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Special note:  The material (a bit later into this document) on non-eigenstates and wave packets was 
developed solely by the author, who was unable to find such material in the literature (though it 
probably exists somewhere.) Its accuracy has not been checked by others. 
 
The following Wholeness Chart was originally completed on November 21, 2011. The material 
following it was originally done as of March 13, 2010, and was never fully completed (although 
almost). That material may have some errors in it, i.e., it may not exactly parallel the chart below 
(although it should be close.) Note that corrections have been made as of June 1, 2016 to the ½ 
energy vacuum terms in the continuous solutions. They had been missing a factor of δ (0). 
 

Wholeness Chart 10-3. Discrete vs Continuous Versions of QFT 
(Only Scalars Shown) 
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Single Particle State Relations 
(Only particles, not anti-particles shown) 
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Creation 
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General State 
Creation, 

C is General 
State Creation 
Operator 
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Coefficient A(k) units l  
3/2 = M –3/2.  

State units l –3/2  = M 3/2 
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Multi-particle State Relations 
(Only particles, not anti-particles shown) 
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Note 

In the energy expectation derivation for the continuous case, one finds a delta function squared in the 
vacuum energy part. This is undefined mathematically. By some perspectives, its evaluation leaves a 
vacuum term of energy ω(k=0) which equals µ (one particle mass). An alternative perspective is 
shown above. 
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 1.  Solutions to Free Field Equations 

For a scalar, we have 

1.1 Free field solutions 
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1.1.1 Discrete eigenstates (finite volume B.C.’s or periodic B.C.’s) 
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where the summation is from infinite k in the negative x direction to infinite k in the positive x 
direction plus similar summations for the y and z directions.  

1.1.2 Continuous eigenstates (no B.C.’s over all space) 
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where the integration ranges as the summation in (2) except that here k is a continuous variable. 

 2.  Relativistic Quantum Mechanics (RQM) 
In relativistic quantum mechanics (RQM) φ(x) of (2) represents a single particle general state 

that is a sum of discrete momentum eigenstates of that single particle.  The coefficients a(k) and 
b†(k) are numbers, amplitudes which, when squared, equal the probability of finding the single 
particle in that discrete eigenstate. 

In RQM, φ(x) of (3) represents a single particle wave packet comprising an integral over 
momentum eigenstates that are continuous.  The coefficients a(k) and b†(k) are numbers which 
represent the Fourier transform amplitudes of the eigenstates in the continuous momentum space. 

In quantum field theory (QFT) these coefficients are not numbers but operators that each create 
or destroy single particle eigenstates.  Commonly in QFT one employs one term in (2) to create or 
destroy a single particle discrete momentum eigenstate (having no uncertainty in its momentum, but 
infinite uncertainty in its spatial location.) 

2.1 Discrete Solutions 
The solutions (2) in RQM are single particle general (sum of eigenstates) states, not operators, of 

form (where we substitute numerical Ak in RQM for operator a(k) in QFT, etc.) 
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V
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or more generally, 
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V
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2.1.1 Probability for Discrete Solutions 
For a single particle state in RQM the probability density1 is 
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where the subscript “n.i.” implies we are not integrating over space inside the bracket.  When we do 
integrate, using the Kronecker delta function relation of (7), we get 

 3 2 1d x | A |ρ = =∑∫ k
k

, (9) 

where |Ak|
2 is the probability of measuring the kth eigenstate. 

Note that this is the reason for the normalization factors 1
2 Vωk

 used in (2).  Those factors result 
in a total probability of one for a single particle and |Ak|

2 as the probability for measuring the kth 
state.  That is, the form of the relativistic field equation gave us the form of the probability density 
in the middle of (8).  (See footnote 1.)  The time derivatives in (8) gave us a factor of ωk, and the 
two terms a factor of 2.  These cancel in (9) with the 2ωk in the denominators of the terms in (2).  
The V term in the denominator cancels in the integration over volume in (9) and the result is a total 
probability of 1. 

This probability value of unity is a relativistic invariant.  If we change our frame, the energy 
spectrum (i.e., the ωk values) will change (K.E. looks different for a given energy-momentum 
eigenstate).  But these factors cancel out in the probability calculation and always result in one for 
any frame.  Further, the Ak here are constants that do not vary with frame, so the probability of 
finding any particular state is also independent of what frame the measurements are taken in. 

As an aside, note that 
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ω
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because (unlike in NRQM) the LHS of (10) does not represent the integral of the probability density 
over space in RQM. 

2.1.2 Expectation Values for Discrete Solutions 
An expectation value, for energy in this example, is found using the probability density (8) in 

parallel fashion to that of NRQM. That is, we “sandwich” the energy operator 
t

i ∂
∂  inside the 

probability density and integrate over the volume, i.e.,  
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. (11) 

This is for a single particle state and equals the statistically weighted average of the single particle 
eigenstate energies, as it must. 

                                                 
1 Similar to non-relativistic quantum mechanics (NRQM), take the field equation (Klein-Gordon rather 

than Schroedinger) and post multiply by φ , then subtract from it the same equation pre-multiplied by 

φ , and note the result has the form of the continuity equation (conservation of probability not mass or 

charge in this case.)  The t
ρ∂

∂  term in this equation has ρ of the form of the middle relation in (8). 
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For a multiparticle state p q r ....φ φ φ  where the particles are all general rather than eigenstates, the 
expectation value for the total energy of all states is found by  

 ( )00p q r p q r p q r , p q rt t,
E i .... i .... ( ....) i ....φ φ φ φ φ φ φ φ φ φ φ φ∂ ∂

∂ ∂= −  (12) 

and turns out to be 

 total p q rE E E E= + + +…  (13) 

i.e, the sum of expectation energies of all individual (general state) particles. 
For a multiparticle state p q r ....φ φ φ  where the particles are all in energy eigenstates, the 

expectation value for the total energy of all states is found by  

 ( )00p q r p q r p q r , p q r,
E i .... H .... ( ....) H ....φ φ φ φ φ φ φ φ φ φ φ φ= −  (14) 

and turns out to be 

 total p q rE E E E= + + +…  (15) 

i.e, the sum of the energies of all individual (energy eigenstate) particles. 

2.2 Continuous Solutions 
The continuous solutions (3) in RQM are single particle wave packet states of form (where we 

substitute the Fourier amplitude A(k) [a continuous numerical function of k] for operator a(k), etc.) 
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2.2.1 Probability for Continuous Solutions 
For a single particle wave packet in RQM the probability density is 
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We integrate this over space, using the Dirac delta function relation (which is the continuous 
solution case analog of (7)) 
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We thus find the total probability 
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which is the correct result if A(k) is the properly normalized Fourier amplitude2.  

2.2.2 Expectation Values for Continuous Solutions 
The energy expectation value (with 

t
H i ∂

∂= ) for the wave packet is  
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which again equals the statistically weighted average. 
For a multiparticle state p q r ....φ φ φ  where the particles are wave packets, the expectation value 

for the total energy of all states turns out to be 

                                                 

2 We note as another aside, that for wave packets in RQM 
2| ( )|

2 1A dωφ φ = ≠∫ k

k k , unlike the 

corresponding result for NRQM wave packets. 
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 total p q rE E E E= + + +… ., (21) 

the sum of expectation energies of all individual wave packets. 

 3.  Quantum Field Theory (QFT) 

3.1 The Hamiltonian 

3.1.1 Hamiltonian Density Operator 
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3.1.2 Hamiltonian Operator 
Discrete solutions 
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The middle line of (24), i.e., the † 3d xφφ∫ ɺ ɺ  part, becomes 
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   Note:  One can shortcut the steps from here to (31) if the concern is only with finding 
expectation values for energy, i.e., E Hφ φ= , and not considering eigenvalue determination, 
i.e., H Eφ φ= .  For the former case, all terms except those of form † †( ) ( ) ( ) ( )+a k a k b k b k  
will drop out as kets will not match bras in k otherwise.  For the latter case, terms will survive in H 
that, for example, raise the ket by one particle, and hence there will be no eigenstate solution. 

All terms in the integration in (26) result in zero except when k=k/ or k= - k/.  (Note that the sum 
over k and ′k  is from negative infinity to positive infinity in the x, y, and z directions.)  Since the 
volume of integration in (26) is finite and equal to V, we end up with 
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( )

3 3

3

2
2 2

2 2

2

† i †
i i i

ikx † ikx ik x † ik xi i

i t i t† † † †

d x d x

ik ik
b( )e a ( )e a( )e b ( )e d x

V V

b( )a( )e a ( )a( ) b( )b ( ) a ( )b ( )eω ω

φ φ φ φ

ω ω

ω

′ ′− −

′ ′

−

− ∂ ∂ = ∂ ∂

  ′
   ′ ′= − −       

  

= − + + + −

∫ ∫

∑ ∑∫

∑ k k

k kk k

kk

k k k k

k
k k k k k k k k

 (28) 
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where we note that terms in the summation with both k and - k have a extra sign change since 
i ik k′= −  in the multiplication in the second line of (28). 

Similarly, for the mass term in (24) we get 

 

( )

2 † 3

2 † † 3

2
2 2† † † †

1 1

2 2

2

ikx ikx ik x ik x

i t i t

d x

b( )e a ( )e a( )e b ( )e d x
V V

b( )a( )e b( )b ( ) a ( )a( ) a ( )b ( )eω ω

µ φ φ

µ
ω ω

µ
ω

′ ′− −

′ ′

−

=

  
   ′ ′+ +       

  

= − + + + −

∫

∑ ∑∫

∑ k k

k kk k

kk

k k k k

k k k k k k k k

 (29) 

 
Adding the last lines of (27),(28), and (29), and using 2 2 2( )µ ω+ = kk  along with the 

coefficient commutation relations,  

 ( ) ( ) ( ) ( ) ( )† † (discrete); (continuous)a ,a b ,b δ δ′   ′ ′ ′= = = −    kkk k k k k k  (30) 

we end up with 

 
( )
( )1 1

2 2

2
† † † †

† †

H a( )a ( ) a ( )a( ) b ( )b( ) b( )b ( )

a ( )a( ) b ( )b( )

ω

ω

= + + +

= + + +

∑

∑

k

k

k
k

k k k k k k k k

k k k k
 (31)(a) 

or simply 

 ( )1 1
2 2a bH N ( ) N ( )ω= + + +∑ k

k

k k . (31)(b) 

This is the Hamiltonian operator that acts on discrete solution states. If it is correct, to be 
consistent, its eigen value for a state must be the total energy of the state. For example, for a 
multiparticle state with 1 particle having energy eigenvalue pω , 2 particles having qω , 1 particle 
having rω , we have 

 

( )
( )

( )

1 1
2 2

2 2 2

2 2

half integer energy states of vacuum) 2 .

Tot p q r p q r p q r

p q r a b p q r

p p q q r r p q r

E

H N ( ) N ( )

n n n (

φ φ φ ω ω ω φ φ φ

φ φ φ ω φ φ φ

ω ω ω φ φ φ

= + +

= = + + +

= + + +

∑ k
k

k k  (32) 

This leads us to conclude that the Na and Nb operators must be number operators, which are unitless. 
Note that if normal ordering (where one simply assumes non-commuting operators commute) 

were used in the first line of (31), then we would have no ½ factors in the above. 
 

Continuous solutions 

 

( )

( )

3 2 3

3
3

2 3

1

2 2

† † †

ikx † ikx ik x † ik x

† †

H d x d x

d d
i a( )e b ( )e i b( )e a ( )e d x

( )

d x

φφ φ φ µ φ φ

ω ω
π ω ω

φ φ µ φ φ

′ ′− −
′

′

= = + ∇ ∇ +

  ′
   ′ ′= − + − +       

  

+ ∇ ∇ +

∫ ∫

∫ ∫ ∫

∫

k k
k k

k k k k

ɺ ɺ

k k

H

(33) 

 
The middle line of (33), i.e., the † 3d xφφ∫ ɺ ɺ  part, becomes 
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† † 3

3

1

2 2
ikx ikx ik x ik x( )

a( )e b ( )e b( )e a ( )e d d d x
( )

ω ω
π ω ω

′ ′− −′

′

  −
   ′ ′ ′ − + − +      

  
∫ ∫ ∫ k k

k k

k k k k k k
 (34) 

or 

 
3

3

1

2 2

ikx ik x † ikx ik x

† ikx ik x † † ikx ik x

a( )b( )e e a( )a ( )e e
d x d d

( ) b ( )b( )e e b ( )a ( )e e

ω ω
π ω ω

′ ′− − −
′

′ ′−
′

   ′ ′−−
 ′  

  ′ ′− +    
∫ ∫ ∫k k

k k

k k k k

k k k k
k k

. (35) 

Using the Dirac delta function relation (18) for integration over all (infinite) space in the integral 
over d ′k  in (35) results in a relation parallel to (27), i.e., 

 

( )

2 23

2
†

i t i t† † † † †

a ( )a( )

d x a( )b( )e a( )a ( ) b ( )b( ) b ( )a ( )e dω ω

δ

ωφφ −

+ −

 
 = − − + + − −
 
 
 

∫ ∫ k kk

k k k k

k k k k k k k k kɺ ɺ
�����

.(36) 

Using the commutation relations (30) for the continuous case, and evaluating the other two terms 
in (33) (last line) in similar fashion to that of (28) through (31), one ends up with the parallel 
relation to (31)(b),  i.e., 

 ( ) ( )( )1 1
2 20 0a bH N ( ) N ( ) dω δ δ= + + +∫ k k k k . (37) 

This is the form of the Hamiltonian for continuous solution states, i.e., to be used with wave 
packets. Note the δ (0), representing the vacuum contribution, equals infinity and has the units of 
1/k3 (inverse of momentum dimension to third power). Since k = 2π/λ, this is the same as volume 
units (length to third power) in physical space. So, the δ (0) represents the infinite volume of all 
space. Thus, the density per unit volume of space of the vacuum energy is 

                            ( ) ( ) ( )1 1 1 1
2 2 2 2

vacuum energy density per
unit volume in physical space

vac
vac

H
d d

V
ω ω= = + = +∫ ∫k kk kH �             

(37)(a) 
For a single particle state wave packet, there is no energy eigenstate of energy as the packet, by 

definition is a superposition of eigenstates (of infinite number and infinitesimal width in k space).  
We discuss energy expectation values for general (non-eigenstate) single and multi particle states in 
Section  5.  

Note that the integral in k vector space of (37) is a 3D integral (in that space, not physical 
space), so it can also be expressed as a scalar integral 

 ( ) ( )3 observable Hamiltoniana bH N ( ) N ( ) d kω= +∫ k k k , (38) 

where d3k here is an infinitesimal volume in k space. k has magnitude 2π/λ and thus units of 
1/length, so d3k has units of 1/volume. From (38), the units of Na(k) and Nb(k) must be then be 
volume, or length3. And thus, from Na(k) = a†(k)a(k) and Nb(k) = b†(k)b(k), a(k) and b(k) must 

have units of volume = length3/2. This differs from the discrete case where all these operators 
were unitless. 

 4.  Creating and Destroying General (non-eigenstate) States 
Questions arise in QFT as to what is created or destroyed by the general solution φ(x) (or φ†(x)), 

which for discrete eigenstates, is a summation of terms, each containing a single particle eigenstate 
creation/destruction operator.  Does operation of φ†(x) on the vacuum, for instance, create an infinite 
number of single particles, or a single particle comprising an infinite number of momentum 
eigenstates?  If the latter, what amplitudes (whose squares are probabilities) are assigned to each 
such eigenstate? 
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Similar questions also arise regarding the general continuous eigenstate solution of (3).  These 
are compounded by the continuous nature of φ(x).  Does φ†(x) acting on the vacuum create a single 
particle wave packet state?  If so, what (continuous) Fourier amplitude spectrum does the wave 
packet have?  That is, how do we determine how “spread out” or how “tight” the created wave 
packet is? 
Answer: 

We do not use φ†(x) to create particles, so we should not be worried about the sum of terms in 
φ†(x) for creating states.  We use a†(k) to create a unit normed state. Field operators like φ†(x) 
appear in bi-linear form (such as φ†φ) in all observable operators like H, and it is only these 
operators that have expectation values, e.g.,E Hφ φ= . In these cases all factors like 

2ikxe / Vω−
k  drop out and we are left with just number operators (and things like ωk). 

Confusion can arise here when one considers the heuristic treatment for finding the propagator in 
which the relation 

 0 0†( x ), ( y ) i ( x y )φ φ  = ∆ −   (39) 

was used to describe a particle created out of the vacuum at y and annihilated at x.  This led to the 
Feynman propagator, i.e., the amplitude for a virtual particle traveling from y to x.  One can then 
begin to think in terms of φ† as the operator to use to create and destroy states. 

In reality, the propagator comes out of the mathematics in finding the S operator between initial 
and final states.  In the Interaction Picture, the equation of motion for the states involved the 
Hamiltonian operator H.  Integrating this equation involved the Dyson-Wicks expansion in which 
terms therein ended up containing factors of the form of (39).  The bi-linear operator form of H led 
to such factors.  These factors are the propagators for the virtual particles between y and x.   

One can think of these factors (i.e., of (39)) roughly as φ† creating a state at y that φ destroys at x, 
but that is not completely accurate, and as noted, can lead to confusion.  In reality the a† operator 
does the creating, and the other factors in a particular term in φ† lead to the correct form for the 
propagator in e-ik(x-y) etc. 

4.1 Discrete Eigenstates 

4.1.1 Creating a Single Particle State (Discrete Solutions Form) 
Single Eigenstate for Single Particle (Discrete Solution Form) 

We know that 

 0
ikx

† e
a ( )

V
φ

−

= =kk
ɶ

, (40) 

which has unit norm, and for which we employ “~” over x to distinguish it from the x dependence in 
field operators such as φ†.  The reason for this follows. 
Aside 

Suppose we wish to evaluate an expression similar to (39), such as (41) below.  Using (2) on half 
of the commutator, we would have 

 0 0
2 2

ik y ikx
† e e

( y ) ( x )
V V

φφ φ φ
ω ω

′ −

′
′ ′

 
=  

 
 

∑∑ k k
k k k k

ɶ ɶ . (41) 

The point is that the integration implied by the inner product of the bracket is over the “~” 
coordinates, not the xy coordinates.  The result of (41) is a function (without operators involved) of 
y-x. 

The state created by †a ( )k , i.e., ( x )φk ɶ , is a function of xɶ , which is a different position 
variable than x in the e-ikx factor shown in (41).  That is, the created state has its own particular 
function of position and time that is unrelated to that of the other position dependent term in φ†. 
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In QFT the accustomed manner of treating states is simply to use the ket form φk  without 
showing, or dealing with, the inherent spacetime dependence explicitly.  We will gravitate towards 
this usage as well, but for some of the derivations that follow directly, it can help if that spacetime 
dependence is shown explicitly.  The interested reader can verify for him/herself that if the created 
state depended on the same spacetime coordinates x as the eikx factor in φ†, then incorrect results 
arise. 

Each φk  in (41)) has unit norm and is orthogonal to every other such eigenstate.  That is, 

 
ikxe

V
φ

−

=k

ɶ

, (42) 

so that3 

 31
1ikx ikxe e d x

V
φ φ − ′= =∫k k

ɶ ɶ  (43) 

or more generally, 

 φ φ δ′ ′=k k kk . (44) 

In QFT the middle part of (43) is rarely expressed and one simply uses (44). 
General non-Eigen State for Single Particle (Discrete Solution Form) 

To create a general particle state, which is a sum of eigenstates, we would need an operator of 
form 

 †C A=∑ k k
k

a , (45) 

so that 

 

31 2

1 2 3

1 1 2 2 3 3

0 0
ik xik x ik x

† e e e
C A A A A ...

V V V

A A A ... .φ φ φ φ

−− −

= = + + +

= + + + =

∑ k k
k

a
 (46) 

In (45) and (46) Ak is a numerical coefficient, the square of which (for proper normalization) equals 
the probability of finding the k eigenstate. (See (4), (8), and (9).) 

If only one term in C is used, then only one eigenstate with |Ak| = 1 is created.  If a more general 
state, comprising a sum of eigenstates, is created, then we are free to select the Ak as we please in 
order to create the particular general state we like, provided (for conservation of probability and 
correct normalization so total probability is unity) 

 2 1| A | =∑ k
k

. (47) 

Important point:  Note in QFT we have 

 2 1| | A |φ φ = =∑ k
k

 (48) 

whereas in NRQM, we had (see (10), repeated below) 

 
2

1
2

( A )φ φ
ω

= ≠∑ k

kk

. (49) 

                                                 

3 Actually, though it is a subtle point at this stage, ikxe ′−  here has no energy (time) dependence in the 

exponent as long as we are working in with the Heisenberg picture (which we do with free fields in the 
usual development of QFT.)  In the Schroedinger picture, the state would have time dependence.  When 
going to the interaction picture (for interacting fields in QFT) the time dependence for states will be on 
the interaction part of the Hamiltonian (but not the free part.) 
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This is because the kets created in QFT via ak
† have unit norm, whereas the ket solutions to the field 

equations in NRQM do not. 

4.1.2 Destroying a Single Particle State (Discrete) 
Note that the operator  

 D =∑ k
k

a  (50) 

acting on any single particle general state will lower that state to the vacuum. If acting on the 
vacuum, each term in (50) will destroy it. That is, 

 

1 1 2 2 3 3

1 1 2 2 3 3

1 20 0 0 0 0 0 0

A A A ...

A A A

A ... A ...

φ φ φ φ

φ φ φ

   
= + + +   

   

      
= + + +       

      

= + + + + + + + =

∑ ∑

∑ ∑ ∑

k k
k k

k k k
k k k

a a

a a a …  (51) 

(We re-normalized the vacuum on the RHS above.) 

4.1.3 Creating a Multi-particle State (Discrete Solution Form) 
Applying operators similar in form to (45) (with typically different values for Ak in each 

operator) twice in succession creates a two particle state where each particle is a single particle 
general state (i.e., each is a summation of momentum eigenstates.)  Any number of such operators 
may be applied to create a state of any number of particles, each in a general (not eigen) state. 

Multiparticle states have unit norms, e.g., 

 2 2 1p q r p q rφ φ φ φ φ φ = . (52) 

4.1.4 Destroying a Multi-particle State (Discrete Solution Form)  
Application of (50) repeatedly will destroy one general state single particle upon each 

application. 

4.2 Continuous Eigenstates 

4.2.1 Creating a Wave Packet (Single Particle State of Continuous Solution Form) 
For continuous solution form states, we parallel our use in 4.1 above of the creation operators 

†
ka  in (2) to create a general creation operator.  (Note there is no such thing as an eigenstate of 

continuous solution form.)  We use the operators in (3) to create a single particle wave packet 
composed of an integral of continuous momenta eigenstates.   That is, by analogy, 

 †C d A( ) ( )= ∫ k a kk , (53) 

which can be seen with the aid of the table below. 
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 Discrete Solution Form Continuous Solution Form 

Eigenstate creation 
operator 

0
ikx

† e

V
φ

−
= =k ka  

3
0

2

ikx
† e
( )

( )
φ

π

−
= =ka k  

General state 
creation operator 

†C A=∑ k k
k

a  †C d A( ) ( )= ∫ k a kk  

 
General state 

1 2

1 2

1 1 2 2

0
ik x ik x

ikx

e e
C A A ...

V V

A A ...

e
A

V

φ

φ φ

− −

−

= = + +

= + +

=∑ k
k

 

3

0

2

ikx

C

e
d A( )

( )

φ

π

−

=

= ∫ kk
 

 
A(k) is the Fourier amplitude, which is a numerical continuous function of k, and which we can 
choose as we like to create the wave packet shape desired. 

4.2.2 Destroying a Wave Packet (Single Particle State of Continuous Solution Form) 
Once again, by analogy, we have a wave packet destruction operator 

 D d ( )= ∫ a kk , (54) 

which can be seen with the aid of the table below. 
 

 Discrete Solution Form Continuous Solution Form 
Eigenstate 
destruction 
operator 

0
ikxe

V
φ

−
= =k k ka a  

3
0

2

ikxe
( )

( )
φ

π

−
= =k ka k a  

General state 
destruction 
operator 

D =∑ k
k

a  D d ( )= ∫ a kk  

 

4.2.3 Creating a Multi-Wave Packet State (Multi-particle Continuous Solution Form) 
Applying operators similar in form to C of (53) (with typically different Fourier spectra A(k) in 

each operator) twice in succession creates a two particle state where each particle is a wave packet.  

4.2.4 Destroying a Multi-Wave Packet State (Multi-particle Continuous Solution 
Form)  

Application of (54) repeatedly will destroy one wave packet particle upon each application. 

 5.  Probability and Expectation Values in QFT 
As described in footnote 1 on page 5, we can determine a continuity (conservation) equation, 

i.e., a 4D current divergence equal to zero, in similar fashion to what was done in NRQM to find the 
probability conservation relation.  Take the field equation (Klein-Gordon rather than Schroedinger) 
and pre multiply by †φ , then subtract it from the complex conjugate Klein-Gordon equation post 
multiplied by φ , and note the result has the form of the continuity equation  

 0oper
op, er ,j

t
µ
µ

ρ ′∂
′ ′+ ∇ ⋅ = =

∂ operj  (55) 

where 
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 ( ) ( )0
0 0

† † i † †
oper oper oper oper ,i ,ij i , , j iρ φ φ φ φ φ φ φ φ′ ′ ′ ′= = − = = − −j . (56) 

We use the subscript “oper” to distinguish between the ρ of RQM, which represented the numerical 
particle density, and operρ ′  of QFT, which is composed of operators and is therefore itself an 
operator.  We also use a prime on operρ ′  for reasons which will be seen.  We derive below a single 
particle density operator operρ  that is closely related to operρ ′ . 

5.1 Probability Density for Discrete Solutions in QFT 

Note that from (2) operρ ′  has the form 

 

2 2
2 2 2 2

1
2 (terms in  and 

2 2

† ikx ik x † ikx ik x

oper

ikx ik x
† †

e e e e

V V V V

e e
)

V V

ω ωρ
ω ω ω ω

ω
ω ω

′ ′− −
′ ′ ′

′ ′′ ′

′−

′
′ ′

     
′ = −     

     
     

   
− +   
   
   

∑ ∑ ∑ ∑

∑ ∑

k k k k k k

k k k kk k k k

k
k k k k

k kk k

a a b b

a b b a

. (57) 

The third term in (57) will cause us problems later on.  We can circumvent those problems by 
noting that operρ ′  is not the only entity that satisfies the continuity equation (55). 

Take the field equation (Klein-Gordon here) and post multiply it by †φ , then subtract that from 
the complex conjugate field equation pre multiplied by φ .  You obtain a operρ ′′  and oper′′j  that satisfy 
the continuity equation (55), for which 

 ( ) ( )0 0
† † i † †

oper ,i ,ii , , j iρ φφ φ φ φφ φ φ′′ ′′= − = − − . (58) 

XXX Need to check signs here XXX The complete form for the probability density operator should 
then be a linear combination of operρ ′  and operρ ′′ .  We take this to be the average of the two, i.e.,  

 
2

oper oper
oper

ρ ρ
ρ

′ ′′+
= . (59) 

In (59), not only do terms like the third one in (57) cancel out, but the entire bottom row in (57) 
does as well.  Thus, we find 

 2 2
2 2 2 2

† ikx ik x † ikx ik x

oper
e e e e

V V V V

ω ωρ
ω ω ω ω

′ ′− −
′ ′ ′

′ ′′ ′

       
= −       
       
       
∑ ∑ ∑ ∑k k k k k k

k k k kk k k k

a a b b
. (60) 

5.1.1 Single Particle Probability Density (QFT, Discrete) 
Single Particle Eigenstate 

Hence, for a single particle in an eigenstate φ ′′k , the numerical probability density is the 
expectation value of the corresponding operator, 

 oper oper( x ) ( x ) ( x )ρ φ ρ φ φ ρ φ′′ ′′ ′′ ′′= =k k k kɶ ɶ . (61) 

All terms in (60) with ′≠k k  will result in different particles (in orthogonal states) in the bra and 
ket, and drop out, leaving 

 
1

† †( ) ( N ( ) N ( ))

V V

.
V

ρ φ φ φ φ′′ ′′ ′′ ′′

− −
= =

=

∑ ∑k k k k a b
k k

k k k k

a a b b k k

, (62) 

Note that the bracket integration over xɶ  causes only terms where ′=k k  to survive.  This also 
results in the cancellation of factors in the numerators and denominators, and the severing of 
dependence on x. 

The final result in (62) is what we would expect.  The total probability is the integral of ρ over 
the volume and equals unity.  Note that an antiparticle state would have a negative probability 
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density (from the Nb(k) operator)  and a total probability of negative one.  This led to the 
interpretation of ρ as charge density (probability of finding the given charge at any particular 
location) and its integral over volume as the particle/antiparticle charge. 

Note further, that probability density in QFT for a unit norm ket is not invariant, due to the 
relativistic change in volume V for a different frame.  But total probability is invariant (and always 
equals one), since in the integration over volume, the V factors cancel. 
Single Particle General State 

For a general single particle state, composed of a superposition of eigenstates, where 

 1 1 2 2 3 3A A A ...φ φ φ φ= + + + , (63) 

we have, ignoring anti-particles for simplicity, 

 

2
2 2

oper oper

ikx † ik x ik x ik x
†

( x ) ( x ) ( x )

e e e e
A A .

V V V V

ρ φ ρ φ φ ρ φ

ω
ω ω

′ ′′ ′′′−
′ ′′ ′′

′′′
′ ′′ ′′′′ ′′

= = =

   
   
   
   

∑ ∑ ∑ ∑k k k
k k

k k k kk k

a aɶ ɶ

ɶ ɶ

 (64) 

To help in evaluating (64), look initially at only the first two terms in each of the ket and the right 
hand operator summations. 

 
1 2 1 2

1 1 2 2

1 2

1 2

1 2 2
1 2

1 2

1 2

1st two terms =
2

2 2

0
2 2

ik x ik x

ik x ik x ik x ik x

ik x ik x ik x

e e
A

V V

e e e e
A A

V V V V

e e e
A A

V V V

ω
ω

ω ω
ω ω

ω ω
ω ω

′′ ′′′− −
′′ ′′

′′′
′′ ′′′′′

− − − −

− − −

 
→ 

 
 

 
 + + =
 
 

+

∑ ∑k k
k

k kk

k k k k
k k

k k

k k
k k

k k

a

a a

ɶ

ɶ ɶ

ɶ

 (65) 

The two summations (in k  and ′k ) on the left side of (64) look like 

 
1 1 2

1 2

1 2

1 1
2 0 2

2 2

ik x ik x ik x
† †e e e

A A
V V Vω ω

+k k
k k

ɶ

. (66) 

If we take the bra-ket, i.e., the integral over xɶ , of (64), using (66) and the last line of (65), we get 
(including all terms, not just the first two) 

 
1 †A A
V

ρ
′′

= ∑ ∑k k
k k

, (67) 

which is the probability density.  If we integrate it over all space to get total probability, we find 

 
2

1dV Aρ = =∑∫ k
k

, (68) 

which is what it should be, and also equals the total number of particles.   
Parallel remarks to those made above with regard to single particle eigenstates for total 

probability, antiparticle charge/probability density, and invariance apply to general single particle 
states, as well. 

5.1.2 Multiple Particle State Probability Density (QFT, Discrete) 
All Particles in Eigenstates 

For a multi particle state in which all particles are in eigenstates, such as  
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 2p q rφ φ φ φ=  (69) 

we have 

 2 2p q r oper p q rρ φ φ φ ρ φ φ φ= . (70) 

Any operator acts on a multi particle ket one particle at a time, much like a derivative on a 
product of fucntions.  Hence, for a destruction operator ′ka , one would have 

 

2 2

2

p q r p q r p q q r

p q q r p q r

φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ

′ ′ ′
′ ′ ′

′ ′
′ ′

   
= +   

   

   
+ +   

   

∑ ∑ ∑

∑ ∑

k k k
k k k

k k
k k

a a a

a a

. (71) 

with a parallel relation for the action of †ka  on the bra.  When (71) is used with (60) in (70), all kets 
are destroyed (become equal to zero) except those for which ′k  equals the eigen momentum of one 
of the particles.  This leaves only those eigen momentum terms inside (70), and thus we have a 
relationship similar to that for a single particle eigenstate (62), i.e., 

 
2 2

1 2 1 4

† †

p q r p q r

( ) ( N ( ) N ( ))

V V

.
V V

ρ φ φ φ φ φ φ φ φ
− −

= =

+ += =

∑ ∑k k k k a b
k k

a a b b k k

 (72) 

The integral of this over the volume yields a total probability of 4, which for 4 particles, might 
make sense in some sort of way.  Since this integral equals the number of particles, ρ can thus be 
more properly interpreted as particle number density (or charge density) where antiparticles have 
negative numbers. 

In QFT, which invariably deals with multiparticle states it is more advantageous to focus on the 
number operators.  In fact, we can think of the total number operator as the integral of � operρ  over 

the volume. 

 operN dV ( N ( ) N ( ))ρ= = −∑∫ a b
k

k k . (73) 

Particles in General States 
Consider multi particle states where the particles are in general (non eigen) states, i.e., 
2p q rφ φ φ , where, for example, 

 
ik x

p

p

e
A

V
φ

′′′−

′′′
′′′

= ∑ k
k

ɶ

, (74) 

and similar relations hold for the other particles in the multi particle state. 
When (71) and its parallel relation for the bra are used in (70), we get a term similar to (67) for 

each ket term on the right side of (71), i.e., 

 
2 2

1

2 2

ik x ik x
†

ik x ik x
†

p p

q q

e e
A A

V e e
A A ...

ω
ω ω

ρ

ω
ω ω

φ φ

φ φ

′ ′′−

′ ′′ ′′
′ ′′′ ′′

′ ′′−

′ ′′ ′′
′ ′′′ ′′

    
    
        =  
    + +       
     

∑ ∑

∑ ∑

k k k
k kk k

k k k
k kk k

 (75) 

When we integrate (75) over all space we get 
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+    
        

∑ ∑

∑ ∑∫

∑ ∑

k k
k k k

k kk k

k k
k k k

k kk k

k k
k k k

k kk k

 (76) 

or 

 
2 2 2

2 1 2 1 4p q rdV A A Aρ ′ ′ ′
′ ′ ′

= + + = + + =∑ ∑ ∑∫ k k k
k k k

. (77) 

Relation (75) is cumbersome to say the least, whereas (77) is quite simple and equals the total 
number of particles.  In QFT, it turns out to be invariably simpler to focus on the number operators, 
for which 

 

3Number of particles = 

= Expectation value of number operator 

oper

† †

a b

dV ( x ) d

( ) ( N ( ) N ( ))

n n .

ρ φ ρ φ

φ φ φ φ

=

= − = −

= −

∫ ∫

∑ ∑k k k k a b
k k

x

a a b b k k
 (78) 

In our example, 

 
2 2

1 2 1

p q r p q r

( N ( ) N ( ))

V

V

φ φ φ φ φ φ
−

=

+ +=

∑ a b
k

k k

 (79) 

For a multi particle state ( ) ( )1 1 2 2 1 1 2 22p p p p q q q qA A ... , A A ... ,...φ φ φ φ φ= + + + +  in which the 
particles are in general, not eigen, states, we have 

 
( ) ( )2 2 2 2 2 2

1 2 3 1 2 32

1 2 Total num of particles

oper

p p p q q q

( N ( ) N ( ))

V

A A A ... A A A ... ...

V
...

.
V V

ρ φ ρ φ φ φ
−

= =

+ + + + + + + +
=

+ += =

∑ a b
k

k k

 (80) 

Again, we can consider the total particle number operator as having the form in (73). 

5.2 Probability Density for Continuous Solutions in QFT 

The continuous solution probability density and number operator relations are developed below 
in direct parallel with the discrete solutions development above.  Note that, in analogy with (60) 
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d d ,
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ω ωπ π

′ ′′−
′′

′ ′′

′ ′′−
′′

′ ′′

  ′ ′′
  ′ ′′=
  
  

   ′ ′′
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k
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k
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a k a k
k k

b k b k
k k

 (81) 

and as before, the numerical probability density is the expectation value of (81), 

 oper( x ) ( x ) ( x )ρ φ ρ φ= ɶ ɶ . (82) 

5.2.1 Single Particle Wave Packet Probability Density (QFT, Continuous) 
Consider φ  as a single particle wave packet where, if for simplicity we ignore antiparticles, 

 
32

ik xe
( x ) A( ) d

( )
φ

π

′′′−
′′′ ′′′= ∫ k k

ɶ

ɶ , (83) 

where proper normalization for A( )′′′k  is assumed. As an aside, note that (need to have defined a, 
a+, and Na operator action on continuous ket before here) 

 † †( x ) ( ) ( ) ( x ) A ( )A( )φ φ′ ′′ ′ ′′=a k a k k kɶ ɶ  (84) 

and this is only non-zero when ′ ′′=k k . 
By analogy to (67), we have probability density 

 
3

1

2 22

ik x ik x
† e e

A ( ) d A( )d
( )

ρ ω
ω ωπ

′ ′′−

′′
′ ′′

  
′ ′ ′′ ′′=   

  
  
∫ ∫ k

k k

k k k k . (85) 

Integrating (85) over all space (and using the Dirac delta relation (18)) results in 

 
2

1dV A( ) dρ ′ ′= =∫ ∫ k k . (86) 

This equals the total probability of finding a single wave packet somewhere over all space and looks 
familiar to what we have seen in non-relativistic quantum mechanics.  It also equals the number of 
particles.  Thus we may define a number operator as  

 ( )oper a bN dV N ( ) N ( ) dρ= = −∫ ∫ k k k  (87) 

in analogy with (73) for discrete solution states and consonant with (37). 

5.2.2 Multiple Particle General State (QFT, Continuous) 
Consider continuous solution multi particle states where the particles are in general (non eigen) 

states, i.e., 2p q rφ φ φ , where, for example, 

 
32

ik x

p p
e

A( ) d
( )

φ
π

′′′−
′′′ ′′′= ∫ k k

ɶ

, (88) 

and similar relations hold for the other particles in the multi particle state.  By analogy to (75) 
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 (89) 

Thus, 

 
2 2 2

2 1 2 1 4p q rdV A d A d A dρ ′ ′ ′′ ′ ′= + + = + + =∫ ∫ ∫ ∫k k kk k k . (90) 
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This, again, equals the number of particles and hence 

 
( ) ( )

3Number of particles = 

= Expectation value of number operator 

oper
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a b

dV ( x ) d

( ) ( ) ( ) ( ) d N ( ) N ( ) d
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=
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∫ ∫

∫ ∫ a b

x

a k a k b k b k k k k k
 (91) 

 6.  Action of Hamiltonian on States (QFT) 

6.1 Discrete Eigenstates (QFT) 

We treat only the general state particle case, as the eigen state particle case is a special case 
where all Ak are zero except one, with that one having an absolute value (modulus) of 1. 

6.1.1 General Single Particle State (QFT, Discrete) 
For the Hamiltonian of Error! Reference source not found., and again concentrating for 

simplicity only on particles (and not anti-particles) kets, the energy expectation value is 

 ( )1 1
2 2

2

ikx ik x
†

a b

†

E H

e e
A N ( ) N ( ) A

V V

A A A .

φ φ

ω

ω δ ω
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′ ′= + + +

= =

∑ ∑ ∑

∑ ∑ ∑

k k k
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k k k

k k
ɶ ɶ

 (92) 

In the last line we ignored the ½ωk contributions from the vacuum. 
For an eigenstate φ φ= k all but one coefficient in (92) equals zero, and we have E E ω= = k . 

6.1.2 General Multi Particle State (QFT, Discrete) 
For multi particle states where at least some of the particles are in general states, we have 

 ( )1 1
2 2

2 2p q r a b p q rE H N ( ) N ( )φ φ φ φ φ ω φ φ φ′
′

′ ′= = + + +∑ k
k

k k . (93) 

With the Hamiltonian operator acting on the ket as the ak operator did in (71), this results in 

 ( )2 2 2
2 2p q r p q rE A A A E E Eω= + = + +∑ k k k k

k

, (94) 

wherein the total expected energy value equals the sum of the expectation energies for each particle 
in the state, and we have again ignored the vacuum contribution. 

For all particles in eigenstates of energy, this reduces to 2p q rE ω ω ω= + + . 

6.2 Continuous Eigenstates 

6.2.1 Single Particle Wave Packet State (QFT, Continuous) 
For a single particle wave packet, the ket has form 

 
32

ik xe
( x ) A( ) d

( )
φ

π

′′′−
′′′ ′′′= ∫ k k

ɶ

ɶ , (95) 

and the energy expectation value is 
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Noting that each aN ( )′k  operator acting on the ket leaves zero except when ′ ′′′=k k , we have 
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ikx ik x
† e e

E A ( ) d A( ) d .
( ) ( )

ω
π π

′−
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ɶ ɶ

 (97) 

Integrating this over all space and using the Dirac delta function again, we end up with 

 
2†E A ( )A( )d A( ) dω ω= =∫ ∫k kk k k k k  (98) 

in complete analogy with (92). 

6.2.2 Multi Particle Wave Packet States (QFT, Continuous) 
For a multiparticle state where the particles are wave packets, 

 
( ) ( )( )1 1

2 22 0 0 2p q r a b p q r

E H

N ( ) N ( ) d

φ φ

φ φ φ ω δ δ φ φ φ′

=

′ ′ ′= + + +∫ k k k k
 (99) 

and once again we have the operator acting sequentially on each particle in the ket.  Ignoring the 
vacuum contribution, this results in a series of terms like (98), i.e., XXX Think thru XXX 

 ( )2 2 2
2 2p q r p q rE A( ) A( ) A( ) d E E Eω= + + = + +∫ k k k k k . (100) 

Thus, the expected energy is the sum of the expected energies for each wave packet particle. 

 7.  Action of Hamiltonian on the Vacuum 

Rough thoughts only as of March 13, 2010.. 
 
 


