wave Packet State (QFT, Continuous)
For a single particle wave packet, the ket has form

ik "%

Ak" c &" ), 95
[ A )W > (95)

|@%)) =

and the energy expectation value is
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=(dHl9)

|kx

<f Al (k) &[] Ay w> )
2y 2y

Noting that eachiN, (k') operator acting on the ket leaves zero except vidierk” , we have
g ikx
ok || [ e AK' y— &’ (97)

S :
J(2n (27)
Integrating this over all space and using the Ditalta function again, we end up with
E=[a A (k)AK )d = [ a| Ak & (98)
in complete analogy with (92).

6.2.2Multi Particle Wave Packet States (QFT, Continuous)
For a multiparticle state where the particles aagenpackets,

E=(¢dH|9)
<¢)p2¢q¢r J'cq( N a(k'")+35(0)+ Ny(k')+15(0) d<‘¢)p20q¢r>

and once again we have the operator acting seqllgrin each particle in the ket. Ignoring the
vacuum contribution, this results in a series ahtelike (98), i.e. XXX Think thru XXX

E=J.cq<(‘pA(kf+2‘qA(k I+, Ak }2) k=E+2E+ E. (100)

Thus, the expected energy is the sum of the exgpertergies for each wave packet particle.

dk

[ (N )+33(0)+ N, (< 1+ $4(0))

(99)

7. Action of Hamiltonian on the Vacuum
Rough thoughts only as of March 13, 2010..



