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“Mathematics is the language in which God has written the universe.”
Galileo Galilei
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Group Theory

“I believe that ideas such as absolute certitude, absolute exactness, final truth, etc. are figments
of the imagination which should not be admissible in any field of science... This loosening of
thinking seems to me to be the greatest blessing which modern science has given to us.”

Max Born

2.0 Introduction

In Part One of this book, we cover topics that could be ignored for the canonical approach to QED
(and were, in fact, ignored in Vol. 1), but play major roles elsewhere in QFT. These are

e group theory (this chapter), and
e other relevant math topics (Chapter 3).

The former is used throughout the theories of electroweak and strong interactions. The latter play
essential roles in the path integral approach to all standard model (SM) interactions and include Green
functions, Grassmann variables, and the generating functional, all of which are probably only names
for most readers at this point.

Hopefully, for many, at least part of the group theory presentation will be a review of course work
already taken. Also, hopefully, it will be sufficient for understanding, as treated in latter parts of this
book, the structural underpinning that group theory provides for the SM of QFT.

As always, we will attempt to simplify, in the extreme, the presentations of these topics, without
sacrificing accuracy. And we will only present the essential parts of group theory needed for QFT.
For additional applications of the theory in physics (such as angular momentum addition in QM),
presented in a pedagogic manner, I suggest Jeevanjee', McKenzie* and Schwichtenberg’.

2.1 Overview of Group Theory

Group theory is, in one sense, the simplest of the theories about mathematical structures known as
groups, fields, vector spaces, and algebras, but in another sense includes all of these, as the latter three
can be considered groups endowed with additional operations and axioms. Wholeness Chart 2-1
provides the basic defining characteristics of each of these types of structures and provides a few
simple examples. The “In Common” column lists characteristics all structures share. “Particular” lists
specific ones for that particular structure. Hopefully, there is not too much new in the chart for most
readers, but even if there is, it, though compact, should be a relatively intelligible introduction.

Note that for algebras, the first operation has all the characteristics of a vector space. The second
operation, on the other hand, does not necessarily have to be associative, have an identity element or
inverse elements in the set, or be commutative.

An algebra with (without) the associative property for the second operation is called an associative
(non-associative) algebra. An algebra with (without) an identity element for the second operation is
called a unital (non-unital) algebra or sometimes a unitary (non-unitary) algebra. We will avoid the
second term as it uses the same word (unitary) we reserve for probability conserving operations. A
unital algebra is considered to possess an inverse element under the 2™ operation (for the first
operation, it already has one, by definition), for every element in the set.

Areas of study:
groups, fields,
vector spaces, and
algebras

Algebras may or
may not be
associative,
unital, or
commutative

! Jeevanjee, N., An Introduction to Tensors and Group Theory for Physicists, 2" ed., (Birkhiuser/Springer 2015).
2 McKenzie, D., An Elementary Introduction to Lie Algebras for Physicists, https://www.liealgebrasintro.com/

3 Schwichtenberg, J., Physics from Symmetry, 2™ ed., (Springer 2018).
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Wholeness Chart 2-1. Synopsis of Groups, Fields, Vector Spaces, and Algebras

Type of . . Examples Other Characteristics
Structure Elements | Main Characteristics (A, B, C, D = elements in set) In Common Particular
1 (binary) operation | #1: Real numbers under addition. Closure;
Grou Set of A+B=C,eg,2+3=5 associative; | May or may not
p elements “binary” = between #2: 2D rotations (Can be matrices) 1dent1ty, be commutative
two elements in the set under multiplication' AB=C inverse;
s - Both operations
2 (binary) _ #1: Real numbers under addition Al t' O%iratltonl:; c ommllljtative' nd
1nary) operations alicats . = S 1n block above| ~ .
. As y) op & multiplication. 2°3 +4 =10 distrib. over 1%
Field above Commonly, addition #2: Corpplex numbc'ers' under 2" operation: 27 operation:
and multiplication aiid;tlonl &2 multlgh:atlor;. , All but inverse as Inverse not '
+20) (1-20) + (2+4i) = T+4i |
( ) (1=20) +( ) in block above | quired
Set of #1: 3D vectors under vec addition Commutative;
(vector) 1 (binary) operation & & scalar multip. 3A +2B=C Asin distributive for
Vector | elements | | scalar multiplication | 4#2: Elements are matrices with top scalar multip ,Wlth
Space & 2 set matrix addition & scalar block vector operation;
of scalar” = element of multip. 3A + 2B = C above may havc? inner
L a field ] ) product, i.e.,
scalars #3: Hilbert space in QM e
A°B = scalar
#1: 3D vectors under vec addition, ' 2¥1d pperation
vec cross product, scalar multip 1* operation distrib over st
3AXB+2D=C (often addition):| 1% operation:
A 2 (bi . #2: Matrices under matrix addition, As in top block CommutaFlve
Algebra S (binary) operations & matrix multip, scalar multip. above 2" operation:
above | 1 scalar multiplication 3AB +2D = C s ] Not required to
. . .. operation: LAt
#3: Matrices under matrix addition, pl Ee ass'omat'lve,
matrix commut, scalar multip. Closure ave ¥dent1ty,
3[A,B+D] =C have inverses,
’ be commutative
Definitions Examples

(A, B, C represent any & all elements in set. ° denotes a binary operation)

All operations on set elements yield an element in the set. | All C in Examples column above are in
Closure N .
A°B=C original set of elements.
. B Real numbers, rotations, matrices, vectors,
Associative | Ac(B°C)=(A°B)°C all under addition or multiplication.
Identi There is an element I of the set with the property Real number addition, I = 0. Matrix
ty Acl=1cA=A multiplication, I = identity matrix.
Inverse For each A in the set, there is a unique element A™' of the | Real number addition, A = —A. Matrix
set with the property Ac A" = Ao A =1 multiplication, A™' = matrix inverse of A
Real number addition and multiplication.
Commutative | AoB=BoA Vector addition. Ngn-commgtatlve
examples: 3D rotation, creation &
destruction operators in QFT under multip.
For two binary operations (% = another binary operation) - ]
Diviive | A°(BC) (D) (4:C) Nl e  adion, o
(B¥ C)oA=(BoA) % (CoA) ' : P-
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Doing Problems 1 and 2 may help in understanding groups, fields, vector spaces, and algebras.

In this chapter, we will focus on a particular kind of group, called a Lie group, which will be
defined shortly. We will then show how a Lie group can be generated from the elements of an
associated algebra, called, appropriately, a Lie algebra. After that, we see how Lie groups and Lie
algebras play a key role in the SM of QFT. For an overview chart of where we are going, check out
Wholeness Chart 2-11 in the chapter summary on page 59. Don’t worry too much about some of what
is now undefined terminology in that chart. You will understand that terminology soon enough.

2.1.1 A Set of Transformations as a Group

Consider the set of rotation transformations in 3D (in particular, it will be easier to think in terms
of active transformations [see Vol. 1, pg. 164]), a typical element of which is symbolized by A herein.
Such transformations can act as operations on a 3D vector, i.e., they rotate the 3D vector, which we
designate by the symbol v. In the transformation, the vector v is rotated to a new position, designated
v'. The transformations A comprise an abstract expression of rotation in physical space, i.e., A
signifies rotation independent of any particular coordinate system. Any element A does the same thing
to a given vector regardless of what coordinate system we choose to view the rotation operation from.

Now, if we select a given coordinate system, we can represent elements A, in one manner, as
matrices, whose components depend on the coordinate system chosen. For practical applications, and
for aid in teaching, we almost always have to express rotations as matrices.

’

d " i dp 43 ||V N

_ ., expressed as matrix oy
Av=v and column vectors @1 dn dp |2 |T N2 2-1)

’

Apstract a3 ayp ap|[vi] | V3

Note that A has the characteristics delineated in Wholeness Chart 2.1 for a group. In particular, if
A1 and A; are two members of this set of transformations, then rotating the vector first via A; and
then via A; is symbolized by
Ay, oA v=Vv"=Cv (2-2)
Therefore, the rotation transformation set has closure and the binary operation, when the
transformation is expressed in matrix form, is matrix multiplication. Further, the operation on set
members (we are talking operation between matrices here [in the matrix representation], not the
operation of matrices on vectors) is associative, and inverses (A~! for each A) and an identity (I) exist.
Further, there is no other operation, such as addition, involved for the members of the set. (In the

matrix representation, two successive transformations involve matrix multiplication, not matrix
addition.) Hence, the transformations A form a group.

where C= A, o A; is a member of the set of 3D rotations .

Note, this rotation example is a non-commutative group, since

in general, Ay cA; #A|0A,. (2-3)

You can prove this to yourself by rotating a book 90° ccw (counterclockwise) along its binder axis
first, then 90° ccw along its lower edge second; and then starting from the same original book position
and reversing the order of the rotation operations. The book ends up in different final positions.

A non-commutative group is denoted a non-Abelian group. Note that some pairs of elements in a
non-Abelian group can still commute, just not any and all pairs. A group in which all elements
commute is an Abelian group.

2.1.2 Groups in QFT

As insight into where we are going with this, recall from Vol. 1 (see pg. 196, first row of eq. (7-
49)) that the S operator in QFT transforms an initial (eigen) state |i) into a final (general) state |F)
(that’s what happens during an interaction).

S|i)=[F). (2-4)

But that state could be further transformed (via another transformation) into another state | F') .

So, for two such transformations S1 and Sz, we would have

SM underlying
structure —
Lie groups and
Lie algebras

Rotation
transformations
= g set of elements

One way to
represent rotations
is via matrices

Set of rotation
transformations
satisfy criteria to
be a group

Set of 3D rotation
transformations is
non-Abelian (non-
commutative)

In a similar way, the set

of 'S operator

transformations on QF T

states forms a group
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SySyliy=S831i)=|F"). (2-5)

Recall also from Vol. 1 (pg. 195, eq. (7-43)) that the .S operator could be represented by a matrix

(S matrix) and the initial and final states by column vectors. The parallels between (2-1) and (2-4),

and between (2-2) and (2-5), should allow us to surmise directly that the set of all transformations

(interactions) in QFT form a group. And so, the mathematics of groups should help us (and it does
help us as we will eventually see) in doing QFT.

2.1.3 Quick Summary

1% Bottom line: A set of transformations on column vectors (or on QM states) can form a group. We
can apply group theory to them (with or without considering the column vectors [or QM states]).
2" Bottom line: The column vectors (or QM states) can form a vector space.

Do Problem 3 to show this.

So, the group elements act as operators on the vectors (or QM states). Discern between operations
(which are transformations) by group members on vector space members from the group operation
between group members (matrix multiplication in our sample representation.)

2.1.4 Notation

We will generally use bold capital letters, such as A, for abstract group elements (which could
characterize some operation in physical space, such as rotation); and non-bold capital letters, such as
A, for matrix representations of abstract group elements. We will generally use bold lower-case letters,
such as v, for abstract vector elements in a vector space; and non-bold lower-case letters, such as v,
for column matrix (or row matrix) representations of those vectors. The binary operation on abstract
elements A ° B, for matrix multiplication in the matrix representation, will be expressed simply as 4B.

2.1.5 Our Focus: Matrix Representations of Groups

Group theory as the study of abstract groups is extensive, deep, and far from trivial. When
restricted to representations of groups as matrices, it becomes easier. Since practically, for our
purposes and in much of the rest of physics, matrix group representation theory covers the bases one

wants to cover, we will focus on that. So, when we use terms such as “group”, “group theory’, “group
99 ¢

element”, etc. from here on out, they will generally mean “matrix group”, “matrix group theory”,
“matrix group element”, etc. unless otherwise stated or obvious.

2.2 Lie Groups

A Lie group is a group whose elements are continuous, smooth functions of one or more variables
(parameters) which vary continuously and smoothly. (See examples below.)

This definition is a bit heuristic, but will suffice for our work with matrix groups. There are fancier,
more mathematically precise definitions, particularly for abstract groups.

Lie groups are named after the Norwegian mathematician Sophus Lie, who was among the first to
develop them in the late 1800s.

2.2.1 Representations of Lie Groups

A representation of an abstract Lie group, for our purposes, is a matrix that acts on a vector space
and depends on one or more continuous, smoothly varying independent parameters, and that itself
varies continuously and smoothly. (More formally, it is an action of a Lie group on a vector space.)
The vector space is called representation space. The term representation is also used to mean both the
vector space and the matrix operators (matrix group elements) together.

2.2.2 A One Parameter Lie Group

A simple example of a Lie group is rotation in 2D, which can be represented by a matrix M (with
a “hat” because we will use the symbol M for something else later) that operates on a 2D vector, i.e.,
it rotates the vector counter clockwise,

11

Group operation
between group elements
differs from what some
groups have as
operation of a group
element on a vector

Bold = abstract
elements of group or
vector space
Non-bold = matrix
representation of
elements

We focus on groups
with elements
represented by matrices

Lie group elements
vary continuously
and smoothly with
a continuous,
smooth parameter

A representation of a
Lie group, for us, is a
set of matrices
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(2-6)

v (0) = {cosﬁ —sin 9}

sin@  cos@

This group is characterized by a single parameter, the angle of rotation 6. As (2-6) is just a special
case of the 3D rotations of (2-1), it forms a group. And because all of its elements can be generated
continuously and smoothly by a smooth, continuous variation of a parameter, it is a Lie group.

Note that for #= 0, M(0) = I, and this is a property all of our Lie groups will share, i.e., when all
parameters equal zero, the matrix equals the identity. Some authors include this as part of the
definition of Lie groups, as virtually all groups that prove useful in physical theory have this property.

An example of a non-Lie group would be the set of 2D rotations through increments of 90°. The
set of matrix elements would be (take 8= 0°, 90°, 180°, 270° in (2-6))

Mlzl 0 M2:0 -1 M3:—1 0 e 0 1 o
01 10 0 -1 -1 0

Obviously M is the identity. Ma is the inverse of M, and M) and M3 are each their own inverses.
Additionally, (you can check if you like) any two of (2-7) multiplied together yield one of the other
elements (closure). Further, matrix multiplication is always associative. So, (2-7) form a group under
matrix multiplication. But since the elements are discrete and do not convert one into the other via a
continuous variable parameter, it is not a Lie group.

A property of the particular Lie group (2-6) (for two values of @ such as ¢ and ¢) is
M(a)M(p)=M(a+g). (2-8)

This should be evident from our general knowledge of 2D rotations. Rotating first through 30°, then
second through 13° degrees is the same as rotating through 43° degrees. The parameter & varies
continuously and smoothly and so does M (8).

As an aside, the 2D rotation group is commutative (Abelian), as rotating first by 13°, then second
by 30° is the same as rotating first by 30° and second by 13°.

2.2.3 Orthogonal vs Special Orthogonal Groups

Both groups (2-6) and (2-7) are what are termed special orthogonal groups. “Orthogonal” means
the elements of the group (represented by the matrices) are real and the transpose of the matrix is the
same as its inverse, i.e., M T= M Recall from linear algebra that the magnitude of a vector remains
unchanged under an orthogonal transformation (as in rotation). “Special” means the determinant of
each matrix in the group is unity. det M = 1.

Do Problem 4 to investigate a 2D orthogonal Lie group matrix that is not special orthogonal and to
help understand the significance of special orthogonal transformations.

In the above problem solution, an orthogonal matrix acting on a vector maintains the norm
(magnitude) of the vector unchanged. This, as noted above, is a general rule. The solution also
suggests that non-special orthogonal Lie matrices do not produce continuous rotation of a vector.

Note further, that for the matrix of Problem 4, when €= 0, we do not have the identity matrix, so
its action on a vector would change the direction of the vector. It is more advantageous in representing
real world phenomena if there is no change in a vector when the continuous parameter(s) on which it
depends is (are) zero, as in (2-6).

Hopefully, from these examples, we can begin to see some of the advantages of working with
special orthogonal matrix Lie groups which equal the identity when the independent parameter(s) is
(are) zero.

The shorthand notation for our special orthogonal example groups (2-6) and (2-7) is SO(2). If the
rotations were in 3D instead of 2D, as in (2-1), we denote it an SO(3) group. For n dimensional space
rotations, we would have SO(n). If the determinant were not constrained to be equal to positive unity,
the group would be simply an orthogonal group, symbolized by O(n) .

The number z in SO(n) and O(n) is known as the degree of the group. In our examples above, it is
equal to the dimension of the vector space upon which our matrices act. However, there are subtleties

A simple example

When 6 =0, M(0) = I
key for representing
real world

Example of a non-Lie
group: discrete elements

Property of this
particular Lie group

Orthogonal,
O(n),
M a real matrix
MT =M1
(magnitude of vector
invariant under M)

Special Orthogonal,
som),
DetM =1

n in O(n) and SO(n) is
the degree of the group
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involved regarding the actions of groups on particular dimension spaces, which we will address later
in the chapter.

Note that orthogonal and special orthogonal groups do not have to be Lie groups. For example,
(2-7) is special orthogonal, but not a Lie group. We define these more general terms in this Section
2.2, which is specifically on Lie groups, because it is easiest to understand them in the context of the
examples presented herein.

2.2.4 Different Parametrizations of the Same Group
Note that we can represent the SO(2) rotation group in a different way as

. 1— 2 _
M=V " ! (2-9)
X 1-x?
where x = sin 6. We say that (2-9) is another parametrization of the same SO(2) group of (2-6). A third
parametrization is the transpose of (2-6),

M(e'){

cos@' sin@'
(2-10)

—sin@  cos @'
where 0' = - 6.

Bottom line: A particular group is an abstract structure (which can, as in the above example,
characterize 2D rotations; in the example of (2-1), 3D rotations) that can be represented explicitly via
matrices and by using different parameters in different ways, called parametrizations.

2.2.5 A Lie Group with More than One Parameter: SO(3)

Of course, there are many Lie groups with more than one parameter. As one example, let us
express the SO(3) group of 3D rotations (2-1) as a function of certain angles (successive ccw rotations
about different axes) 61, 6>, and ;. Typically, for a solid object with three orthogonal axes visualized
as attached to the object, the first rotation is about the x3 axis; the second, about the x; axis; the third,

about the x1 axis. In this perspective, it is an active transformation about each axis.

Consider A in (2-1) as an abstract group element (characterized simply in that it performs
rotations), and 4 as the particular parametrized matrix representation under consideration.

’
aq 4 43 || N
A(6.6,,65)v=V" = |ay an anl|[v|=[| a3 =0;(6.6,.6) (2-11)
’
d31 A4z d33 || W3 V3

Any 4 can be expressed via different parametrization choices, and with an eye to the future we
will choose to build 4 from the following particular building block parametrizations.

1 0 0 cos@, 0 sin6, cost; —sinb; 0
4 (6’1) =|0 cosb —sing | 4, (6’2) = 0 1 0 A4, (6’3) =|sinby cosf; 0. (2-12)
0 sin@, cos6, —sin6, 0 cos 6, 0 0 1

There are a number of ways the matrices (2-12) can be combined to embody different (equivalent)
forms of SO(3), but to be consistent with our above noted order of rotations, we will use (2-13). Note
the operations proceed from the right side to the left side in (2-13). (I suggest you save yourself the
time by just accepting the algebra involved, though you can prove it to yourself, if you wish.)

A(01,02,03) =4 (91)142 (92)143 (93)

cos 6, cos 0, —cos 6, sin sin6, (2-13)
=| cos G sin6y +sin@, sin@, cosy  cosb, cos Oy —sin6, sin6, sin@; —sinb cos b, |.
sin, sinby —cos 6, sin@, cosO;  sin6 cos G +cos G, sin6, sinb;  cos 6 cos 6,
The matrix 4 varies continuously and smoothly with continuous, smooth variation in the three
parameters &, 6, and &5. We could, of course, define the order of operation on the RHS of (2-13)
differently and have a different embodiment of the same SO(3) rotation group. Similarly, we could
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O(n) and SO(n)
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or non-Lie groups
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define our building blocks with different parameters (similar to the x in (2-9) for SO(2) rotations) and
have yet other, different parametrizations. Again, we see that a group itself is an abstract structure
(which can characterize 3D rotations here) that can be expressed mathematically in different ways.

Key point:

Note the 4; of (2-12) are not bases in the vector space sense of spanning the space of all possible
3X3 matrices. *Basis’ refers to addition and scalar multiplication but the matrices we are dealing with
involve multiplication. However, all possible 3D rotations, expressed as matrices, can be obtained
from the three 4;, so they are the foundation of the group.

The 3D rotation group matrices form a subset of all 3X3 real matrices, and the reader should be
able to verify this by doing the problem referenced below. Further, any group element can be formed,
in this representation, by matrix multiplication of three group building blocks. But in a typical vector
space, any element can be expressed as a linear combination (adding, not multiplying) of basis vectors
(which are matrices here).

Similarly, in 2D rotations, we only had one matrix, such as (2-6), which is a function of one
parameter (€ in the referenced parametrization). For a basis for matrices in 2D, we would need four
independent matrices. Don’t confuse the building blocks of a Lie group with the basis vectors of a
linear vector space.

Do Problem 5 to help illustrate the difference between matrices as vector space elements and matrices
as group elements.

Small Values of the Parameters

For future reference, we note that for small (essentially infinitesimal) parameters 6, (2-13)
becomes

1 -6, 6
A(6.6,.6)=| 65 1 -6 6| <1. (2-14)
-6, 6 1

2.2.6 Lorentz Transformations Form a Lie Group

The Lorentz transformation, with ¢ =1 and boost velocity v in the direction of the x! coordinate, is
(where we use the Einstein summation convention, as in Vol. 1)

1 -V

T Jor ax’ | | ax'®
—y l d l d !1
A Wa =| Tor T =T = (2-15)
| dx dx'

The set of transformations A% satisfies our criteria for a group. The elements A% are subject to a
B group B i

single operation (matrix multiplication) under which the set has an identity member (when v = 0),
obeys closure, is associative, and possesses an inverse for every member. The Lorentz transformations
constitute a group.

Due to the Minkowski metric in special relativity’s 4D spacetime, things get a little tricky
comparing the Lorentz transformation to matrices in Euclidean space. So, even though the magnitude
(vector “length” as in (2-47), pg. 32, of Vol. 1, sometimes called the “Minkowski norm”) of the four-
vector |dx’3 | remains invariant under the transformation (see Section 2.2.3 above), the inverse of
A% (v)is not its transpose, but A% (—v). (You can check this or save time by just taking my word
for it, as this material is a bit peripheral.) In a special relativity sense, therefore, the Lorentz
transformation is considered orthogonal. As the determinant of A% is unity (you can check using
(2-15) and the rules for calculating 4D matrix determinants), it is special. To discern the special

relativistic nature of this particular kind of orthogonality, the Lorentz group is denoted by SO (3,1)
[for 3 dimensions of space, and one of time. ]

Don’t confuse
building blocks of
groups with bases
of vector spaces.
They are generally
different.

Lorentz
transformations
form a group
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Note that the 4D transformation matrix is a continuous function of v, the velocity between frames,
whose possible values vary continuously. So, the Lorentz group is a Lie group. The addition property
(2-8) holds, but for relativistic velocity addition, i.e.,

A? Y (v) AP s =A% (V) (v" = relativistic velocity addition of v and v'). (2-16)

Extending the form of (2-15) to include the more general cases of 3D coordinate axes rotation plus
boosts in any direction leads to the same conclusions. Lorentz transformations, i.e., boosts plus all
possible 3D rotations, comprise a Lie group SO(3,1), the so-called Lorentz group.

2.2.7 Complex Groups: Unitary vs Special Unitary

So far, we have looked exclusively at groups represented by real matrices. But since QM is replete
with complex numbers, we need to expand our treatment to include representations of groups using
complex matrices. See Vol.1, Box 2-3, pg. 27, to review some differences and similarities between
real, orthogonal transformations and complex, unitary transformations.

Unitary groups (symbol U(n) for degree n) are effectively the complex number incarnation of (real
number) orthogonal groups. A matrix group is unitary if for every element M in it, M ' = M T,
(Compare to orthogonal matrices, which are real, and for which M ' = MT.)

Special unitary groups (symbol SU(n)) are the complex number incarnation of special orthogonal
groups. A matrix group is special if for every element M in it, Det M = 1.
The Simplest Unitary Lie Group U(1)

As a simple case of a representation of a unitary group of degree 1 (n = 1), consider the set of
“matrices” (of dimension 1) for continuous, real 6,

U(9)=¢" (a representation of U(l)) . (2-17)

Do Problem 6 to show that U(1) of (2-17) forms a group.

U in (2-17) is unitary because U'U = I. It is not special because Det U does not equal 1 for all 6.
The only 1X1 matrix for which the determinant equals one corresponds to &= 0, i.e., the trivial case
where the only member of the (special unitary) group is U = 1. Hence, we won’t have much use for
SU(1). We will, however, make good use of U(1).

Also, similar to an orthogonal transformation on a real vector, a unitary transformation on a
complex vector leaves the magnitude of the vector unchanged.

Do Problem 7 to prove the last statement.

If the vector happens to be a normalized QM state, this means that the total probability (to find the
quantum system in some quantum state) remains unity under the action of the transformation U.

Additionally, since the set elements of (2-17) vary continuously and smoothly with the continuous,
smooth variation of the parameter €, (2-17) comprises a Lie group.

Given that QFT teems with complex numbers (of which operators and states are composed) and
the theory is inherently unitary (conservation of total probability = 1 under transformations), we can
expect to be focusing herein on special unitary groups.

Problem 8 can help in understanding how some physical world phenomena can be described by
different kinds of groups.

The SU(2) Lie Group

The SU(2) Lie group is a very important group in QFT, as it is intimately involved in theoretical
descriptions of the weak force. We will examine the group as represented by matrices that are 2X2,
have complex components, and may operate on two component vectors in a complex vector space.

A general two-dimensional complex matrix M has form
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my My .

M= my; complex, in general . (2-18)
My Mp)
But since the group we will examine is special unitary, it must satisfy
MM =1 DetM =1. (2-19)
I submit (we will show it) that (2-20) below satisfies (2-19), where a and b are complex.
a b ap, +ia bp, +1ib * *
M=| , . { Re = Fm Tke ’} with aa” +bb =1 (2-20)
b a _bRe + lb]m ARe ~ Wy

The RHS (last part) of (2-19) is obvious from the constraint imposed at the end of (2-20). To save
you the time and tedium, I show the LHS (first part) of (2-19) below.

. b\l a b |da+tbh db-db| [1 0
M= A :{ } 2-21)
b al| b a ab"—ab- bb+aal 101
Now consider M as a matrix representation of a Lie group, where the a and b are continuous and

smoothly varying. Since a and b are complex numbers, there are four real number variables
ARerApmDre bpy » Which vary continuously and smoothly. From the constraint at the end of (2-20),

only three of these are independent. They are related by
i, 8l + b, +bp, =1, (2-22)
and we choose ay;,,,bg,.b;,, to be independent, and dg, =dp, (alm,bRe,blm) . For future reference, we

find the partial derivative of are with respect to each of the independent variables via (2-22).

Oa 0 2 2 ) 2 2 2 ) 2
—aaRe :_aa (1 —ag, —bg, —bj, )2 - %(1 = ajy, = bre = biy, ) ’ (—ZLZIm )
Im Im (2-23)
_ A —_%m 44 Oage __bre  Odge __ Dim
\/1 n alzm - blzee - blzm ARe abRe ARe ab]m ARe

Note that when ap, = bre = bim = 0, ar. = 1 (Where we assume the positive value for the square root in
(2-22)), and the partial derivatives in the last line of (2-23) all equal zero.

For the Lie group, when the continuously variable independent parameters are all zero, nothing
has changed, so we must have the identity element, and with (2-22), this is true for (2-20), i.e.,

M (ay, =bg, =by, =0)=1. (2-24)
Thus, we have shown that M of (2-20) represents the SU(2) Lie group of three real parameters.

Do Problem 9 to show that M obeys the group closure property.

Using the Re and Im subscripts helped us keep track of which real parameters went where in the
2X?2 matrix, but it will help us in the future if we change symbols, such that az. = o, bim = @ 1, bre =
a2, and a;, = a 3. Then,

_ Aape + ialm bRe + ib]m i| _ |: Q + ia3 (2%) + ial }_{—iao + [24] (24} —ia2 (2 25)

_bRe + ib]m Ape — ialm -0 + ial oy — ia3 [24] + iaz _iao — 03

The SU(3) Lie Group

The SU(3) Lie group is also an important group in QFT, as it is intimately involved in theoretical
descriptions of the strong force. We will examine the group as represented by matrices, which are
3X3, have complex components, and may operate on three-component vectors in a vector space. As
you may be surmising, in strong interaction theory, the three components of the vectors will represent
three quark eigenstates, each with a different color charge (eigenvalue). More on that later in the book.

A general three-dimensional complex matrix N has form

2X2 complex matrices

satisfying special
unitary group
requirements

One parametrization
that does satisfy them

The DetM = 1
requirement means 1
parameter dependent
on other 3 independent

Evaluating derivatives
of dependent parameter

For all independent
parameters = 0, M =1

The SU (3) Lie group
relevant to the strong
interaction
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Since the group we will examine is special unitary, it must satisfy

My M3
Nyy Ny3 n; complex, in general (2-26)
N3y N33
N'N=1 Det N =1 (2-27)

Using (2-27) with (2-26) would lead us, in similar fashion to what we did in SU(2), to one
dependent real variable and eight independent ones upon which the dependent one depends. But doing
so requires an enormous amount of complicated, extremely tedious algebra, and there are many
possible choices we could make for independent variables. Further, with eight such variables, the final
result would be far more complicated than (2-13) for SO(3) or (2-25) for SU(2), both of which have

only three (where oo depends on the other ¢; in (2-25)).

So, we will instead jump to a result obtained by Murray Gell-Mann in the mid-20th century. That
result uses a particular set of independent variables that end up working best for us in QFT.
Additionally, it is a much-simplified version of N that applies only in cases where the independent
variables are very small, essentially infinitesimal. By so restricting it, a whole lot of cumbersome
terms are dropped. (Compare with the parallel situation of (2-13) simplified to (2-14).) Fortunately,
the small independent variable case will be all we need for our work with the SM.

The Gell-Mann SU(3) matrix is

. (27 . .
_l+a3 +Ti o) — 10, a4 — 1y
N( . +i . + ag o
a,-)—l o) +1ay 11—y ﬁ Qg — 10y
. . 2
ay + 105 (273 + 107 -1 —78
3

|| <1 (2-28)

Note the similarity between (2-28) for SU(3) and (2-25) for SU(2). However, (2-25) is good globally,
whereas (2-28) is only good locally, essentially because SU(2) is a simpler theory than SU(3).

Note that N(0) = 1. Note also (where “HOT” means higher order terms) that

Det N for |a,-| <1

. a [ 2« . a [ 2a . a . a (2-29)
~1-i —a3+—8 —i| -2 |- a3+—8 —i| -2 |- a3+—8 —1i —a3+—8 +HOT =~1,
NG NG NA) NG NG NG
and
_. ag . . 1T . ag . . ]
Itoz+—— o1—10y Oy —105 —ltoyt+t—— o —1a, Oy —105
NE 3
. . a . . . a .
NN~ o +ia, z—a3+Ti ag—icy o +ia, —z—a3+Ti o —iay
‘a,-‘<<l ) . . 204 . . 204
a4 +la5 a6 +la7 Z_T a4 +la5 a6 +la7 —l _T
3 3
. a ) . . . ]
l+igy +i—S—ioy —i—>+HOT ioy+a,—ioy—o, + HOT iog+os—io,—as+HOT
3 3 1T 11— 41 4—0C5
NA J3
. . . .a . . Q . .
=|  —ioy+ay+iog—o, +HOT l—za3+z—8+za3—z—8+HOT iog+a; —iag—og +HOT | (2-30)

—ioy+as+ioy —as+HOT

NEARERN

_ia6 +a7 +ia6 -0y +HOT

100
=01 0].
001

2ay 2
12988 2B L HoT

NN

So, for small values of the 8 parameters, N is special unitary and equals the identity when all

parameters are zero
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Note also that taking all imaginary terms in N as zero, we should get an SO(3) group. Doing so
with (2-28), we get 4 of (2-14) (with a relabeling of variables such that &5 =— o, ¢ = s, and &1 =
- a7.)

2.2.8 Direct, Outer, and Tensor Products

The Concept

In group theory applications, one commonly runs into a type of multiplication known as the direct
product, which is also common in linear algebra.

Consider an example where elements of two groups are represented by matrices, and although
they could have the same dimension, in our case the first matrix 4 has dimension 3, and the second
matrix B, dimension 2. Note the symbol X in (2-31) represents direct product.

A Ap

: B B
Axp dmmduatenns gy a2 2]
o1 By
Ay Ay A
4 B, B | 4 B, B | 4 B, By
1 12 13
| By By | By By | By By | (2-31)
B, By | By, B | B, By |
=| 4y 2. B Ay B B A3 2. B
| By By | By By | By By |
By, B | B, By | By, B |
A 4 A3 B
| " [ B By | By1 B | | By1 By ]

Essentially, this is a component-wise operation wherein components live side-by-side and do not
mix. The direct product is also called the Cartesian product. In index notation,

in index
notation

AXB = AijBk'l' . (2—32)

The result (2-32) has four different indices, 2 indices for 4;; plus 2 indices for By ', with different
dimensions for each index. The i index dimension is 3; the j dimension is 3; the £” dimension is 2;
and the /" dimension is 2. The total number of components is 3 X3 X2 X2 = 36. Said another way, it

is the total number of components of 4 times the total number of components of B, i.e., 9 X4 = 36.
Note that, in this example, we use primes for the indices of the By in (2-32) to make it clear that

generally the Bk ;- components live in a completely different world from the components of 4;;. That
is, the factors with unprimed subscripts in each element in (2-32) are usually (but not always) of
different character from the factors with primed subscripts. Keep this in mind in future work, whether
or not we employ primed subscripts to differentiate component factors.

We have already used the direct product concept in Vol. 1 (see (4-123), pg. 115, reproduced as
(2-33) below), and there it was called the outer product (of spinor fields).

= _ — T.,0 _ _ . N . )
IK% Ya¥Wp =VoVWs7sp X op = outer product, a matrix quantity in spinor space  (2-33)

.. %/_J
DOt WILING iy spinor
out spinor indices
indices written

Here, the outer product is symbolized by having the adjoint (complex conjugate transpose) factor
on the RHS. (The inner product is symbolized by having it on the LHS and yields a scalar, rather than
a matrix quantity.) Spinors are essentially vectors (4D in QFT) in spinor space.

Note that a direct product can be carried out between many different types of mathematical objects.
(2-31) [i.e., (2-32)] is a direct product of matrix group representations. (2-33) is a direct product of
spinors (vectors in spinor space). For historical reasons, the latter is more commonly called the outer
product.

The general direct product principle, regardless of the mathematical entities involved, is this. We
get a separate component in the result for each possible multiplication of one component in the first
entity times one component in the second.

Direct product definition

Direct product indices
= indices of
constituent matrices
Number of components
= product of number
of components of
constituent matrices

Similar example
from prior work

Outer product of two
vectors = a matrix

Direct and outer prods
similar in concept, but
former term used for
matrices, the latter
typically for vectors
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In tensor analysis, tensors are commonly represented by matrices, and one often runs into what
could be called a direct product of tensors, which looks just like (2-31) [i.e., (2-32)]. However, that
term rarely seems to be used, and the almost universally used one is tensor product. For tensors, ® is
typically employed instead of X.

Note that a vector is a 1% rank tensor. (A scalar is a zeroth rank tensor. What we usually think of
as a tensor is a 2™ rank tensor.) In that context, the operation of what we might expect to be referred
to as the direct product of two vectors is instead commonly labeled the outer product or the tensor
product. For two vectors w and y, it is denoted by w ® y.

Note further that tensor products do not generally commute. w ® y does not equal y ® w, except
for special cases.

The various terminologies are probably a little confusing. (They were for me while learning it.)
But generally, the term direct product is conventionally applied to groups and matrices, and employs
the symbol X. The term tensor product is typically used for any tensors, including vectors, and
commonly employs the symbol ®. As noted, another, very common term for the tensor product of
vectors, in particular, is outer product.

A Hypothetical Example

Now consider A and B being operators that operate on vectors v in a vector space. Imagine the
quantities represented by vectors have two characteristics. They are colored, and they are charged.
The colors are red, green, blue and the charges are + and —. We represent a given vector v as a tensor
product (which is an outer product) of a 3D vector w representing color (7, g, b symbolizing the
particular color component in the vector) and a 2D vector y representing charge (p symbolizing the
positively charged component; 7, the negatively charged).

r p rn
_ tensor product represented _ B _
v=wo®y by column and row matrices V= ‘g [p n]— ip zg)n or vy =w;y. (2-34)
p n

In one sense, the vector v is a matrix (2 columns, 3 rows), but in the abstract vector space sense it
is a vector in a vector space, where that space is comprised of 3X2 matrices.
The A operator here is related to color and thus acts only on the w part of v. It is blind to the y
part. The B operator is related to charge and acts only on the y part. So, given (2-31) and (2-32),
4 in i d "
(AxB)v=(AxB)(w®y)=Aw®By=v" —= Ay By iy = Ay Bypw vy =vir (2-35)

Do Problem 10 to show (2-35) in terms of matrices.

You are probably already considering the color part of the (state) vector v above in terms of the
strong force, and that, in fact, is why I choose color as a characteristic for this example. Similarly, the
same state represented symbolically by v may have a particular weak interaction charge.

When we get to weak interactions, we will see that operators like B act on a two-component state
(such as a quark or lepton). We can imagine a particular B operator, a weak charge operator, acting
on the state that would yield an eigenvalue equal to its weak charge.

With strong interactions, we will see that operators like A act on a 3-component state (such as a
quark). For example, a quark state having a given color » (red) would be in a color eigenstate (with

zero values for g and b in wy), and we could imagine a particular A operator, a color operator, acting
on it that would yield an eigenvalue corresponding to red. This is all very rough around the edges,
and not completely accurate, since we are trying to convey the general idea as simply as possible.
Many details and modifications will be needed (in pages ahead) to make it correct and more complete.

Direct Products and the Standard Model

In fact, the famous SU(3)XSU(2)XU(1) relation of the SM symbolizes the action of three groups
(strong/color interaction operators in SU(3), weak interaction operators in SU(2), and QED operators
in U(1)) whose operators act on fields (vectors in the mathematical sense here). Each field has a
separate part (indices) in it for each of the three interaction types. And each such part of the field is
acted upon only by operators associated with that particular interaction. More on this, with examples,
later in this chapter.
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To Summarize

The direct product of group matrix representations acts on the tensor product of vector spaces. Each
original group acts independently on each individual vector space.

An aside

The following will not be relevant for our work, but I mention it in case you run across it in other
places (such as the references in the footnotes on pg. 8). Do not spend too much time scratching your
head over this for now, but save it to come back to if and when you run into it elsewhere.

In some applications, the two parts of the state vector, such as w and y in (2-34), respond to the
same operator(s). For example, a spin 1 particle interacting with a spin 2 particle in NRQM can both
be operated on by a spin operator. When two such particles interact to form a bound system, that total
system has six possible spin eigenstates (four states with Jyor = 3/2,J,= 3/2,1/2,-1/2 ,-3/2, and two

with Jyor = 1/2, J- = 1/2,—1/2"). The state vector of the system is the outer product of the spin 1 state
multiplied by the spin ' state. Both parts of the system state vector relate to spin and both parts are
acted on by a spin operator.

The two parts of the system state vector have, respectively, 3 spin components (spin 1 particle has

eigenstates J; = 1, 0, —1) and 2 spin components (spin 2 particle has eigenstates J; = 1/2,—1/2). The
spin operator acts in the 3D space of the spin 1 particle and also in the 2D space of the spin 2 particle.
In that case, instead of a 3X2 state vector matrix with six components representing the system,
one can formulate the math using a six-component column vector for the system. And then the spin
operator for the system becomes a 6X6 matrix, instead of a 3X3 matrix group direct product multiplied
by a 2X2 matrix group.
This is commonly done and can be confusing when one considers direct products defined as in
(2-31) (equivalently, (2-32)), as we do here.
End of aside

Things to Note
In NRQM, we have already used the concept of separate operators acting independently on state
vectors, where we have free particle states like

i(Ei—kex) | 1
NRQM spin up state Vstate = Ae I(Et ’ X) |:0} ' (2'36)

—i(Et—kex)

The Hamiltonian operator A =i ai acts on the e part of the wave function and does nothing
t

to the 2-component spinor part. The spin operator S- operates on the spinor part, butnot the ¢~ (Et-kex)
part.

We commonly write the outer (tensor) products of two vectors as a column vector on the left times
a row vector on the right, as in (2-34). An inner product, conversely, is denoted by a row vector on
the left with a column vector on the right, as most readers have been doing for a long time.

p)
. inner product represented by _ _
WiWa row on left and column on right - [7‘1 & b ] ‘gz =1+ 818 thiby (2-37)
2

However, as noted in the solutions book, in the answer to Problem 10, the row vs column vector
methodology can become cumbersome, and even a bit confusing, at times. Of all the choices, the most
foolproof notation is the index notation, as on the RHS of (2-34) and (2-35).

Additionally, be aware that the tensor product is defined for tensors of all ranks, not just rank 1
(vectors). For example, for two 2" rank tensors expressed as matrices 7, ij and Sky, the tensor product
s T, ijSkl = Zijkl, a rank 4 tensor.

Finally, and likely to cause even more confusion, the literature is not 100% consistent with use of
the term “direct product”. Further, take care that the symbol ® is often used for it, and sometimes X
is used for tensor product.

An aside on spin
and group theory

NRQM example of
different operators
operating on different
parts of state vector
(i.e., on an outer
(tensor) product)

Often write inner
product as row on left,
column on right;

outer product as column
on left, row on right

But index notation
is most foolproof
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2.2.9 Summary of Types of Operations Involving Groups

Wholeness Chart 2-2 lists the types of operations associated with groups that we have covered.

Wholeness Chart 2-2. Types of Operations Involving Groups and Vector Spaces

Operation What Type Relevance In Matrix Representation
3 Group operation Between 2 elements Defining characteristic . L
AcB (binary) A and B of the group of the group Matrix multiplication, 4B
Av Group action on a A group element A Some, but not all Matrix multiplication with
vector space operates on a vector v groups, may do this. column vector, Av
Direct product of Combining groups L p 4L C 4B b
irect product o . arger group forme arger group Cijk’1’ = AjjBk’1” has
AXB group elements (A & B here symbolize| 5 5 smaller ones indices of 4 and indices of B®
entire groups A & B.)
® Outer (tensor) . Composite formed Composite v;j has index of w;
W=y product of vectors Combining vectors from 2 vectors and index of y;

* The direct product in group matrix representations, in some applications (see “An Aside” section on pg. 20),
can instead be re-expressed as a matrix with the same number of indices as each of 4 and B (in the example,
two indices), but of dimension equal to the product of the dimensions of 4 and B.

2.2.10 Overview of Types of Groups

The types of groups we have encountered are summarized in Wholeness Chart 2-3, along with one

L L e Infinite vs finite
(first row) we have yet to mention, infinite groups, which simply have an infinite number of group

roups
elements. One example is all real numbers with the group operation being addition. Another is sroup
continuous 2D rotations (see (2-6)), which is infinite because there are an infinite number of angles &
through which we can rotate (even when @1is constrained to 0 < @ <27, since #is continuous). As a
result, Lie groups are infinite groups, as they have one or more continuously varying parameters. On
the other hand, a finite group has a finite number of elements. One example is shown in (2-7), which
has only four group members.
Note the various types of groups are not mutually exclusive. For example, we could have an SO(n),
direct product, Abelian, Lie group. Or many other different combinations of group types.
Wholeness Chart 2-3. Overview of Types of Groups
Type of Group Characteristic Symbols Matrix Representation
Infinite . . Example: 2D rotation
(vs. finite) Group has an infinite number of elements. matrices as function of &
Abelian B Some groups of matrices
(vs Non-abelian) All elements commute AB=BA Abelian, but generally no.
Lie Elements continuous smooth functions of A=A(D, Example: rotation matrices as
(vs Non-Lie) continuous, smooth variable(s) 6; =A(0)) function of rotation angle(s)
Under A, magnitude of vector unchanged. B Al =yt Det 4| = 1
Orthogonal, O(n) All group elements real. AV =1 | |
Special . As in block As in block above,
Orthogonal, SO(n) As in block above above but Det 4 =1
Under A, magnitude of vector unchanged. Al = 4t D —
i ’ = = etA|=1
Unitary, U(n) At least some group elements complex. AV =1Vl | |
Special . As in block As in block above,
Unitary, SU(n) As in block above above but Det A = 1

Composite group is formed by

Direct product direct product of two groups

C=AXB Example: Cjjk1" = AijBk 1’
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2.2.11 Same Physical Phenomenon Characterized by Different Groups

It is interesting that certain natural phenomena can be characterized by different groups. For
example, consider 2D rotation. Mathematically, we can characterize rotation by the SO(2) group,
represented by (2-6). (Some other parametrizations are shown in (2-9) and (2-10).) This group rotates
a vector, such as the position vector (x,y), through an angle 6.

But we can also characterize 2D rotation via
U(9)=¢"? (arepresentation of U (1)), Repeat of (2-17)

where the unitary group (2-17) rotates a complex number x + iy though an angle 6. (See Problem 8.)

Note, the SO(2) group and the U(1) group above are different groups (here characterizing the same
real world phenomenon), and not different representations of the same group'.

That is why we prefer to say a particular group is a characterization of a given natural phenomenon
and not a “representation” of the phenomenon. (The word “characterization” is employed by me in
this text to help avoid confusion with the term “representation”, but it is not generally used by others.)

In a similar way, which we will look at very briefly later on, both SO(3) and SU(2) can characterize
3D rotation. In fact, SU(2) is a preferred way of handling spin (which is a 3D angular momentum
vector) for spin 2 particles in NRQM, as seen from different orientations (z axis up, x axis up, y axis
up, or other orientations). Many QM textbooks show this.’

2.2.12 Subgroups

A subgroup is a subset of elements of a group, wherein the subset elements under the group binary
operation satisfy the properties of a group. For one, all binary operations between elements of the
subset result in another element in the subset. That is, the subgroup has closure, within itself.

As examples, the group SO(n) is a subgroup of O(n), and SU(n) is a subgroup of U(n). So is
rotation in 2D a subgroup of rotation in 3D, where rotation in 2D can be represented by an SO(3) 3X3
matrix with unity as one diagonal component and zeros for the other components of the row and
column that diagonal component is in. (See (2-12).) And (2-7) is a subgroup of (2-6). As a relativistic
example, the set of 3D rotations SO(3) is a subgroup of the Lorentz group SO(3,1). And the Lorentz
group is itself a subgroup of the Poincaré group, which consists of the Lorentz group plus translations
(in 4D).

The most important example for us is the group covering the standard model, i.e., SU(3)XSU(2)X
U(1), which is a direct product of its subgroups SU(3), SU(2), and U(1),

Other than working individually with the subgroups of the SM, we will not be doing much with
subgroups, but mention them in passing, as you will no doubt see the term in the literature.

Note that a matrix subgroup is not the same thing as a submatrix. The latter is obtained by
removing one or more rows and/or columns from a larger (parent) matrix, so it would have fewer
rows and/or columns than its parent. A matrix subgroup, on the other hand, is comprised of elements
of the larger matrix group, so each matrix of the subgroup must have the same number of rows and
columns as the matrices of the larger group.

2.2.13 Most Texts Treat Group Theory More Formally Than This One

We have purposefully not used formal mathematical language in our development of group theory,
in keeping with the pedagogic principles delineated in the preface of Vol. 1. In short, I think that, for
most of us, it is easier to learn a theory introduced via concrete examples than via more abstract
presentations, as in some other texts.

But, for those who may consult other books, Table 2-1 shows some symbols you will run into in
more formal treatments, and what they mean in terms of what we have done here.

For example, where we said that the closure property of a group means the result of the group
operation between any two elements in the group is also an element of the group, the formal notation
for this would be

Different mathematical
groups can
characterize the same
physical phenomenon

One example

SO(2) and U(1) are
different groups,
not different
representations

of the same group

A subgroup is a
group unto itself
inside a larger group

! In mathematics lingo, SO(2) and U(1) are said to be “isomorphic”. A group isomorphism is a function between two groups that
sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations.

2 For one, see Merzbacher, E. Quantum Mechanics, 2" ed, (Wiley, 1970), pg. 271 and Chap. 16.
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VA,BeG, AoBeG. (2-38)

Note, however, that different authors can use different conventions. For example, the symbol C is
sometimes used to designate “is a subgroup of”. So, terminology usage requires some vigilance.

Table 2-1.
Some Symbols Used in Formal Group Theory

Symbol Use Meaning

€ AeG A is a member of group (or set) G

3 A¢e G A is not a member of group (or set) G

C AcCS A is a subset of set S

< A<G A is a subgroup of group G

\v4 Y A For any and all elements A

R Set of real numbers (for some authors, R)

C Set of complex numbers (for some, C)

R3 3D space of real numbers (for some, RY)

2.3 Lie Algebras

Different from a group, a Lie algebra, like any algebra, has two binary operations (in a matrix
representation, matrix addition plus a matrix multiplication type operation) between elements of the
algebra and also a scalar operation (which will be multiplication of matrix elements by scalars in our
applications). But, as we will see, a Lie algebra, in addition, can be used to generate an associated Lie
group, in ways that prove to be advantageous, particularly in QFT. An SO(2) group can be generated
from its particular associated Lie algebra; an SU(2) group, from its particular associated Lie algebra;
an SU(3) group, from its Lie algebra; etc.

The set element multiplication type operation used for matrix Lie algebras is not simple matrix
multiplication (which won’t actually work) such as AB, but a matrix commutation operation. That is,

common 2" operation in physics — [4,B]= 4B - BA=C C an element of the algebra, (2-39)
where (2-39) is commonly called the Lie bracket. (In more abstract Lie algebras, the Lie bracket does
not have to be a commutator. In the special case we are dealing with, it is.)

As with Lie groups, a precise mathematical definition of Lie algebras, particularly abstract (vs

matrix) ones, is beyond the level of this book. For our purposes, where all our groups and algebras
have elements composed of matrices, the following heuristic simplification will do.

A Lie algebra is an algebra with binary operations between elements, consisting of addition and
commutation, that can generate an associated Lie group (in a manner yet to be shown).

In practice, this will mean, because of their connection to Lie groups (with the continuous, smooth
nature of their elements dependence on parameters) that Lie algebra elements vary smoothly and
continuously as functions of continuous, smooth parameters (scalars).

Our goal now is to deduce the relationship between Lie algebras and Lie groups, and then show
how it applies to certain areas of physics.

2.3.1 Relating a Lie Group to a Lie Algebra: Simple Example of SO(2)

Consider the SO(2) 2D rotation group representation of (2-6), reproduced below for convenience.

Y, (6) = {cosﬁ —sin 9}

Repeat of (2-6
sin@ cos@ P (2-6)

We can express M(0) as a Taylor expansion around 6= 0.
. . . 0% . o -
M(H):M(0)+HM'(O)+7M"(0)+?M"'(0)+.... , (2-40)

which for small @ (|@|<< 1) becomes (where the factor of i is inserted at the end because it will make
things easier in the future)
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S S
M(e)zM(o)WM'(o){ws i } { sin0 —cos }

sin0  cos0 cos0 —sin0
0 1 ) (2-41)
:1+9{1 0 =1 +i0X |6 < 1.
where'
o [0 —1] [0 i
X =—iM'(0)=—i Lo Tl ol (2-42)

The single matrix X and the continuous scalar field & represent a Lie algebra, where the elements are
all of form @YX, the first operation is matrix addition, and the second operation is matrix commutation
(Commutation, as mentioned earlier, is necessary, and we will look at why a little later.)

Do Problem 11 to show that (2-42) is an algebra and gain a valuable learning experience. If you have
some trouble, it will help to continue reading to the end of Sect. 2.3.3, and then come back to this.

A Lie algebra such as this one (i.e., @x) is often called the tangent space of the group (here, M(0))
because the derivative of a function, when plotted, is tangent to that function at any given point. X in
the present case is the first derivative of M at &= 0. Actually, it is i times X. We have inserted the
imaginary factor because doing so works best in physics, especially in quantum theory, where
operators are Hermitian. Here, X is Hermitian, i.e., X' = X, and we will see the consequences of that
later in this chapter. Mathematicians typically don’t use the i factor, but the underlying idea is the
same.

Generating SO(2) Lie Group from Its Lie Algebra

Given (2-41), and knowing X, we can actually reproduce the group M from the Lie algebra 6X.
We show this using (2-40) with (2-6) and its derivatives, along with (2-42). That is,

~ cos0 —sin0 —sin0 —cos0 92 —cos0 sin0 &3 sin0  cos0
M()=| 0 _ +— +.. (2-43)
sin0  cos0 cos0 —sznO 2' —sin0 —cos0 31| —cos0 sin0

1 iX -1 —iX
Realizing that every even derivative factor in (2-40) is the identity matrix (times either 1 or — 1),
and every odd derivative factor is iX (times 1 or — 1), we can obtain the group element for any &
directly from the Lie algebra matrix X, as illustrated by re-expressing (2-43) as

| o 6 & &
- 21 4! 31 5! cos@ —sinb
M ()= = : (2-44)
o o 0> o* sin@ cos @
0——+—.. 1——4+—+..
31 5! 21 4!

Exponentiation of Lie Algebra to Generate SO (2) Lie Group

More directly, as shown below, we can simply exponentiate 8X to get M. From (2-40) and (2-43),

where we note XX = I,

{cos 0 -—sinf

sing cosé’} 110) =110 +017 0+ L1700+ LM 0.

A 62 o, -
:I+6’(iX)+7!(—1)+§(—iXI)+... (2-45)

L2 a3 )
:I+(i6?f()+(102)f) +(193)'() +.. =%

! Some authors, usually non-physicists, define X as simply M(0) without a factor of .
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or via

S0(2) = &%
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In essence, X can generate M (via exponentiation as in the last part of (2-45)). The matrix X is
called the generator of the group M (or of the Lie algebra). It is a basis vector in the Lie algebra vector
space. Actually, it is the basis vector in this case, as there is only one basis matrix, and that is X

Note that the exponentiation to find M can be expressed via addition with X and 7, as in the LHS
of the last row of (2-45).

As an aside, inserting the 7 in the last step of (2-41) to define X as in (2-42) led to (2-45).

Key point

Knowing the generator of the Lie algebra, we can construct (generate) the associated Lie group
simply by exponentiation of the generator (times the scalar field). Knowing the associated Lie algebra
is (almost) the same as knowing the group.

2.3.2 Starting with a Different Parametrization of SO(2)

Let’s repeat the process of the prior section, but start with a different parametrization of the same
SO(2) group, i.e., (2-9), which we repeat below for convenience.

B 1-x° -X
M(x)= Repeat of (2-9)
X 1-x?
We calculate the generator in similar fashion as before.
—2x : 1
. . 21/1—x 0 -1 0 i
X =—iM"(x),g =—i =i = 2-46
=0 1 2x L o} L‘ 0} (2:40)
W1-x? =0

(2-46) is the same as (2-42), but generally different parametrizations of the same group can have
different generators, even though the underlying abstract associated Lie algebra is the same. We will
see an example of this shortly in a problem related to SO(3).

We could, if we wished, obtain the original group by expanding (2-9), similar to what we did in
(2-45), and the terms in the expansion would involve only the matrices / and X.

2.3.3 Lie Algebra for a Three Parameter Lie Group: SO(3) Example

The 2D rotation example above was a one parameter (i.e., &) Lie group. Consider the 3D rotation
group matrix representation 4 of (2-11) to (2-13) with the three parameters €, 6, and 65. The
multivariable Taylor expansion, parallel to (2-45), is

A(0,0,05) = 4(0) Ay (0y) s (05) = 51252 10K

' 2
(A1|91:0+91A1 + 160 4

' 192 4n
|91:0 91:0 +...)(A2|62:0 +92 A2|92:0 + Bl 62 A2|92:0 +...)><

oo t 265 A . 2-47
(A3|93:0 + 6 A3|93:0 +5; 65 A3|93:0 +) = (2-47)

(i6,5,)° (i0.%,) (i0,%:)
I+(i91f(l)+llT!1+... ][1+(i92f(2)+127!2+... ][1+(i93f(3)+l37!3+... ]

Parallel to what we did for the one parameter case, we can find three generators
. 04;

AX}. = —]—

i=1,2,3 (no sum) , 2-48
i 26 i (2-48)

6;=0

which, more explicitly expressed (taking first derivatives of components in (2-12)), are

~Jooo - Joo-1 ) 010
X,=i|0 0 1 X,=i[00 0 X3=i|-100]- (2-49)
0-10 100 000

Note, for future reference, the commutation relations between the X;. For example,
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00 0][00-1] [00-1][0 0 0
(X, %,]= 001000—000 00 1
0-10J[100] [100]0-10
(2-50)
000] [o10] [0 10 )
=—[100+[000]|=-100]|==-iX;.
000] [000] | 000

In general, where gjk is the Levi-Civita symbol, and as you can prove to yourself by calculating
the other two commutations involved (or just take my word for it),

[)A(,)A(j] :—ig,-jk/{’k

Scalar field multiplication of the & by their respective X;, under matrix addition and matrix
commutation, comprise a Lie algebra. We now show that this is indeed an algebra.

i, j,k each take on value 1,2, or 3. (2-51)

Demonstrating (2-49) with & vield elements of an algebra

An algebra has two binary operations (matrix addition and commutation of two matrices here) and
one scalar multiplication operation. We need to check that the elements in a set created using (2-49)
as a basis and employing these operations satisfy the requirements for an algebra, as given in
Wholeness Chart 2-1, pg. 9.

We consider the set for which every possible (matrix) element in the set can be constructed by
addition of the X, each multiplied by a scalar. That is, for any element of the set X,
Xy = 01 X1+ OnXo + 0,3 X3 = Oy Xii. X; denote the three elements of (2-49)
For example, the special case X1 has 611 = 1, and 612 = 613 = 0. More general elements can have any
real values for the ;.
First, we look at the I*' binary operation of matrix addition with scalar field multiplication.

Closure: It may be obvious that by our definition of set elements above, every addition of any
two elements yields an element of the set. To show it explicitly, for any two elements, we
can write

Xa= 001 X1 + G2 X2 + 03X Xp= Op1X1 + Op2 X2 + Op3 X3,
Xc :Xa +Xb = (Hal*‘gbl)Xl + (9a2 + 3[72))22 + (9a3 + HbS)A% == HCLYI + 62 XZ + 903X3
So, the sum of any two elements of the set is in the set, and we have closure.
Associative: )fa + ()fb + A}c) = ()fa + /\}b) +)fc. Matrix addition is associative.

Identity: For y; = 0 with i values = 12,3, Xp+Xs=Xp . S0, Xy=
for matrix addition.

[0]3x3 is the identity element

Inverse: Each element X, of the set has an inverse (—Xy), since X, + (—X,) =
element).

Commutation: Xy + Xp =

[0]3x3 (the identity

Xp + X,. Matrix addition is commutative.

Thus, under addition and scalar multiplication, the set of all elements X comprises a vector
space and satisfies the requirements for one of the operations of an algebra.

Second, we look at the 2" binary operation of matrix commutation with scalar field multiplication.
Closure: [/\}a, /\}b] = [Hm'/\}i, Hb]Xj] i Obj [Xl, ] which from (2-51) yields the following.
[Xa, Xp] = — i64iObj &ijiXk = — i Ock X

At this point, recalling that all of the scalars, such as €,;; and 6, are real, and &j is real

where Ok = Opi Opjijk-

too, we cannot write [Xa, /\}b] = /\}c, because of the imaginary factor i. That is, the RHS of

the previous relation (— i 9ck/\}k) is real and not an element of the set (which has all imaginary
elements), so there is no closure. However, we can easily fix the situation by defining the
binary commutation operation to include a factor of 7, as follows.

Commutation
relations for
generators

A}i and 6 yield
an algebra

Showing it

1" binary
operation
satisfies group
properties

1" binary operation
commutative, so we
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(the vectors are
matrices)

2" binary operation
satisfies closure
requirement of an
algebra
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Definition of 2" binary operation: i[Xy, Xp] (2-52)
Given (2-51), we find (2-52) yields i[Xy, Xb] = OuiObj &jiXk = Ock Xk, which is in the set.
Therefore, under the 2™ operation of (2-52), there is closure.
Third, we look at both binary operations together.
Distributive: From Wholeness Chart 2-1, Ao (B T C) = (A°B) i (A°C) for us, is distributive,
if we have i[A, B+C]|=i[A,B] +i[4,C] orsimply [4, B+C]=[A4,B]+ [4,C].
Now [4, B+C] = [Xaa Xp +Xc] = OuiX; (ngXJ + gchj) - (ab]A}] + gchj) OuiXi
or = HaiA}i Hb]AY] - HbjAYjHaiA}i + HaiA}i chAYj - chAYjHaiA}i
= [Xa:Xp] + [XaXe] = [4,B] + [4,C].
So, the commutation operation is distributive over the addition operation.
Conclusion: The set of the X,;’s under matrix addition, the matrix commutation operation (2-52),

and scalar field multiplication is an algebra. It is a Lie algebra because we can use it to
generate a Lie group (via (2-47)). Note that every element in the set is a smooth, continuous

function of the smooth, continuous (real) variables Gy,

Further, regarding the 2" binary operation, one sees from the analysis below that this particular
algebra is non-associative, non-unital, and non-Abelian.

Associative: General relation Ae(B °C) = (A°B)° C. For us, it is associative, if we have
i[4, i[B,C]]=i[i[4,B],C] or simply [A4,[B,C]]=[[4,B],C].

Now: [4, [B,C]] = [Xa, [Xb.Xc]] = Xa(XpXe — XeXp) — (XpXe — XeXp)Xa
= XaXpXe — XaXcXp— XpXcXa+ XeXpXa
= Oi Oy Okl XiX Xk — XiXaeXj — XiXpXi + XiXiXo)

And: [[4,B], C] = [[Xa:Xb).Xc] = (XaXp — XbXa) Xe — Xe (XaXp — XpXa)

= iy QoKX ~ XXiki — XXk + XXX

These relations are not equal. The middle terms differ because the X; do not commute.

So, the second binary operation is non-associative and we say that this Lie algebra is
non-associative.

Identity: An element / would be the identity element under commutation relation (2-52), if

and only if, i [/, X,] = X, where X, is any element in the set. As shown by doing Problem
12, there is no such /. Since no identity element exists, this algebra is non-unital.

Inverse: If there is no identity element, there is no meaning for an inverse.

Commutative: General relation A°cB = B°A needed for all elements, for the binary
operation °. For us, ° is commutation, so we need commutation of the commutation
operation. That is, we need, in general, [4,B] =[B,4]. Thus, as one example, i[X}, X3] =
i[)fz, )fl]. But from (2-51), or simply from general knowledge of commutation, this is not
true (we are off by a minus sign), so there are elements in the set that do not commute under
the 2" binary operation (2-52) (which is itself a commutation relation). This 2™ binary
operation is non-Abelian, and thus, so is the algebra.

End of demo

Do Problem 12 to show there is no identity element for the 2" operation (2-52) in the SO(3) Lie
algebra.

Do Problem 13 to see why we took matrix commutation as our second binary operation for the Lie
group, rather than the simpler alternative of matrix multiplication.

The commutation relations embody the structure of the Lie algebra and Lie group, and tell us
almost everything one needs to know about both the algebra and the group. Because of this
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“structuring”, the —gjj of (2-51) are often called the structure constants. We will see that other groups
have their own particular (different) structure constants, but in every case, they tell us the properties
of the algebra and associated group.

Another Choice of Parametrization

Consider an alternative parametrization for SO(3). where instead of &, we use 8; =— ;. This
could be considered rotation (of a vector for example) in the cw direction around each axis.

Do Problem 14 to find the generator commutation relations in SO(3). where 6, — 6';=— 6; in (2-12).

With this alternative set of parameters, we find different generators X i, Where

[/\A’;/\A’} } = igl-jk/{’,'( for parametrization 6/ = -6, (2-53)

We have a different set of structure constants, which differ from those in (2-51) by a minus sign.
So, the structure “constants” are not really constant in the sense that they can change for different
choices of parametrization. The fact that they were the same for different choices of parametrization
in SO(2) [see Section 2.3.2, pg. 25], was a coincidence. More generally, they are not the same.

In what follows, we will stick with the original parametrization of g, as in (2-12).

Quick intermediate summary for SO(3)

For SO(3), and our original choice of parametrization, the
generators obey [)A(,)A(j] = —ig,-jk)A(k i, j,k each take on a value 1,2, or 3, repeat of (2-51)
and, for any parametrization, the Lie algebra operations are addition and

the 2" binary operation is  i[Xy, Xp] . repeat of (2-52)

2.3.4 Generating SO(3) from Its Lie Algebra

As with the SO(2) Lie group, one can generate the SO(3) group from its generators, via the
expansion in the last line of (2-47). We won’t go through all the algebra involved, as the steps for
each factor parallel those for SO(2), and the actual doing of it is fairly straightforward (though
tedious).

2.3.5 Exponentiation Relating SO(3) Lie Group to Its Lie Algebra

General Case is Tricky

For a one parameter Lie group such as (2-6) in &, the relationship between it and the associated
Lie algebra 6X (see (2-42)) was simple exponentiation (2-45). One can generate the group via M ()

= ¢/% ForaLie group of more than one parameter, however, things get a little trickier, because one
must use the Baker-Campbell-Hausdorf relationship for exponentiation of operators,

ol eX+Y+%[X,Y]4T12(X,[X,Y]+[Y,[Y,X]])+... , (2-54)

where we imply the infinite series of nested commutators after the second commutator relation'. If X

and Y commute (as numbers do), we get the familiar addition of exponents relation. When they don’t,
such as with many operators, things get more complicated.

In our example of SO(3) (2-47), one might naively expect to obtain the Lie group from the Lie
algebra using the exponentiation relation on the RHS of (2-55), but due to (2-54) one cannot.

A(‘91’02’93):A1(91)A2 (92)A3 (93):ei01)216i92)22ei93)23 iei(ﬁl)ﬁﬁ@f(ﬁ@f@) :eiﬁi)fi (2-55)

So, if you have a particular Lie algebra element 6.X; (some sum of the generators), you do not use the
RHS of (2-55) to generate the Lie group (2-47). You have to use the relationship in the middle of
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group (contain the key
info about the group)

But structure
“constants” change
with different

parametrizations

Summary of SO(3):
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2) 3 commutation rels
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commutation

Exponential addition
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makes exponentiation
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SO(3) Lie group not
simple

! To be precise, (2-54) only holds if X and Y are “sufficiently small”, where defining that term mathematically

would take us too far afield. Simply note that all operators we will work with will be sufficiently small.
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(2-55). Conversely, if you have a Lie group element in terms of three &;, such as 4 on the LHS of
(2-55), you cannot assume the associated Lie algebra element to be exponentiated is G.X;.
To get the Lie algebra element, call it §, X, , associated with a given Lie group element in terms of

6;, we need to use (2-54). That is, we need to find the él values in
A4(6,6,,65) = 4(6) 4, (6,) 45 (65) = €' % 6,=6,(6;). (2-56)

As asimple example, consider the case where & = 0, so the total group action amounts to a rotation
through 6 followed by a rotation through 6. (Operations act from right to left in (2-56).) Using
(2-54), we find

A(6,6,,0,=0)=4,(6,) 4, (92):ei01)21ei92)22

B ei91X1+i92X2 %[ial)ﬁl,iaz)?z]+i([i01)21,[ial)%l,i92)22ﬂ+[i92)22,[i92)22 ,ialil]})+...

= 12 (2-57)
_ eiéif(i
So, using the defining commutation relation of the Lie algebra (2-51), we find
i0.%; =i0.X, +i0,X, +1[i6.%,,i6,%, |+ 5| i6,.%, [ i6,X,.i0,X, ||+ 5| i0,X,.[i6,%,,i6.%, ] . But we can still
generate the group
. . . . el . 2 O . 2 e .0 A
:lngl + lerz +%0102 (lX3 ) + lﬁal 92 |:X1,1X3:| + lﬁalaz |:X2,—ZX3 :I + ... (2'58)ﬁ,-0m )(l uSlng the
P o 1920 v - 27 enerator
:lHle + 192X2 + 1%0102)(3 - lﬁ@l 02X2 - lﬁalaz Xl +.. fommum[ion

At second order, é,)A(, zHI)A(I +92)A(2 +%9192)A(3 , SO él ~ 0, éz ~0,, é3 z%ﬁlﬁz . In principle, we ~ relations

can find the él at any order by using all terms in (2-58) up to that order. And for cases where 65 # 0,
one just repeats the process one more time using the results of (2-58) with (2-54) and the third operator
in the exponent 65.X3.

Do Problem 15 to obtain the third order g, values for our example.

A key thing to notice is that any two group elements 4A(84;, €42, B43) and B(6s1, Gs2, G53) of form
like (2-56), when multiplied together via the group operation of matrix multiplication, are also in the  Group property of
group, i.e., AB = C, where C'is in the group. That is, due to the commutation relations (2-51) used in  4B=C (with A, B,C
(2-54) we will always get a result equal to the exponentiation of Q,)E'l ,ie., C=¢'%%  where the 6 in group) still holds
can be determined. That is, every group operation on group elements yields a group element, and that
group element has an associated Lie algebra element sz( ;. All of this is only because each of the
commutation relations (2-51) used in (2-54) [and thus, (2-58)] yields one of the Lie algebra basis

matrices X;.

Infinitesimal Scalars ; Case is Simpler
For small 6 in (2-58), at lowest order 92)2', zﬁl)?l + 92)2'2 , SO él =0, éz =0, é3 ~0;=0.1Itis

common to simply consider the group and the algebra to be local (small values of &), so orders higher
than the lowest are negligible, and one can simply identify ¢, ~ ¢, . Then, we find (2-57) becomes

A(01,92,93 = 0) = Al (91 )A2 (02) = eiale ei02X2 ~ ei91X1+i92X2 |01|,|02| <1 5 (2'59)

and for the more general case, .
P . 3 Exponentiation to get
A(6.6.65) = 4,(6,) 4, (6,) 4, (6;) = N2 i0Xs 0K L T 46X, 6| <1 (2-60)  SO(3) group is simpler
o ) ) ) ) . in infinitesimal case
In principle, we can generate the global (finite) Lie group by taking 6, — d6; in (2-60) and carrying

out step-wise integration. And of course, we can always generate the finite group with the first part
of (2-55), A(6),6,,6) = 4M16%%2 0%
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2.3.6 Summary of SO(n) Lie Groups and Algebras

The first three rows of Wholeness Chart 2-5, pg. 37, summarize special orthogonal Lie groups,
their associated Lie algebras, and the use of exponentiation of the latter to generate the former. Note,
we have introduced the symbol N (with a caret) as a surrogate for what we have been calling the 3D
rotation matrix 4. The symbol 4 is common in the literature for that matrix, whereas in the chart, we
use carets for real matrices and no carets for complex ones (which are yet to be treated herein).

The number of generators for an SO(n) Lie algebra is deduced from what we found for SO(2) and
SO(3). The result can be proven, but is not central to our work, so we will not go through that proof

here. Also, we use the symbol é, (9 j) for both SO(3) and SO(n), in order to emphasize the parallel

between the two cases, though in general, the functional form of 9, will be different in each case.

You may wish to follow along with the rest of the chart as we develop SU(2) and SU(3) theory in
the next sections.

2.3.7 The SU(2) Associated Lie Algebra

We find the Lie algebra generators for the SU(2) Lie group (2-20) [with notation of (2-25)],
repeated below for convenience, in similar fashion to what we did for SO(2) and SO(3).

M= a b _ Q +i0!3 2% +i0!1 i _iao +to3 O _iaz
b ad | | ey tia ay—iog aytia, —ioy-as

That is, from the multivariable Taylor expansion

Repeat of (2-25)

M M
M(ai):M(0,0,0)‘f‘alaﬁ 26_ +a3a—
%I,_J al al.:o aaz (Ziio aa3 ai:0
(2-61)
(06 )2 o°M oo, O*M
I Sl DA ara TR
2 v
2' aal =0 2' 60!160!2 (Ziio
the generators are
Oay ;=0 22 lg;=0 Oat3 ;=0
Evaluating (2-62) for (2-25), we find, with (2-23),
X, = laM l{a |:a0+ia3 a2+ia1 ; 0 i 0 1
1=t = =4 o . . =-1 . =
6a1 . 8al -0 + o oy —1oy i 0 1 0
Oll-—() Oll-=0
(2-63)
0 —i M 1 0
X, =—i§—M ={ Ol} X, =M {0 J,
*2lg=0 L Oaz3 ;=0 -

which are the Pauli matrices, and which have the commutation relations

o, O; o
|:O'l-,0'j:|=i28ijk0'k or [Tl,Tj}zigijka. (2-64)

more common
symbols

[ X0 X | =026 X,

We will not take the time to show that the X; along with the three scalar field multipliers comprise
an algebra under the binary operations of addition and commutation. We have done that twice before
for other algebras and should be able to simply accept it here. I assure you it is indeed an algebra.

Note that had we defined M with o —> Y205 (i = 1,2,3), we would have found X; - 2X; = 0.
Then, the commutation relations would have been as in the RHS of (2-64), and we would have the
structure constants &j. So, &jk are the structure constants if we take our Lie algebra X; as 20; (which
is common in QFT); 2 &jjf are the structure constants if we take our Lie algebra X; as oj.

The Lie algebra X; for the SU(2) group has the same number of generators, and for X; = Y20j, has

the same commutation relation we found for one parametrization of the SO(3) group [(2-53)]. The
two different groups SU(2) and SO(3) have similar structure and are similar in many ways. For one,
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the Paul matrices

with the Pauli matrices
commutation relations

SU(2) generators can
be taken as Y:cj, with
structure constants &ijk

SU(2) happens to be
similar to what we
found for SO(3)
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which we won’t get into in depth here', as it doesn’t play much role in the standard model of QFT,
the 3-dimensional (pseudo) vector of angular momentum can be treated under either the 3D rotation
group SO(3) or (non-relativistically) under the 2D SU(2) group. As you may have run into in other
studies, spin angular momentum in NRQM is often analyzed using a 2D complex column vector with
the top component representing spin up (along z axis) and the lower component representing spin
down. The Pauli matrices, via their operations on the column vector, play a key role in all of that.

Take caution that SO(3) and SU(2) are not different representations of the same group, even
though they may, under certain parametrizations, share the same structure constants (same
commutation relations). They are different groups, but they can characterize the same physical
phenomenon. This is similar to the relationship between 2D rotation group SO(2) and the U(1) group
we looked at in Problem 8.

2.3.8 Generating the SU(2) Group from the SU(2) Lie Algebra

Do Problem 16 to prove to yourself that the X; above generate the SU(2).

From the results of Problem 16, we see that (2-61) can be expressed as

2 2 2
_ . . . [24] [25) %) a0,
M (o) =1+ioyX| +ioy X, + iz X3 - S I- 7!1— 7!14- T[O]+ (2-65)

2.3.9 Exponentiation of the SU(2) Lie Algebra

Finite Parameter Case

One can obtain the Lie group from the Lie algebra via the expansion (2-61) along with (2-62),
expressed in (2-65). One can also obtain it in a second (related) way, which involves exponentiation,
in a manner similar to what we saw earlier with SO(2) and SO(3). However, we would find doing so
to be a mathematical morass, so we will simply draw parallels to what we saw with earlier groups.

Consider a general Lie algebra element

where one could exponentiate it as
X = ei( X+ Xy +opX3) ' (2-67)
and where we note, in passing, that (see (2-54) and (2-55))
GlakitaXoresXs) |, joiki jooks josks (2-68)
We would like to explore whether (2-67) equals (2-25) [equivalently, (2-65)],
?
ei(ale +oy Xy +03X3) =M (0!,-)
of a3 a3  aqa (2-69)
=7 +la1X1 +lO!2X2 +1a3X3 - 7[ — 7[ — 7 + T[O]-i-

By expanding the top row LHS of (2-69) around ¢; = 0, we could see whether or not it matches the
expansion of M in (2-69), 2" row. We will not go through all that tedium, but draw instead on our
knowledge of the other multiple parameter case SO(3), where we found the equal sign with the
question mark in (2-69) is actually a # sign. If we wished, however, we could, with a copious amount
of labor, find a matrix function to exponentiate that would give us M. That is, similar to (2-56),

M () =P el airaXore) g g (). (2-70)

Do Problem 17 to help in what comes next.

I'See footnote references on pg. § or almost any text on group theory.
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Infinitesimal Parameter Case

However, for small values of |¢j], (<<1), as can be found by doing Problem 17,

ei(ale +o, Xy +az Xy )

~I+ia Xy +iay Xy +iogXs ~ M (o) || <1. (2-71)
As with prior cases, one could generate the global (finite) SU(2) group by step-wise integration

over infinitesimal ¢;.

2.3.10 Another Parametrization of SU(2)
(2-72) below is a different parametrization of SU(2) with three different parameters.

Do Problem 18 to prove it.

cos ¢lei¢2 sin ¢lei¢3
—sin ¢le_i¢3 cos ¢le_i¢2
Note that (2-6) is a special case (subgroup, actually) of (2-72) where ¢ = ¢3 = 0 (and here, ¢1 =— 6).
We find the generators for (2-72) in the same way as we did for (2-25).

The Lie algebra generators of (2-73) below turn out to be somewhat different from the earlier
example (2-63) in that they are switched around, and X3 is not found via the simple derivative with

M(¢1,¢2,¢3):M(¢i):[ ] a=c0s¢lei¢2 b=sin¢lei¢3 (2-72)

all ¢; = 0, as we had earlier. There are subtleties of group theory involved here, and we don’t want to
go off on too much of a tangent from our fundamental goal, so we will leave it at that.

As we noted earlier, different parametrizations generally lead to different generators. In any vector
space (such as our Lie algebra) one can have different basis vectors (matrices are the vectors here).
So, the generators for any matrix Lie group depend on what choice we make for the independent
parameters.

v —szn¢1e cos¢1ei¢5 {0 1} {0 —i:|
=—l— ‘ ) = )
: 1140 —cost/ﬁle ~ifs —singe”” 4=0 1oj [0

(]

lcos¢1e 0 '{i 0} {1 0}
X2 = . =—1 =
6¢2 —icos e > Jo 0—i| [0 -1
isin¢1ei¢3 00
— z— " = Not relevant
0ds #,=0 isinge ~ifs 0 4,-0 00
2 0 icosge® 01
—i oM =— ‘ icos e :{ } needed in expansion of M
09,045 40 icos¢1e_l¢3 0 4=0 10
M 2 ) in/2 1
X5 = _im =— Sm¢1_ coshe = 3rd generator
o9 —coshe % —sing, 40 1o
(2-73)
For small values of the parameters in (2-72),
1+ig "
| <1 2-74
R el @7

and we can express the group matrix as

M)~ T+if; (g) X = T < JOXTRX) g fmg gy =gy 3 =0 (2475)

Exponentiation
in infinitesimal
case is simpler

Another
parametrization
of SU(2)

The generators for
this form
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However, we cannot express M(¢;) globally as either a simple finite sum or as an exponentiation

of i(#1X1 + $rX2) as in (2-75). We could express it globally as an infinite sum, similar in concept to
(2-61). We could also express it globally (after a whole lot of algebra) as an exponentiation of some

function /3 I (¢,) of the ¢ as in

M(g)=e""DYanysize g, B, (¢) deduced to make it work . (2-76)
Bottom line:

(Finite parameters ¢;) For an SU(2) parametrization of particular form (2-25), we can obtain a global
expression of the group 1) as a finite sum of terms linear in the generators and the identity, and 2) as
a (complicated) exponentiation of the generators (see (2-70)).

(Other finite parameters e.g., @) For other parametrizations, 1) above needs an infinite sum of terms.

(Any infinitesimal parameters) In any parametrization, we can find a local expression of the group as
1) a finite sum of terms linear in the generators and the identity or 2) as an exponential [see (2-75)
and (2-71)]. This is the usual approach to the Lie algebra as the tangent space (local around the
identity) to the Lie group. Locally, finding the group from the Lie algebra via exponentiation is
relatively easy. Globally, it is generally horrendous.

Note that, in general, the generators for different parametrizations can be different, and thus so are
the structure constants. However, we can find linear combinations of the generators from one
parametrization that equal the generators from another parametrization. In other words, the vector
space of the abstract Lie algebra for a given Lie group is the same for any parametrization, even
though we generally get different generators (basis vectors [= matrices]) for different
parametrizations.

(2-72) has value in analyzing spin. (2-25) has value in QFT. Different parametrizations work
better for different applications.

Digression for Brief Look at Spin and SU(2) in NRQM

However, we will now digress briefly to show how (2-72) can be used for spin analysis. Recall
the wave function in NRQM had a two-component column vector representing spin.

oo 1 | 0
—ihkx C . . —ikx .. . .
|1//>Zl;n = Ae {0} spin in +z direction |1//>Spin = Ae L} spin in —z direction  (2-77)
Consider the case where we rotate the spin down particle to a spin up orientation (or conversely,
rotating our observing coordinate system in the opposite direction). In physical space we have rotated
the z axis 180° and could use the SO(3) rotation group (2-47) to rotate the 3D (pseudo) vector for spin

down

angular momentum through 180°. However, for the manner in which we represent spin in (2-77), that

would not work, as spin there is represented by a two-component vector, not a three-component one.

But, consider the SU(2) parametrization (2-72) where, in this case, ¢> = ¢3 = 0, and the ¢1 is a rotation

about the x axis (which effectively rotates the z axis around the x axis). We actually need to take ¢ =

@/2, where ¢ is the actual physical angle of rotation, in order to make it work, as we are about to see.
Then note what (2-72) does to the spin down wave function on the RHS of (2-77).

¢ ¢

N e P L Rt
wm | -singy cos 1 —sin% cos% 1

—_— 2-78

for ¢=180° ( )

e B U O O e i o
up

So, we see that the spinor (two-component column vector) lives in a 2D vector space, on which
the elements of the SU(2) group operate. And rotations in 3D space can be characterized, in a 2D

complex space, by the SU(2) group. Because ¢1 in the 2D complex space of SU(2) ranges over 360°,
while ¢ in the physical space of SO(3) ranges over 720°, we say SU(2) is the double cover of SO(3).
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As noted earlier this has wide ranging application in analyzing spin, but we will leave further
treatment of this topic to other sources, such as those cited previously.

End of digression

We do note that the matrix operation of (2-78) is sometimes referred to as a raising operation as it
raises the lower component into the upper component slot. Conversely, when an operation transfers
an upper component to a lower component slot, it is called a lowering operation. We will run into
these concepts again in QFT.

2.3.11 Summary of Parametrizations and Characterizations

Wholeness Chart 2-4 summarizes what we have found for different relationships between Lie
groups and their respective Lie algebras.

Wholeness Chart 2-4. Lie Group Parametrizations and Characterizations

Raising operation:
column vector
component up one
level. Lowering
operation: down one

Lie Group Relationships Examples Matrices Lie Algebra
Different forms | Same abstract Lie algebra. May
Same group, different SU(2) of (2-25) for matrices, (or may not) have same basis
parametrizations and (2-72) but same matrices (generators) with same
dimension structure constants
Differel}t groups bit(l)l (ff))r a;gl ;S;)lt]a(tlz(z; Different forms Different abstract Lie algebra.
charact§rlzlng same - | for .matrlces, May (or may not) have same
physical world SO (2)and U(1), filffert?nt structure constants
phenomenon both for 2D rotation dimensions

2.3.12 Shortcut Way to Generate the First Parametrization

Note that because of its particular form, our first parametrization (2-25) of the SU(2) representation
can be found rather easily from the Lie algebra simply by adding the generators and the identity
matrix, multiplied by their associated parameters. That is,

oy +iay o, +ig 1 0 |0 1| |0 =i| |1 O
M = . A +ig +iay| . +iag
—ay +iay oy —ioy 0 1 1 0 i 0 0 -1

=agl +iogX| +iay Xy +iaz X3 = 1—0512 —a22 —a321+ia1X1 +iay Xy +ios X5 (2-79)
o, o, &, an
=1+ZC{1X1 +za2X2 +ZC{3X3 - 71— 71— 714- T[O]-I— s

where the last line, in which we expand the dependent variable oo in terms of the independent
variables, is simply our original expansion (2-61), which in terms of the generators is (2-65).

So, in this particular parametrization, going back and forth between the Lie group and the Lie
algebra (plus the identity matrix) is relatively easy.

However, it is not so easy and simple with the second parametrization (2-72). In the expansion of
M( ¢,‘) (which we didn’t do), one gets terms of form ¢,‘ ; in the infinite summation, but the original
matrix had functions of sin¢, cos¢i, et ,ei% multiplied by one another. That gets complicated in
a hurry.

As noted, in NRQM, we deal with the 2™ parametrization (2-72). In QFT, we deal with the 1%
So, in this sense, QFT is easier. (But, probably only in that sense.)

2.3.13 The SU(3) Lie Algebra
We repeat (2-28), the most suitable form of SU(3) for our purposes, below

11 SU(2) form is
easy to generate
from the generators

2 SU(2) form is
hard to generate
from the generators
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oy —ids
Qg — iy
26(8
l —_——
NER
o — ia2
8
3
Qg +icy

oy —ias

g

2058

&

—iay

- Repeat of (2-28)

|| < 1.

. 243 .
—1+a3+—F— oy — 10y
V3
. . Og
a1+la2 _l_a3 +—
NG
ay +ids Qg +icy
1 0 0 a8
Q3 +—F=
3
0 1 0] +ilog+ia,
0 0 1 ay +ias

The Gell-Mann matrices /;, which are convenient to work with in SU(3) theory, are

010 0 —i O] 1 0 0 00 1

A=|1 0 0| 4L=li 0 0] Z=|0 -1 0 =0 0 0
0 00 0 0 0 0 0 0 1 00

- - (2-80)

0 0 —i 0 00 00 0 1 0 0

=0 0 0| A=|0 0 1| A4 =0 0 —i %:LO 1 0|
i 0 0 0 1 0] 0 i 0] V3 0 0 2

Then, with (2-80) and (2-28), we find

N=I+ i(al/ll + oy + o3y + oy ly + asds +agls +aq Ay + agﬂg) (2:81)

=1 +ig;}; o] <1,

which parallels the second line of (2-79). By doing Problem 19, you can show that the A; are the Lie
algebra generators of V.

Do Problem 19 to show that A; are the Lie algebra generators of N. This problem is important for a
sound understanding of SU (3).

Then do Problem 20 to help in what comes next.

It turns out, if one cranks all the algebra using (2-80), that the following commutation relations
exist between the Lie algebra generators (basis vector matrices), similar to (2-64) in SU(2) theory,

[ 4.4 |= 2 e or [47’1_21} =i fiik ﬁ—zk (2-82)
and where repeated indices, as usual, indicate summation. Similar to what we found with SU(2) in
(2-64), we can take our SU(3) generators as ¥%/; just as readily as we can take them to be A;. For the
former, the structure constants are fjjk; for the latter, 2fjjx. The fjjk are not, however, as simple as the
structure constants for SU(2), which took on the values £1 of the Levi-Civita symbol &jk.

So that you are not confused, note that some authors define another tensor F; = /; /2, use that to
construct N, and refer when needed to the explicit form of the Gell-Mann matrices A;. The choice is,

of course, conventional, but I think it easier and clearer to stick to one set of matrices (the 4;), and
that is what we do herein.

The fjjk do turn out to be totally anti-symmetric, like the &jx.
fij = _fjik = fjki = _fkji = fkij = _fikj >

and they take on the specific values shown in Table 2-2 (some of which you can check via your
solution to Problem 20).

(2-83)
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Table 2-2
Values of SU(3) Structure Constants
ijk 123 147 156 246 257 345 367 458 678 | Others
R A I A I IR RSN 7 B N

Note the form of (2-28) parallels that of (2-25). The form of (2-28) meshes with the conventional,
widely used definition of (2-80).

As with SU(2), we will not go through all the steps to show the A; with the ¢; comprise a Lie
algebra, as they parallel what we did for SO(2) and SO(3). One can see that the 4; matrices and the

scalars ¢; form a vector space, and that with commutation as the second binary operation, defined via
(2-82), there is closure.

2.3.14 Generating the SU(3) Group from the SU(3) Lie Algebra

We include this section to keep the parallel with the SU(2) group (Section 2.3.8 on pg. 31),

although it should be fairly obvious that for |¢; [<< 1, we can generate the SU(3) group from its Lie
algebra via (2-81).

2.3.15 Exponentiation of the SU(3) Lie Algebra

General Case

One can generate the SU(3) Lie group from its Lie algebra via a second, related way, which
involves exponentiation, in a manner similar to what we saw earlier with SO(2), SO(3), and SU(2).
As we found before, doing so would be an algebraic nightmare, so we will once again simply outline
the steps that would be taken.

Consider a general SU(3) Lie algebra element

A =ia;l; anysize |al- , (2-84)
where, as we found with other groups earlier,
&t 2 N(a,-) any size |a,-| . (2-85)

A Taylor expansion of the LHS of (2-85) would not give us the RHS.
However, again as discussed before for other groups, we could, with a whole lot of effort, deduce
other parameters, call them /3, for which

eiﬂ’%f :N(ai) ﬂi:ﬂi(ai)-
The functions fi(¢;) here are, in general, different functions from fi(¢;) of (2-70), as they must be

since there are different numbers of independent variables in the two cases. We use the same symbol
to emphasize the parallels between SU(2) and SU(3). We won’t be taking the time and effort to find

the S of (2-86) here.

(2-86)

Infinitesimal Case

But, as with other groups, the non-equal sign in (2-85) becomes approximately equal for small
parameters, i.e., & — 0, as the higher-order terms are dwarfed by the lower-order ones. And
essentially, the equal sign replaces the non-equal sign for infinitesimal values of ¢;. So,

(2-87)

Bi— o asa; —> 0,

and
PLERNEL LN N(al-) ~ 1 +iog A,
Generalizing Exponentiation

Wholeness Chart 2-5 below summarizes, and extrapolates to groups of degree n, what we have
learned about exponentiation of the Lie algebra generators to generate the group.

|or| <1 (2-88)

The A; with o satisfy
requirements of a
Lie algebra

Due to Baker-
Campbell-Hausdorf,
exponentiating Lie
algebra to get SU(3)
Lie group would be a
mathematical morass

But in principle, we
could do it with &P%
and eight f3; as
functions of eight a.

Infinitesimal case
is easier, as then

,Bj: Q.



Section 2.3. Lie Algebras

37

Note that we have deduced the number of generators for a group of degree n, for each group type,

from what we’ve learned about 2" and 3™ degree groups. The number of generators for an nXn SO(n)
matrix equals the number of components above and to the right of the diagonal, i.e., one half of the
total number of off-diagonal components. The number of generators for an nXn SU(n) matrix equals

the total number of components minus one.

In the chart, and generally from here on throughout this text, we employ carets for real matrices
and no carets for complex ones. Take caution, however, that this is not a commonly used convention.
In particular, 4 is typically used to denote the 3D physical rotation matrix, but in the chart, we use N.

Summary of n
degree Lie groups
shown in Wholeness
Chart 2-5.

And as noted earlier for special orthogonal groups, in order to draw clear parallels, we use the

same symbol (i.e., & for real groups, /3 for complex ones) as functions of the independent variables

in the 3 and n degree cases, but the functional dependence is generally different. That is fi(¢;) is a

different function of ¢; for 3D matrices than it is for nD matrices (for n # 3).

Wholeness Chart 2-5. Exponentiation of Lie Algebra Generators

Lie Algebra Generators Lie Group Representation
Preferred Parametrization Finite Parameters Infinitesimal Parameters
SO (2) X of (2-42) M= X M=
of (2- = .
¢ =[+i0X
) J _ _i0X, 7= 0K _ O
3)(imatrices N(@)—A?@lﬂzk,l%)—”e N=e¢e Ae
SO (3) of (2-49) = OX1 i Xy i3 X5 =1+i0,X; 60
. A A A 1
1_19293 91291(91) =[+101Xl
2 A A0 P .
_ i _ oy, 5 i6Y _ i0F
i matrices Y; P(el’ezw-ﬂn)—el P=¢" =€
0y, oY, 0,7, = I+i0Y. X
SO (n) 2 = loh ithly i [—H?'YE )
=12, 0,=0,(9;) =1+i6Y;
3 Pauli matrices” M(a )—eiﬂiXi M ='Pi¥i = g% i
SU(2) Xi =07 of (2-63) ’ =I+ioyX; =g
i=1,2,3 A=) =I+ipX;
8 Gell-Mann matrices’ iBX N = Al = gl
X =2; of (2-80) Ne) =€ [+ia X
SU(3) i =i of (2- =J+iaX;
L ﬂi=ﬂi(aj) L . B =a;
i=1,2,...8 =1+ifX;
. P =Pl = ol
2 . ‘ P(a) =P
SU(n) ;.1_ 1 matrlcgs Y; ( _1) = [ +iaY, .
i=1,2,..,n -1 B =B (e;) _1+ipy, i =0
* We can, instead, as is common in QFT, take X; = Y2 0; in SU(2) and X; = Y2 4; in SU(3). This would simply mean our
arbitrary parameters f; and ¢; above would be multiplied by 2.

2.3.16 Other Parametrizations of SU(3)
As with SU(2), there are other parametrizations of SU(3) [than (2-28)], but we won’t delve into

those at this point.

Other forms of SU(3)
exist, but we won'’t
look at them here
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2.4 “Rotations” in Complex Space and Associated Symmetries

2.4.1 Conceptualizing SU(n) Operations on Vectors

As we have noted in Vol. 1 (pg. 27, Box 2-3, and top half of pg. 199), a unitary operator operating
on a generally complex state vector keeps the “length” (absolute magnitude) of that vector unchanged.
This is parallel to real orthogonal matrices operating on real column vectors.

For real matrices and vectors, the operation of the matrix on the vector corresponds to a rotation
of the vector (for the active operation interpretation), or alternatively, to a rotation of the coordinate
axes from which the (stationary) vector is viewed (passive interpretation). (See Vol. 1, Section 6.1.2,
pg. 164.)

For complex vector spaces and complex matrix operators acting on them, one can conceptualize,
in an abstract sense, a unitary operation as a “rotation” in complex space of the complex vector (for
the active interpretation), or alternatively, as a “rotation” of the abstract vector space coordinate
“axes” from which the (stationary) vector is viewed (passive interpretation). Having this perspective
in the back of your mind can often help in following the mathematical procedures involved in carrying
out such operations.

2.4.2 Symmetries Under SU(n) Operations

We should know that a real scalar invariant, such as the length of a vector, remains unchanged
under a special orthogonal transformation, i.e., a rotation. That is, for nD space, where P (see (2-6)
for the 2D case) is the rotation operation and [v] is the column vector form of the abstract vector v,

VP =vev=D]" W] 1=[Plv] - WP =vev =T vl=b] [ls]T [P]lv] (2-89)

For an orthogonal matrix, [ﬁ]T = [ﬁ]‘l, SO
N2 Tra17r4 T 2
VP =" [A] [Plvl=Dv) 1=V, (2-90)

and the length of the vector after rotation is unchanged, perhaps not such a surprising result to most
readers. The key points are that 1) the length of the vector is invariant under the transformation (we
say the scalar length is invariant or symmetric) and 2) we can carry this concept over to complex
spaces.

So, now, consider an 7D complex column vector represented by [w] and an SU (n) matrix operator
P. (See (2-28) and Problem 7 for n = 2). We have

wl=[Pllwl - Iwl’ =wew =[wT [w]=[wl [PI"[PI[w]. 2-91)
For a unitary matrix, [P]Jr =[P] -l , SO

lw? = [wl [P [PIIw] = [w]  [w] =|wl?, (2-92)

and the “length” (absolute magnitude) of the vector after the unitary operation is unchanged. As this
is the hallmark of pure rotation of a vector, i.e., with no stretching/compression, in real vector spaces,
it is natural to think of a special unitary operation as a kind of “rotation” in complex vector space.

wl? = wew =[] [w]

Bottom line: The absolute magnitude of a real (complex) vector is symmetric (invariant) under an
orthogonal (unitary) transformation.

Reminder note: Recall from Chap. 6, Sect. 6.1.2, of Vol. 1. (pgs.164-166) that for a scalar to be
symmetric it must have both 1) the same functional form in transformed (primed for us) variables as
it had in the original (non-prime for us) variables, and 2) the same value after the transformation.

As examples, in (2-89) and (2-90), and also in (2-91) and (2-92), we had
equal sign means

2 r_r ’ ’ r ’ '2
= = Vi + VoV +....+ VY, = .
IV =y +vpvy + 4w, = Vv +vph W =1V same numeric value’

(2-93)

original functional form  transformed functional form
same as original
* equal sign means

2_ * * * _ ’ Pk % " r2
W™= Wi+ wawy o ww, =W W]+ wh W, =W same numeric value - (2794

transformed functional form

original functional form
same as original

SU(n) group
operations complex,
but analogous to
rotations in real
spaces

SO(n) group
operations =
rotations with vector
length invariant

SU(n) group
operations keep
complex vector
magnitude invariant,
i.e., like “rotations”

A symmetric scalar
(like vector length)
has same value and
functional form after
transformation
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2.4.3 Applications in Quantum Theory

In General

In theories of quantum mechanics, a state vector can be expressed as a superposition of orthogonal
basis state vectors, e.g.,

W) =dily) + A|ya)+ Alvs)+ A wn) = 4lv) - (2-95)
general t')-a’s_i; t;'sTsJ
state state state

For the usual normalization, the probability of measuring (observing) the system to be in any given
state i is |A,‘|2 and the “length” (absolute magnitude) of the state vector is unity, i.e.,

total probability = "length" of state vector = |A1|2 + |A2|2 +|A3|2 + ....|An|2 = Z|A,-|2 =1. (2-96)
i
The complex vector space state (2-95) can be represented as a column vector i.e.,
<W1 | V/> 4
in ch <V/2 | V/> 4
|V/> =VYstate % = : = (2-97)
(walw)] 4,
where in NRQM and RQM the vector space is Hilbert space.
A unitary operator, represented by the matrix P, operating on the state vector yields
Ry Ay - Ry || 4 4
P P - B, |4 A
Ply)=[y)=|"20 72 . T2 = Bdy = 4= T2, (2-98)
1::11 Pn2 Pnn An A}"l
where, because of unitarity [parallel to (2-92)],
1) )12 2
W'l =2 l4" =1=2 | 4] =(v|y). (2-99)
i i

The absolute value of the state vector, its “length” (= total probability for the system to be found in
some state), remains equal to one. This result generalizes to states in all branches of quantum
mechanics, NRQM, RQM, and QFT.

Quantum Field Theory

Consider a unitary transformation, such as the S operator of QFT (Vol. 1, Sects. 7.4 to 7.5.2, pgs.
194-199), which describes a transition in Fock space (complex vector space with basis vectors being
multiparticle eigenstates) from one state vector (components 4;) to another state vector (components
A;"). This parallels (2-95) to (2-99) for Fock space rather than Hilbert space. (See Vol. 1, Wholeness
Chart 3-2, pg. 68, for a comparison of these two spaces.) In Vol. 1, Fig. 7-2, pg. 199, the Sf; there
correspond to the 4, here. The total probability before and after the transformation remains
unchanged, i.e., the total probability for the system to be in some state remains equal to one.

In QFT, the Lagrangian (density) is an invariant scalar under external (global) transformations
(Vol. 1, pg. 173), i.e., Poincaré (Lorentz plus 4D translation) transformations. It is called a world
scalar, or a Lorentz scalar (Vol. 1, Sect. 2.5.1, point 11, pgs. 24-25). This particular invariance
constitutes an external symmetry.

But the Lagrangian also has internal (local) symmetries, which leave it invariant under certain
other transformations in other abstract spaces. These are also called gauge symmetries. (See Vol. 1,
pgs. 178, 290-298.) In QED, we found the Lagrangian was symmetric (invariant) under the gauge
transformations shown in the cited pages.

As a simple example, consider the fermion mass term in £, miy , under the gauge transformation
(2-100)
(2-101)

l//—)l//'ze_ial//,

migy — mp'y' =m(i7e (e "y ) = migy .
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That term in £ is symmetric with respect to the transformation (2-100), and as we found in Chaps. 6
and 11 of Vol. 1, when we include the concomitant transformation on the photon field, so are all the
other terms, collectively, in L. y here is known as a gauge field.

With reference to (2-17) and Prob. 8, the transformation (2-100) is a U(1) transformation. The
QED Lagrangian is symmetric under (particular) U(1) transformations. We have yet to discuss weak
and strong interactions, which we will find are symmetric under particular SU(2) and SU(3)
transformations, respectively, which is why the SM is commonly referred to by the symbology

SU@B)xSU(2)xU(1)  [the standard model] . (2-102)

There is some oversimplification here, as we will find the weak and QED interactions are intertwined
in non-trivial ways, but that is the general idea.

Now consider certain terms in the free Lagrangian, where we note the subscripts e and 1, refer to
electron and electron neutrino fields, respectively, and the superscript L refers to something called
left-handed chirality, the exact definition of which we leave to later chapters on weak interaction
theory. For now, just consider it a label for a particular vector space we are interested in, which we

will find later on in this book to be related to the weak interaction. For y#0 = 4,

_ _ S V(7 N S B 7
Loy =TEr Ot vl 0wl =l gk <ol vk g | @103)
terms ﬂ‘/’e

We have cast the usual scalar terms just after the first equal sign into a two-component, complex,
column vector (2D vector in complex space). In this case, it is composed of fields, not states.

Now, let’s see how (2-103) transforms under a typical SU (2) transformation, which we label M

e

and recall that M7 =M ~'. Mhere is a global transformation, i.e., not a function of spacetime .

2, =[7 %LVW} I M{W”Lf}
Ve | v

terms e

transformed functional form  transformed row vec  transformed col vec

[t wtlowt |- A
e

e

(2-104)
[two

— terms

M*l

The transformed terms in (2-104) equal the original terms in (2-103), in both functional form and
value. These terms are symmetric with respect to any global SU (2) transformation.

orignal functional form original value

We note that we have used a global transformation in order to make a point in the simplest possible
way. The actual SU(2) transformations in the SM are local (gauge) transformations, for which it is
considerably more complicated to demonstrate invariance (but which we will do later in this book.)

One may wonder why we chose the particular two L terms of (2-103) to form our two component
complex vector, instead of others, like perhaps an electron field and a muon field, or a right chirality
(RC in this book, though many texts use RH) neutrino field and a left chirality (LC) electron field.
The answer is simply that the form of (2-103) plays a fundamental role in weak interaction theory.
Nature chose that particular two component vector as the one for which SU(2) weak symmetry holds.
But, we are getting ahead of ourselves. Much detail on this is yet to come in later chapters.

Note that quarks share the same SU(2) symmetry with leptons, provided we form our two
component quark weak field vector from the up and down quark fields. That is,

L
vi | [‘”4 ,
Ya

where (2-105) is invariant under the transformation A, in the same way we showed in (2-104).

Similar logic applies for SU(3) transformations related to the strong (color) interaction. If quarks
have three different eigenstates of color (red, green, and blue), we can represent terms for them in the
Lagrangian as in (2-106). Note that up quarks can have any one of the three colors as eigenstates, and
likewise, down quarks can have any one of the three. The same holds true for RC vs LC fields. So, in
(2-106), we don’t use the up/down subscripts for quark fields, nor the L superscript, as the results
apply to both kinds of chirality and both components of the quark weak (2D) field vector in (2-105).

—L L, —L L —
[t'wo other =Yu ﬁl//u +Va /g‘//d = |:V/u

terms

(2-105)
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Yy
Consider then, 4hree quark :Wrﬂ‘//r +l/7gﬁl//g 'H/7bﬂl//b = |:V7r V7g V7b ]ﬂ V/g : (2'106)
terms l//b
The three terms in (2-106) are symmetric under a global SU(3) transformation.

Do Problem 21 to prove it. Then do Problem 22.

Note that fermions differ in type [flavor] (electron, neutrino, up quark, down quark, etc.), chirality
(LC vs RC), and color (R, G, or B). Each of these can be designated via a sub or superscript index.
For example, an up, LC, green quark field could be written as (note use of capital letter ‘V')

up, green, LC quark — ‘sz ¢ generally — ‘Pj’(a where here h=L; f=u;a=g (2-107)
h=L,R f=u,d (for quarks) or v,,e (for leptons) a=r,g,b (quarks); 0(leptons)

Leptons have no a component, as they are colorless (i.e., do not feel the strong force). And if,
instead (which will often prove helpful), we want to use numbers for the two and three-component
vectors to be acted upon by SU(2) and SU(3) matrices, we can take

=12 (for quarks); 1,2(f0r leptons) a=1273 (quarks); nothing(leptons) (2-108)

Then, (2-107) is essentially an outer (tensor) product (Sect. 2.2.8, pg. 18) of a 2D vector with a
3D vector. An SU(2) transformation on it would only affect the f'indices and not the a indices. An
SU(3) transformation would only affect the @ indices and not the f'indices. That is, for quark fields,
where M is an SU(2) operation and N is an SU(3) operation, we can write

My N V5 =¥ h, =12 a=123 m=12 n=123. (2-109)

In the weak and strong interactions chapters, we will see how these SU(2) and SU(3) symmetries,
via Noether’s theorem (parallel to what we saw in QED for U(1) symmetries) lead to weak and strong
charge conservation (at least prior to symmetry breaking for weak charge). In addition, associated
local transformation symmetries will lead to the correct interaction terms in the Lagrangian.

Full Expressions of Typical Fields in QFT

Finally, we note in (2-110) what typical fields might look like, if we expressed them in terms of
column vectors, where the subscripts # and S refer to the weak and strong interactions, respectively.
The subscripts « and e on the creation/destruction operators refer to up quark field and electron field,
respectively. The down quark would have unity in the lower SU(2) column vector component and
zero in the upper. The neutrino field has unity in the top slot; the electron field, unity in the bottom
one. The M matrix of (2-109) would operate on the two-component vector and nothing else; the N
matrix on the three-component vector and nothing else. All of the operators we worked with in QED,

such as electric charge, momentum, etc. would be formed from the y, (or ) part, as in QED.
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Fields are outer
products of 2D, 3D,
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0 0 Examples of typical
LC green 1 L —i + i 1 1 P P
up quark 8 =¥ =), #(Cur (P)u,(p)e” " +d,, (p)v, (p)e™) {0} L =y, {0} 1 field outer products
rp P w10 W10
general solution to Dirac equation for up quark, y,, (2-110)
LC electron W, =5 =3 2 (e, @y, e +d, @) | =y, |?
VE, 1 !
rp w w
general solution for electron field, v,
u and v, are also column vectors (in 4D spinor space) not explicitly shown in (2-110). As shown
later, d;r, and djr here create antiparticles with “anti-color” (for quarks) and opposite (RC) chirality.
Note further that it will be easier in the future if we use slightly different notation (parallel to that
in (2-103) to (2-105)), whereby the last terms in both rows of (2-110) are written as
0 0 0 ;
0 0 0 1 % L Alternative
l//e|:1:|W :[WJW: |:‘//£:| Yu [0} 1 :{ 0“} 1| = {V/g L. (2-111) symbolism

WOS WOS OS
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Summary and Conclusions

Wholeness Chart 2-6 summarizes transformations and symmetries for various spaces.

Symmetries of the Lagrangian exist under SU(n) transformations and these, as we will find, have
profound implications for QFT.

Wholeness Chart 2.6. Symmetries in Various Spaces

Space Operator Example Transformed Sym?
Euclidean, 2D SO (2) rotation vector length, |v| V[ = |v] Y
. function (circle) function v
x24y2=p2 X 24y?=p?
. function (ellipse) function N
x2+3y2 =42 x 243y 2%
Physical, 3D SO (3) rotation vector length |v| V= v| Y
« laws of nature laws in primed coordinates = v
(functional form) laws in unprimed coordinates
«“ vector component v’ vyl N
Non-orthogonal transform vector length |v]| [V'| # |v] N
Minkowski, 4D |SO (3,1) Lorentz transform|4D position vec. length = As As' = As Y
- mass m m2=p'upy=p7’p “u Y
« laws of nature Laws in primed coordinates = v
(functional form) laws in unprimed coordinates
- 4-momentum component p* p H+EpH N
Non-Lorentz (non 4D . B ,
orthogonal) transform 4D position vec. length = As As” # As N
Hilbert, nD state vector length = SUAP=s 4P =1
SU (n) (“rotation” e . oo Y
n “axes” = () ( ) total probability = 1 e, (W v)=(yv|y=1
s%ngle particle «“ Schrodinger eq (SE) SE primed = SE unprimed Y
eigenstates
Non-unitary transform state vector length (W ly)y=SI4 P+ 4P =(y|ly)| N
Fock, nD Complex “rotation”, state vector length = S r2 2_
1 “axes” = such as S operator total probability = 1 WiyH=ZUF =2l =yly | Y
multiparticle ) K-G, Dirac, etc. field same field equations in terms of
eigenstates equations functs. of ¢, y, etc primed fields, ¢, /', etc. Y
Non-unitary transform state vector length W w)Y=SId+ A =(ylyy| N
fields operating U(1) (“rotation™) free fermion L, is same function of v
on those states | suchas y — ' = ye’® | Lagrangian (density) £, as L, is of v
Weak, 2D SU(2) (“rotation”) L, functs. of ye, yy, ete. | L, same functs. of ye’, y/, etc. Y
2 “axes” =
LCe & v «“ field egs. in e, yy, etc same field egs. in y’, wv/, etc. Y
Color, 3D SUG3) (“rotation”) L, functions of quark, L, same functions of primed v
3 “axes” = lepton, boson fields fields as L, is of unprimed fields
RGB
“ field eqs. in unprimed fields | same field eqs. in primed fields. Y
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2.5 Singlets and Multiplets
2.5.1 Physical Space and Orthogonal Transformation Groups

In the ordinary 3D space of our experience, we know of two different types of entities, vectors and
scalars. In an n dimensional real space, vectors have n components, but regardless of what 7 is, scalars
always have one component. An orthogonal transformation on the vector will change the components
of the vector. But an orthogonal transformation leaves the value of a scalar unchanged. It is as if the
orthogonal operation acting on the scalar is simply the 1D identity “matrix”, i.e., the number one.

For an SO(n) group operating on n dimensional vectors, the matrix representation of the group is
an nXn matrix. But for the group operating on scalars, the same group is represented by unity, a 1X1
matrix. The nXn matrix is one representation of the group (that acts on vectors). The 1X1 matrix is
another representation of the same group (that acts on scalars).

It may seem confusing that we deal with 1X1 matrices for an SO(n) group, instead of nXn matrices.
To help, consider the SO (2) group of (2-6), where v symbolizes a vector and § symbolizes a scalar,

. !

—sme}{vl}:{vl} M(9)§ matrix [1]§: o
cos @ ) rep

V2 V2

S0(2): M(0)v

malrix {cos@ §.(2-112)

rep sin 6

We say the 2X2 matrix in (2-112) is a 2D representation of the group, and the unit “matrix” is the
1D representation of the same group. The former acts on vectors, the latter on scalars. In group theory
lingo (as opposed to typical physics lingo), the vector is called a doublet, and the scalar a singlet.

The matrix generators for each rep (we will start using “rep” sometimes as shorthand for
“representation”) are different, but they represent the same group. For the 2D rep, the generator is the
X matrix of (2-42), which commutes with itself. Since the 1D rep is essentially the 1D identity matrix

(the number one), and the group can be expressed as e’wf (see Wholeness Chart 2-5, pg. 37), for any

0, the generator Xin 1D is zero, since 1 = 6190' This commutes with itself, and thus, the commutation
relations are the same, a criterion for different reps of the same group (with the same parametrization).

To express it slightly differently, consider the vector space of real numbers, which are 1X1 column
vectors. Transform these vectors under an SO (2) transformation, which operates on 1X1 vectors and
so must be represented by 1X1 matrices. Such a transformation matrix must have determinant of one,
so the only entry in the 1X1 matrix has to be one.

In 3D space, the vector is called a triplet, and the scalar a singlet. The three generators X; of (2-49)
for the 3D rep obey the commutation relations (2-51). For the 1D rep, each of the X; is zero. (See
Wholeness Chart 2-5 where the él are arbitrary and the group operator must be unity.) Thus, in the

1D rep, the generators also obey (2-51) [rather trivially]. The commutation relation holds in both reps
of the SO (3) group.

The important point is that singlets are unchanged by SO(n) group operations. In a nutshell,
because Det M = 1, and for 1D, M is 1X1, M must = 1. In practice, we simply remember that when
an SO group operates on a scalar (a singlet), the scalar (singlet) remains unchanged.

2.5.2 Complex Space and Unitary Transformation Groups

As we’ve seen before, SU(n) operations are the complex cousins of SO(n) operations. Just as we
had »D multiplets (vectors) and 1D singlets (scalars) upon which special orthogonal matrices operated
in real n dimensional space, so we have nD multiplets and 1D singlets upon which special unitary
groups operate in complex n dimensional space.

As an example, consider the SU(2) group with 2D rep of (2-25), where w symbolizes a complex
doublet and s symbolizes a complex singlet.

SU(2): Mw matrix agtioy ap+iog || W _ W
’ rep —Qy + ial oy — ia3 %) W'z
For the 1D case, M is the 1D identity matrix, and since M = &P (Wholeness Chart 2-5, pg. 37)

for all £, all three X; = 0. The commutation relations hold trivially. And the singlet is invariant.

matrix

Ms — e [lls=s'=s (2-113)
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Similar logic holds for SU(3) with the 3D complex vectors as triplets and complex scalars are
singlets. In the 1D rep, the group takes the form of a 1D identity matrix, the generators are all zero,
and a singlet is unchanged under the group action. These conclusions hold for any SU(n).

As a foreshadowing of things to come, we will see later on that right-chiral fermions are weak
[SU(2)] singlets and left-chiral ones form weak doublets. Similarly, each lepton is a color [SU(3)]
singlet and quarks form color triplets. But don’t think too much more about this right now.

2.5.3 Other Multiplets

There are yet other dimensional representations for any given group. For example, 3D and 4D

representations of SO(2) are
) cos@ —sind
—sin@

M =| sin@ cos0@ M =

cos 6

sin@ cos@

(2-114)

cos@ —sinf

sin@  cos@
These share similarities with (2-6) and, respectively, would act on an SO(2) triplet and an SO(2)
quadruplet.

The generators for (2-114) are, respectively,

0 1 )
- ) =i 0
X=|-i 0 X = R
- 0

- 0

(2-115)

which share similarities with (2-42). The commutation relation for the generator of each of the
matrices in (2-114) is the same as for the generators of (2-6). (In this trivial case of only one generator,
the generator commutes with itself.)

Similarly, there can be different dimension representations for any given group. For the same
parametrization, the commutation relations for every such representation will be the same.

In the simplest view, for a given choice of parameters, the representation comprising an nXn matrix
is called the fundamental (or standard) representation. There are more sophisticated ways, steeped in
mathematical jargon, to define the fundamental rep, but this definition, though perhaps not fully
precise, should suffice for our purposes. The rep associated with the singlet is called the trivial
representation.

We will not do much, if anything, in this book with representations of dimensions other than » and
1 (acting on n-plet and singlet) for any group of degree n.

2.5.4 General Points for Multiplets and Associated Reps

In both real and complex spaces, we know that components of a multiplet change when acted upon
by the (SO(n) or SU(n)) group, but the singlet is invariant. We can also recognize that a matrix
representation of a group does not have to be of dimension n. For the same group, matrix reps of
different dimensions having the same parametrizations all have the same structure constants (same
commutation relations).

Commonly used names for fundamental reps of certain groups are shown in Table 2-3. Note we
show the formal mathematical symbols (see Table 2-1, pg. 23) for the vector spaces in parentheses.

Table 2-3. Common Names of Some Fundamental Representations

Group Vector Space Name
SU(2) 2D complex ((CZ) spinor
SO(3) 3D real (R%) vector
SO(@3,1) 4D relativistic, real (R4) four-vector

For 1D rep in SU(n),
generators all = 0;

singlet unchanged
under action of SU(n)

Some fields in QFT
are singlets, some are
multiplet components

Reps can have
dimensions other
than n and 1

Reps of different
dimensions have
same commutators
for generators

Fundamental rep,
simple definition
= nXn matrix rep

Singlets invariant
under SU(n)
transformations

Common names for
fundamental reps



Section 2.6. Matrix Operators on States vs Fields

2.5.5 Singlets and Multiplets in QF T

As you may have guessed, what we called 2-component and 3-component vectors in (2-103) to
(2-111) are more properly called doublets and triplets. In the referenced equations they were SU(2)
LC (weak interaction) field doublets and SU(3) color (strong interaction) field triplets.

In QFT, as we know, fields create and destroy states. So, we will find that the individual fields,
which are the components in doublets and triplets, create and destroy particles in (generally)
multiparticle states. In the SM, we will deal with both fields and states, just as we have in all the QFT
we have studied to date.

2.6 Matrix Operators on States vs Fields

In Section 2.4.3, we began to apply what we had learned of group theory to quantum mechanics.
We reviewed how the action of a unitary operator (represented by a matrix) on a state left the
magnitude of that state unchanged, even though the component parts of the state changed.

We then discussed the action of unitary operators on fields (as opposed to states) in QFT. We
showed examples of this for U(1) in (2-101), SU(2) in (2-104), and SU(3) in Problem 21. The question
can then arise as to whether, in QFT, we take our vectors (multiplets upon which group operators
operate), to be fields or states. The answer is a little subtle.

2.6.1 The Spin Operator on States and Fields

We start by referencing Vol. 1, Sect. 4.1.10, pg. 93. There we show the RQM spin operator, where
for simplicity we only discuss the z direction component of the total spin operator, acting on a
particular RQM (single particle) spinor state at rest with spin in the z direction. See Vol. 1, (4-40).

1 1 1
1 -1 o _; 110 _; 1 ,
For RQM 23| Woi =— e =—| | =— V/SPmuP> (2-116)
pool ) 2 1 0 2(0 p=0
-1]{0 0

However, in QFT, as we discussed in detail in Vol. 1, Sect. 4.9, pgs. 113-115, we need to take into
account that a state may be multiparticle. We found that by defining our spin operator (which acts on
states) to be the LHS of (2-117) below, we got the RHS. See Vol. 1, (4-110) and (4-119).

m p—
arr s = [V Sy d’s > QFT23=ZE—(uI(pwr(p)Nr(p)+v;“(p>z3vr(p>zvr(p>) (2-117)
V rpp

So, for a state with three at rest spin up electrons, we get

m p—
o3 3wsp,-nup> =3 (W @z @)V @) v @), )N, (p))‘ 3wsp,-nup>
p=0 rp P p=0
! ! (2-118)
~(1 0 0 0)% B 0133 =33
~11](0

The eigenvalue, representing total spin, is three times that of a single spin up electron, so it all works.
In QFT, the (multiparticle) state is just represented by a symbol, the ket symbol like that of (2-118),
and we generally don’t think of it as having structure, such as spinor column vectors. The definition
(2-117) provides the spinor column vectors in the operator itself. In any operation on a ket of given
spin, these column vectors in the QFT spin operator give us the needed structure that leads to the
correct final result. We don’t have to worry about spinor structure in the kets. It is included in the spin
operator.

If we had used a single particle in (2-118), we would have found the spin eigenvalue of 2. Note,
as in (2-119) below, that if we had used the original operator of (2-116) and operated with it on the
QFT field (instead of the state) we would also get an eigenvalue of Y.
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1 1 0
-1 0 0 ;
On a quantum field Z3y/,,,, = 1 e 1+ di(p e’
iy = ! o !
0 0
- (2-119)
1 0
! 0| e A 0] | 1
SR P AL Y e e T
0 0

Conclusion: X3 acting on a quantum field of given spin yields the same eigenvalue as

QFT23 = J.t//TZ3 vd 3x operating on a single particle state of the same spin.

2.6.2 Other Operators on States vs Fields

Somewhat similar logic works for other operators in QFT. Commonly, our operators, like M in
(2-104), operate on fields directly, as we show in (2-104). If we want the corresponding operation to
apply to (multiparticle) states, we parallel what we did for spin in going from (2-116) to (2-117). That
is,

; 1 0
Operation on quantum fields MY = M[V/VLE ]:M t//fe [O}_MV/QL [J
Ve
Corresponding operation on state [ J.‘PLTM ylgs x]

(2-120)

L L
n, V/ve MW >

where the ket here could have any number n,, of neutrinos and any number 7, of electrons, where the

neutrinos and electrons could have any spin and momentum values, and where M only operates on
the two-component column vector shown and not the spacetime or 4D spinor column vector factors
in the fields.

Let’s consider the particular form for M of

=t O 2-121
o 1) (120

Hopefully, in parallel with (2-117), and recalling (2-110), 2™ row, we can intuitively deduce that
1 0
(1 O)M{ jNVL L@ + (0 I)M( ]NeLr(p)
LT L 3 O e 1 ’
[REASTEED) (2-122)

v TPl _(1 O)M((l)j]vj:r(p) - (0 1)M(?jﬁ§,(p)

Do Problem 23 to prove (2-122). Or take less time by just looking at the solution booklet answer.

Now let’s consider an example where we have a single electron ket (nve =0, ne=11n (2-120)).

( [wtarpt d3x)\y,§> =3(0 1){(1) _OJ[(DN ®|vk)=-|wt). (2-123)

|4 rp
For M acting directly on the electron field, we get

L_ 0] |0 pfr ooffo]_ gfol_ |0
B R [ ) S

The eigenvalues in (2-123) and (2-124) are the same, i.e., — 1. We generalize this result below.

X3 operating on spin
up field yields same
eigenvalue as

J.l//TZ3 t//d3x on one

particle spin up state

Similar for other
QFT operators

Generally, SU(n)
group operators in
OFT act on field
multiplets, but we can
find associated
operators for states
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Conclusion #1: Eigenvalues from any unitary operator M operating on field multiplets ¥ are the
same as those from the associated operator J.‘PTM Yl operating on single particle states.

Conclusion #2: In group theory applied to QFT, elements of the group (such as M in our example
above) act on multiplets composed of fields. The group theory vectors comprise fields, not states.

We will see this material again, in a different, more rigorous way later in the book, when we get
to four-currents and conservation laws in weak and strong interaction theories.

2.7 Cartan Subalgebras and Eigenvectors

2.7.1 SU(2) Cartan Subalgebra
Note that one of the SU(2) generators (2-63) is diagonal (and like M of (2-121) in the example

above).
X; = bo (2-125)
o 1]
Observe the operation of this generator matrix on particular SU(2) doublets.
G 1 0|¢G G 0 1 0140 0
X5 = = X5 = = - . (2-126)
0 0 -1] 0 0 G, 0 -1|G C,

Do Problem 24 to show the effect of X3 on a more general SU(2) doublet.

The first doublet in (2-126) has an eigenvalue, under the transformation X3, of +1; the second, of
—1. We can use these eigenvalues to label each type of doublet. If d symbolizes a given doublet, one
with C1 =1 and C2 =0, it would be d+1; for C1 =0and C> =1, d-1. A general doublet, with any values

for the constants C;, would be d; = C1 d+1 + C2 d-1. As another foreshadowing of things to come,
consider the particular QFT weak interaction field doublets of (2-127), where a constant factor of g/2
(where the constant g is discussed more below) is used by convention. Note this can be considered as

simply taking X3 = "20; instead of o3, with a constant factor of g.

1 o]0 0
2 200 1|yt 2|yl | 2

L L
§X3\IJ£ _g 10 Ve |_& [ Yve :gqfé
2 € 210 -1 ¢ 2| o 2 e

If the doublet is a LC electron, we get an eigenvalue for the % X5 operation of —%. Ifitisa LC

(2-127)

neutrino, we get +§ . From what we learned in Section 2.6 (eigenvalues for a group operator on a

field are the same as those for the associated operator on a single particle state), we can use these
eigenvalues to label the associated particles.

Note that for singlets, in the 1D rep, the generator X3 is zero (as are the other generators). So,

%)(31//5 =%[o]y/§ =0 Exwl =Llolyk =0

2-128
5 5 (2-128)

It will turn out, when we get to weak interactions, that the operator gy corresponds to the weak
g P 5,3

charge operator. Weak doublets and singlets are eigenstates of that operator, with eigenvalues that
correspond to the weak charge of the respective particles.
Recall that RC fermions do not feel the weak force, and from (2-128), we see that RC fermions

have zero weak charge. From (2-127), LC electrons have weak charge —%; LC neutrinos, +§ .
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as J.‘PTM Yd3x on
one particle states.

SU(n) group elements
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multiplets, not states

Diagonal generators
operating on single
component multiplets
yield eigenvalues

Can be used to assign
component eigenvalues
(quantum numbers) to
weak doublet states

For singlets,
eigenvalues = 0

Weak operator
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Due to the negative signs in (2-122) on the antiparticle number operators, an antiparticle ket would
have the opposite sign for weak charge (as antiparticles have for any type charge in the SM). The
constant g reflects the inherent strength of the weak interaction, as greater value for it means a higher
weak charge. It is called the weak coupling constant, though it is actually on the order of the e/m
coupling constant e. The weak interaction is weak for another reason we will delve into later.

In practice, when discussing weak charge, the coupling constant g is commonly ignored. That is,
one generally says the weak charge of the LC electron is — /2; of the LC neutrino, + 2. We just need
to keep in mind that it is actually g times +'2 or — '%.

Note that diagonal matrices commute. Note also that the diagonal matrix X3, by itself (in either
the 2D or 1D rep), forms a Lie algebra. It conforms to all the properties we list for an algebra in
Wholeness Chart 2-1, pg. 9, with the second operation as commutation, closure, and the structure
constant of the parent algebra (or really any structure constant since all elements in the algebra
commute). Hence, X3 comprises a subalgebra (within the entire algebra for SU(2)), and is called a
Cartan subalgebra, after its discoverer Elie Cartan. A Cartan sub-algebra, in the general case,
comprises a sub-algebra of a parent Lie algebra, wherein the sub-algebra comprises all commuting
elements of the parent algebra (for matrices, all diagonal matrices).

The Cartan subalgebra provides us with a means for labeling the vectors (upon which the parent
algebra acts) with vector eigenvalues under operation of the Cartan generators. And the eigenvectors,
in turn, provide a basis with which we can construct any general (non-eigenstate) vector.

Wholeness Chart 2-7a lists the weak charge eigenvalues for the first generation (first family) of
fermions. As one might expect, the other two known lepton generations (muon/muon neutrino and
tau/tau neutrino) are directly parallel. That is, they form the same multiplets, with the same weak
charges, just as they had parallel e/m charges in electrodynamics.

Quarks form weak doublets and singlets as well, and they parallel those for leptons. As might be
expected, the LC up quark typically occupies the upper slot in the doublet; and the LC down quark,
the lower slot. Just as with leptons, there are second and third generations of quarks, which, like their
lepton cousins, play a far smaller role in creation than their first generation counterparts. The second
of these is comprised of the charmed and strange quarks; the third, of the top and bottom quarks. As
a mnemonic, remember that the more positive “quality” (up, charmed, top) for quarks gets the upper
slot (positive weak charge) in the doublet, while the more negative one (down, strange, bottom), the
lower (negative weak charge) slot.

You may wish to go back and compare what we said about charges in Section 2.2.8 (pg. 18)
subheading A Hypothetical Example with this present section.

Aside on Group Theory Lingo

In formal group theory, the X3 eigenvalues of the LC electron neutrino (up quark) and the LC
electron (down quark) doublets are called weights. Weight [ is + /2, and weight II is — 2. We will not
be using this terminology in this book.

Weak charge includes
weak coupling g, but
g commonly omitted
in weak charge
designations

Subset of diagonal
matrices called
Cartan subalgebra

Wholeness Chart 2-7a. SU(2) Cartan Subalgebra Generator Eigenvalues for 1% Generation Fermions

Leptons Quarks
Particle Multiplet Weak Charge Particle Multiplet Weak Charge
RC
electron singlet y [} 0 RCup singlet yX 0
: ¢ quark u
neutrino
RC . R RC down .
let R
electron SInget Ve 0 quark singlet y/g 0
LC L] ML
electron doublet P]"e = ‘Pf +% LC up doublet |V |= ¥y +%
. e quark 0
neutrino 0 | LY ]
0| [0 ]
LC doublet = ‘Pﬁ -1 LC down doublet = ‘Pé -1
electron ,/,eL 2 quark ,//5 7
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2.7.2 SU(3) Cartan Subalgebra
The SU(3) generators (2-80) have two diagonal matrices,
I 0 0 1 0 0
AH=/0 -1 0 28=L0 1 0. (2-129)
0 0 O V3 00 2
Consider their operations on a typical strong (color) triplet state, such as that created and destroyed
by the green quark field of (2-111), where gy is the strong coupling constant. As with SU(2), it is

conventional to divide gs by 2 (or equivalently, simply take X; = Y2 4; instead of 4;, with constant gg)
for finding eigenvalues,

40 10 0] 40 L4 [1 0 o]0 [0
%ﬂ{lﬂdl =%0—10{‘/’g}1 {‘/’d%oq()l =—%{'/’d1
o, oo o 0 0 0 0o} 0
(2-130)
0 10 0 0 0
& Vi |l 1| =8 lo 1 o[V |[1] =8 |v |,
270 243 0 23] 0
0 00 -2 0 0

The up green quark has two eigenvalues from the two diagonal matrices. We will label them

& s

2 243
Any quantum field with those two eigenvalues will be a green quark field. The shortcut way, rather
than using two different eigenvalues to label a strong interaction triplet eigenvector, is to
conglomerate them into one, i.e., color (R, G, or B).

& = (2-131)

Do Problem 25 to gain practice with finding different quantum numbers (eigenvalues) for quark and
lepton states other than the green quark.

With the results of Problem 25, we can build Wholeness Chart 2-7b. Antiparticle states have
eigenvalues of opposite signs from particle states. As with weak charges, the strong interaction
eigenvalues are usually expressed without the coupling constant factor of gg. And as before, the value
of that constant reflects the inherent strength of the strong interaction. And it is, as one might expect,
significantly greater than the weak or electromagnetic coupling constants.

In parallel with SU(2), SU(3) singlets have zero color charge. These are the leptons, which do not
feel the strong force. With regard to color, there is no difference between RC and LC quarks or
leptons.

Wholeness Chart 2-7b. SU(3) Cartan Subalgebra Generator Eigenvalues for Fermions

Color Multiplet &3 £s
1 1 1
R quark triplet | O — —
0 2 23
9] 1 1
G quark triplet (1) ) m
e 1
B quark triplet | 0 0 -
! P V3
Colorless (all leptons) singlet 0 0
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What About a Single Color (Strong Charge) Operator?

One could ask why we have two separate operators Y243 and Y24g, with two separate eigenvalues,
for the single variable of color. Why not a single 3X3 matrix operator, as we implied (for pedagogic
reasons) on pg. 19? For example, the operator

1 0 0] 10 0 10 0
85 (2 +B2) =850 -1 0f+]0 1 0 |=g]0 0 0 (2-132)
00 0| |00 -2 00 -1

would have a red eigenvalue (ignoring the gs factor) of +1; a green eigenvalue of 0, and a blue
eigenvalue of —1.

But that implies the green charge is zero, so there would be no attraction, or repulsion, of it by a
red or blue quark, and we know that is not the case. There is, in fact, no choice of a single diagonal
matrix for which we would have equal magnitude eigenvalues of r,g,b quarks, but different signs for
the three (as there are only two signs.). There are ample reasons, besides not being the accepted
convention, why using a single diagonal matrix as a color operator would not be advantageous.

Another Aside on Group Theory Lingo

As in SU(2), mathematicians call the sets of eigenvalues in Wholeness Chart 2-7b “weights”. For

SU(3), there are three weights. Weight [ = (%2_}@) , weight Il = (—%%) , weight Il = (O_T;) .

But again, we will not be using this terminology in this book. We mention it because you will run into
it in other texts.

2.7.3 Cartan Subalgebras and Observables

Almost all observables are built out of Cartan subalgebra elements of certain Lie algebras. Recall
that the eigenvalues for particular operators are observables. We see with our examples from SU(2)
and SU(3) above, and U(1) from Vol. 1, that we identify (and thus distinguish between) particles by
their e/m, weak and strong operator eigenvalues. These eigenvalues are the charges associated with
the respective interactions (electric, weak, and strong charges). For the weak and strong interactions,
these are the eigenvalues of the Cartan subalgebra operator(s). In the strong interaction case, we
streamline by labeling certain eigenvalue pairs as particular colors.

2.7.4 SU(n) Cartan Subalgebras

We will not delve into special unitary groups which act on vectors (multiplets) in spaces of
dimension greater than 3. However, such spaces play a key role in many advanced theories, so we
sum up the general principles we have uncovered as applied to special unitary operations in complex
spaces of any dimension.

For an SU(n) Lie group in matrix representation, we will have n?—1 generators in the associated
Lie algebra. One can choose a basis where n — 1 of these are simultaneously diagonal. These diagonal
matrices commute and form a subalgebra called the Cartan subalgebra. Each vector (multiplet) that is
an eigenvector of all of these Cartan (diagonal) generators has n — 1 eigenvalues associated with those
generators. These eigenvalues can be used to label the n independent vectors (multiplets).

2.8 Group Theory Odds and Ends
2.8.1 Graphic Analogy to Lie Groups and Algebras

We noted earlier that the vector space of a Lie algebra is commonly known as the tangent space
to its associated Lie group. This is because, essentially, the basis vectors (the generators, which are
matrices for us) of the vector space, are first derivatives (with respect to particular parameters), and a
first derivative is tangent to its underlying function.

Fig. 2-1 illustrates this in a graphic, and heuristic, way, where the Lie group is represented as the
surface of a sphere, and the Lie algebra, as a tangent plane to that sphere at the identity of the group.
One can imagine more extended analogies, in higher dimensional spaces, wherein there are more than

two generators Xj.

Cartan subalgebra
elements are
operators
corresponding to
observables

SU(n) has n— 1
generators in
Cartan subalgebra
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In the figure, in order for ¢**¥i to represent an element of the group, we need to restrict the

parameters so || << 1, i.e., we have to be very close to the identity. Each set of ¢; corresponds to a
different point (group element) on the sphere surface. As the ¢; change, one moves along that surface.
Group elements not infinitesimally close to the identity can, in principle (as summarized in Wholeness
()X

Chart 2-5, pg. 37), be represented by e , where the fj are dependent on the a;.

Identity 7 iX
X,

. io; X;
I+ia;X;=e 11

|ai|<<1

Lie algebra /

(tangent space)

X

Lie group

Figure 2-1. Schematic Analogy for Lie Groups and Algebras

2.8.2 Hermitian Generators and Unitarity

Note from the summary in Wholeness Chart 2-8 that all the generators we have looked at are
Hermitian. This is a general rule for SO(n) and SU(n) groups.

Wholeness Chart 2-8. Lie Groups and Their Lie Algebra Generators

Lie Group | Matrix Rep Generators for Fundamental Representation Exponentiated Form
M - [0 i L
SO(2) (2_6) X:|:_l 0i| el@X
4 3 000] 00| 0i0 L
SOQ3) ]\(]2(_‘114)) X,=100 i|X,=[000]|X5=|-i00 10X
0-i0 i0o0 000
SO(n) P Y; (imaginary, Hermitian, and traceless) ei iYi
M 0 1 0 —i 1 0 .
X, = X, = X, = B Xi
VD s : L 0} 2 L 0} . {0 _1 ¢
010 0—i0 1 0 0]
4=100|4L=|i 00[A4=|0-10
000 000 00 0
N 001 00 —i 000] -
SU3) =000 A4;={00 0| A4,=001 e'Piti
(2-26) 100 i 00 010
000 11100
=100 —-| Z=—|01 0
0i 0 V310 0 22
SU(n) P Y; (complex, Hermitian, and traceless) Al
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Do Problem 26 to prove that all generators of SO(n) and SU(n) groups are Hermitian.

If you did the suggested problem, you saw that in order to generate a unitary group matrix (or
orthogonal group matrix in the case of real matrices) via exponentiation of a Lie algebra element, the

KA

generators must be Hermitian, i.e., Yi' =Y.

Note also that the four cases we studied all have traceless generators. This too is a general rule for
generators of all special orthogonal and special unitary groups.

Do Problem 27 to prove it.

2.8.3 Terminology: Vector Spaces, Dimensions, Dual Spaces, and More
Wholeness Chart 2-9, pg. 53, summarizes all of this section and more.

Use of Terms “Vector Space” and “Dimension”

Don’t confuse the use of the term “vector space” when applied to matrix operation of a group on
a vector versus the use of the same term when applied to Lie algebras. In the former case, the vector
space is the home of the vector (or multiplet in group theory language) upon which the matrix acts.
In the latter case, the vector space is the space of matrices (which are vectors in this sense) whose
basis matrices (basis vectors) are the generators.

The dimension of a given representation equals the dimension of the vector space in which it acts.

The SU(2) representation with generators X; shown in Wholeness Chart 2-8 operates on 2D vectors
(doublets), i.e., it comprises 2X2 matrices and has dimension 2. However if an SU(2) representation
operates on a singlet, a 1D entity, such as in (2-128), it has dimension 1.

The dimension of a Lie algebra, on the other hand, equals the number of generators for the
associated Lie group, since each generator is a basis vector (a matrix in this case) for the vector space
of the Lie algebra. An SU(n) Lie algebra has n?—1 generators, so its dimension is n?—1.

Further, and making it even more confusing, the dimension of a Lie group is commonly taken to
be the dimension of its Lie algebra. So, an SU(3) Lie group would have dimension 8, but its matrix
representation in the fundamental rep (acting on three component vectors) would have dimension 3.

So, be careful not to confuse the two uses of the term “vector space” and the two uses of the term
“dimension” in Lie group theory.

Dual Vectors

Dual vector is a mathematical term for what we, in certain applications, have called the complex

conjugate transpose of a vector. More generally, it is the entity with which a vector forms an inner

product to generate a real scalar, whose value equals the square of the absolute value (“length” or
magnitude) of the vector.

Examples include the dual r' of the position vector r in any dimension, the bra (| as the dual of
the ket in QM, the covariant 4D spacetime position vector as the dual of the contravariant 4D position
vector, and the complex conjugate transpose as the dual of the weak doublet.

_|Xx [ T |e? _ NRQM probability,
(O [y} - =0 —_[x y,] fili = |¢> - <¢| , <¢|¢> ~ QFT norm (real scalar)
dual vector dual vector
0
1
xt = x2 - X, =[x0 X Xy x3] x,x* = spacetime interval (real scalar)  (2-133)
x
x3 dual vector
14 - L L —L||¥ - L L L L
el > [wve Ve ] [l//ve 7 ] | = vy, +Wew. (realscalar)
l//e R l//e

dual vector

SU(n) groups have
Hermitian, traceless
generators

Vector space on
which group
matrices operate
different from Lie
algebra vector
space

Dimension of a rep
= dimension of
vectors operated on

Dimension of a Lie
algebra = number
of generators

Dimension of a Lie
group same as
dimension of its
algebra

Dual vector inner
product with
associated vector
= square of vector
magnitude
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To be precise, the components of the dual vector for the weak doublet are adjoints, i.e., they are
complex conjugate transposes in spinor space post multiplied by the }’ matrix. (See Vol. 1, Sect. 4.1.6,

pg. 91.)

See Jeevanjee (footnote on pg. 8) for more on dual vectors.

Other Terminology

The order of a group is the number of elements in the group. The order of a matrix (even a matrix

Order of group =
num of elements

representing a group), on the other hand, is mXn, where m is the number of rows and # is the number

of columns. For a square nXn matrix, the order is simply stated as 7, and is often used interchangeably

with the term dimension (of the matrix).

columns)
Wholeness Chart 2-9. Various Terms in Group, Matrix, and Tensor Theory
Term Used with Meaning Examples
Degree groups n in SO(n), SU(n), U(n), etc. ggg; EZ: gzg zz ;

Vector space

matrix (group
representation)

space of vectors upon which
matrix representation acts

x
SO2): M L}} 2D space of x, y axes

Lie algebra

space of matrix generators
(= basis vectors in the space)

SU(2): space spanned by
X1, Xo, X3 generators

Dimension

Lie group

same as Lie algebra below

see Lie algebra below

matrix (can be
a group rep)

number of components in a vector
upon which square matrix acts

X
M { } M has dimension 2
y

Lie algebra

number of generators
(= number of independent parameters)

SU(2) has dimension 3
SU(n) has dimension n?-1

Dual vector
space

vector space

separate space of vecs: each inner product
with original vec = vec magnitude squared

ri (W|,x;1

Order group number of elements in underlying set any Lie group = 00
matrix mXn where m = rows, n = columns 2X3 matrix has order 2X3
(for square matrix, same as dimension) 3X3 matrix has order 3
tensor same as rank of tensor below see rank of tensor below
Sub subset of elements in a parent group that 2D rotations is a
group by itself satisfies properties of a group subarou Oo ¢ 3ODsrostations
(including closure within the subgroup) group
submatrix obtained by removing rows ab . abc
matrix . submatrix of |d e f
and/or columns from parent matrix d e o b
subset of elements in a parent algebra that Cartan subalgebra (diagonal
algebra by itself satisfies properties of an algebra matrices) for the Lie algebra of
(including closure within the subalgebra) any SU(n) group
Rank matrix number of independent vectors (columns) identity matrix in 2D: rank = 2

Lie algebra

number of generators
in Cartan sub-algebra

SU(3) has rank 2; U(1), rank 1
SU(n) has rank n — 1

tensor

number of indices

rank of tensor Ty is 3

Order of square
matrix same as

its dimension =
num of rows (or
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2.8.4 Spinors in QFT and the Lorentz Group

In Vol. 1, pg. 171, we noted that when our reference frame undergoes a Lorentz transformation,
the 4D spinors (spinor space vectors) transform too. The manner in which they transform was
signified there by the symbol D, which is a particular 4D matrix group (spinor space operator). D is
the spinor space representation of the Lorentz group. It is a representation of that group in spinor
space, as opposed to the usual way we see the Lorentz group represented, as the Lorentz
transformation in 4D spacetime. With considerable time and effort, which we will not take here (but
which is shown in the citations of the footnote on the aforenoted page in Vol. 1), one can deduce the
precise form of the spinor space representation from the spacetime representation.

2.8.5 Casimir Operators

An operator for a Lie algebra that commutes with all generators is called a Casimir operator. The
identity operator multiplied by any constant is a Casimir operator, for example. However, it must be
(aside from the arbitrary constant) constructed from the generators. An example from SU(2) is

X\ X, + X)Xy + XXy =T+ 1+1=3] (2-134)

We will not be doing anything further with Casimir operators herein, but mention them because
they are usually part of other developments of group theory you will run into.

2.8.6 Jacobi Ildentity
We note in passing that many texts define a Lie algebra using what is called the Jacobi identity,
[[x.v].z]+[[v.z]1.x]+[[z.x].Y]=0, (2-135)

to define the second binary operation in the algebra, rather than the more straightforward way (at least
for our special case) of simply defining that operation as a commutator. Each bracket in (2-135) is
considered a Lie bracket, and it constitutes the second operation. Formally, the Lie brackets do not
have to be commutators, they just have to satisfy (2-135), which commutators do.

Do Problem 28 if you wish to show that for the brackets in the Jacobi identity signifying
commutation, then the identity is satisfied. (This will not be relevant for our work, so it is not critical
to do this problem.)

We will not do anything more with the Jacobi identity. We mention it only because you will no
doubt run into it in other texts. The bottom line is that the Jacobi identity is simply the formal way of
defining the second operation for a Lie algebra. For our purposes, this is commutation.

2.8.7 Reducible and Irreducible Group Representations

Most presentations of group theory discuss what are known as reducible (or irreducible)
representations of groups. We are going to postpone treatment of that topic until Part 4 of this book,
however, as it will not be really relevant before we get to strong interactions.

2.8.8 Abelian (Commuting) vs Non-Abelian Operators

Recognize that if a matrix is diagonal, then exponentiation of it results in a diagonal matrix as
well. So, an element of the Cartan subalgebra exponentiated will yield a diagonal element of the
associated Lie group. Diagonal matrices commute.

If all elements of a particular Lie group commute, then all of its Lie algebra generators will
commute as well. As we have mentioned, a commuting group is called an Abelian group; a non-
commuting group, non-Abelian. The SU(2) and SU(3) groups are non-Abelian and their Lie algebras
are non-Abelian, as well. The U(1) group of (2-17) is Abelian. Cartan subalgebras are Abelian.

2.8.9 Raising and Lowering Operators vs Eigenvalue Operators

As we have mentioned before (pg. 34), some operators change components of a multiplet and
some can leave a multiplet unchanged, but typically multiplied by a constant.

In the latter case the constants are eigenvalues and the multiplet is an eigenvector of the operator.
Examples of such operators include (see Wholeness Chart 2-8) X3 of SU(2), as well as A3 and Ag of

Lorentz
transformation
has a rep in
spinor space

Casimir operator
commutes with all
generators

Jacobi identity is
formal, most
general way of
expressing 2! Lie
algebra operation

SU(2), SU(3) Lie
algebras non-
Abelian; U(1) and
Cartan subalgebras
Abelian

2 kinds of matrices:
diag — eigenvalues;
non-diag — raise or
lower multiplet
components
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SU(3), acting on multiplets with only one non-zero component. See (2-127) and (2-130). Such
operators are generally diagonal and members of the Cartan subalgebra.

SU(12)

Other, non-diagonal operators like the SU(2) generators X1 and X> of (2-63) raise and lower
components. For examples,

woely e 5] mely afsble) xeefi Sllel ] e

However, since, for example, X| can either raise or lower components of a doublet, it is generally
preferred to call entities such as

X, +iX 0 1 0 —i 0 1 X, —iX 0 1 0 i 0 0 SU(2) raising and
il B R | LY i B R | A . - lowering operators
Aol Sl o] ARl o[ Al T o) e e
the raising operator (LHS of (2-137)) and lowering operator (RHS of (2-137)).

SU(3)

All of the SU(3) generators other than A3 and Ag will similarly raise and lower components of
triplets in 3D complex space.

Fig. 2-2 is a plot of the SU(3) eigenvalues listed in Wholeness Chart 2-7b, pg. 49. Bars over color
symbols indicate anti-particles (with opposite color charges, and thus opposite eigenvalues). Note that
the tips of the vectors signifying the quarks lie on a circle and all leptons sit at the origin, as they are
SU(3) singlets, and thus have zero for each SU(3) eigenvalue.

' | . 11
L1 )G/ L0.0) \R(,,iJ
[ 2'23 j //\/\ 2' 23 Plot of fermion
! ' \ & SU(3) eigenvalues
. o L= leptons

B 1
0,———
[o-%)
Figure 2-2. Quark and Lepton SU(3) Eigenvalue Plot

Note that the raising operator (see (2-80))

010 0 —i 1 0
00 (2-138)
0 0

operating on a green quark triplet
0 0 1 00 1

ﬂ, ..
[?HiﬁJ 1|=/0 0 0|[1]=|0 (2-139) gpe—r’a’;:awlng
0] |0 0 0f0] |0

raises the triplet component from the second slot to the first, i.e., it turns it into a red quark. A
comparable lowering operator does the reverse, turning a red quark into a green one.

1| |0 0 Of1]| |0

(ﬁ_iﬁ) ol=l1 o0 ollol=l1 (2-140) R — G lowering
2 2 operator
0 0 0 0f}lo 0
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In terms of Fig. 2-2, the raising operator of (2-138) rotates the green quark vector of (2-139)
clockwise 120°. The lowering operator of (2-140) rotates the red quark in the opposite direction by
the same amount.

Do Problem 29 to find other SU(3) raising and lowering operators.

All of the non-diagonal SU(3) generators play a role in raising and lowering components in quark
triplets. The diagonal SU(3) generators determine the eigenvalues for quark triplet eigenstates.

Bottom line: There are two types of operators. One raises and/or lowers multiplet components. The
other merely multiplies eigen-multiplets by an eigenvalue. Similar reasoning applies to operators in
SU(n) for any n, as well as any SO(n). We could, of course, have operators which are linear
combinations of those two types.

2.8.10 Colorless Composite States

Consider a quark combination, such as one would find in any baryon, of RGB. The eigenvalues
of the three parts of the composite add to zero. Graphically, vector addition in Fig. 2-2 of the three
color eigenstates sums to the origin. The composite is colorless. It has zero for both eigenvalues.

Similarly, a meson is comprised of a quark and an antiquark of the same color (actually anti-color).
The eigenvalues sum to zero, and the two vectors in Fig. 2-2 vector sum to the origin.

One can figuratively think of the strong force as a tendency for points on the outer circle of Fig.
2-2 to attract points on the opposite side of the circle. We will, of course, speak more about this when
we get to a more formal treatment of strong interactions.

2.8.11 Group Action of S Operator versus SU(n) Operators

Note that the S operator (see (2-4)) acts on states, whereas the SU(n) operators act on field
multiplets. The S operator is really a group of operators and the vector space on which it operates is
composed of quantum states. The U(1), SU(2), and SU(3) groups we have been looking at, on the
other hand, act on vectors (multiplets) composed of quantum fields.

2.8.12 Unitary vs Special Unitary

The most general complex square matrix P of dimension n has n? different complex number
components. Each of these has two real numbers, one of which is multiplied by i, so, there are 2n?
real numbers, call them real variables, in all. P equals a sum of 2n? independent matrices (for which
half of them could be real and half imaginary), each such matrix multiplied by an independent real
variable.

PRe11 VP11 PRe12 Y Wrm12

PReln _{'iplm In
p—|PRe21 T WPIm21 PRe21 tWPIm21 " :

PRenml T ip]m nl

(2-141)
1 0--0 i 0 -0 01--0 00 0
0 -l 00 - : 0 0 - : 00 :
= PRell]| ... ... TP [T PRe2| |t Pinn | :
0 e e 0 0 e oo 0 0 «n -- 0 0 e e i
Consider what happens when we impose the restriction that P is unitary.
P a general nXn matrix with 2n? independent real variables (2-142)

2

P 'p=PTP=1 - n?* constraint equations — 2n% —n? =n? independent real variables

The imposition of unitarity yields n? separate scalar equations, one for each component of /7, in
terms of the 2n” real variables. These constrain the variables so only n® of them are independent. P is
then equal to a sum of the same 2n’ independent matrices, for which half of them could be real and
half imaginary, but half of the variables in front of the matrices are dependent, and half independent.

SU(3) raising and
lowering operators
rotate color states
in Fig. 2-2

Hadrons are
colorless (vectors
in Fig. 2-2 add to
zero)

and have total
eigenvalues for
A3/2 and hs/2 =0

S operator acts
on states;

SU(n) operators
act on fields

Progression from
general matrix to
unitary to special
summarized in

Wholeness Chart 2-10

General complex
matrix as sum of
2n? basis (matrix)
vectors with 2n®
indep real
variables

Unitary — n*
constraint eqs on
real variables

— n? independent
real variables
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We could, instead, combine the real and imaginary matrices to give us half as many complex
matrices. We also have the freedom to choose whatever variables we wish as independent, as long as
the remaining variables satisfy the unitary constraint equations. In effect, by doing these things, we

are just changing our basis vectors (matrices here) in the n dimensional complex space P lives in.
2

The matrices can then be combined in such a way that we can construct P from a sum of these n
generally complex matrices, each multiplied by an independent real variable.
Now consider that P is also special.

DetP =1 — one scalar constraint equation — one variable becomes dependent ,  (2-143)

so, we have n? -1 independent variables with the same number of independent generators (basis
vectors in the matrix space of the algebra).

Wholeness Chart 2-10 summarizes these results. Compare them with Wholeness Charts 2-5 and
2-8 on pgs. 37 and 51, respectively.

Wholeness Chart 2-10. Imposition of Unitarity and Special-ness on a General Matrix
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— n? complex
basis (matrix)
vectors

Making group
special imposes one
more constraint

Matrix P of | Scalar Constraint | Independent Number of Matrices as P as Sum of Matrices
Order n Equations Real Variables Basis for P (infinitesimal)
) 2 . P=piZ
Most general P 0 2n 2n° complex matrices Z; L o2
i=1,.,2n
Unitary 2 2 2 P=T1+igY;
~ ¥ n n n” generally complex
PIZPI g y p i:],_,,nz
Also, special 1 -1 n? — 1 plus identity matrix P=Itiol;
DetP=1 i=1,.,n" -1

2.8.13 A Final Note on Groups vs Tensors

I hope this section does not confuse you, as up to here, we have carefully discriminated between
groups and tensors.

Tensors represent a lot of things in our physical world. Examples (of rank 2) include the stress and
strain tensors (continuum mechanics), the vector rotation and moment of inertia tensors (classical

mechanics), the electromagnetic tensor F* (see Vol. 1, pg. 138), and the stress-energy tensor of

general relativity 7%y. All of these examples are grounded in the physical world of space and time,
and when expressed as matrices, all have real components. They act on real vectors and yield other
(related) real vectors.

However, in a more general sense, tensor components could be complex, and are in fact found in
applications in QM, which, as we know, is a theory replete with complex numbers and complex state
vectors.

A common definition of tensors delineates how they transform under a change in coordinate
system. Hopefully, you have seen that before, as we cannot digress to consider it in depth here. (See
Jeevanjee (footnote on pg. 8) for more details, if needed.)

(2-6), for fixed 6, is an expression of a tensor in an orthonormal coordinate system. This tensor
rotates a 2D physical space vector through an angle 6. If we change our coordinate system (transform
it so the x axis is no longer horizontal), we will transform the components of (2-6) and the components
of the vector it operates on. But, in physical space, the same physical vector v will rotate from its
original physical position by the same angle 6. Only the coordinate values are different. The actual
physical operation is the same. For (2-6) to be a tensor, that same physical operation has to be
performed regardless of what coordinate system one has transformed (2-6) to (what component values
one has for the transformed matrix).

Some examples
of tensors

Tensor action same
in physical world,
different components
in different
coordinate systems
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(2-6), which rotates a vector, is a tensor (for a fixed value of 6). So is each of (2-7). So is each of
(2-13) for any given fixed set of values for g. A set of such tensors, such as the elements of (2-7), or
(2-6) with 0 < <27, or (2-13) with 0 < 6; <27, can form a group.

Here is the point. The group SO(2) comprises a set of rotation tensors in 2D. Each element in the
group is a tensor. The same goes for SO(3). And, if we extrapolate to complex spaces, the same thing
can be considered true of any SU(n). The group elements can be thought of as complex tensors'.

Recall that groups can have many different types of members, from ordinary numbers to vectors
to matrices, etc. In this chapter, we have examined groups made up of tensor elements.

BUT, the language can then get cumbersome. Earlier (Wholeness Chart 2-2, pg. 21), we
distinguished between the direct product of group elements and the tensor product of vectors. But, in
our cases, the direct product of group elements is, technically speaking, a tensor product of tensors.
Confusing? Yes, certainly.

To circumvent this confusion as best we can, in this text, we will henceforth avoid calling our
group elements tensors. We will treat group elements as represented by matrices, and call the vectors
they operate on multiplets, vectors, or occasionally, rank 1 tensors. We only mention the connection
of rank 2 tensors to group elements in this section. I do this because I, the author, was once confused
by the similarity between groups and tensors, and I believe others must have similar confusion, as
well.

2.8.14 More Advanced Aspects of Group Theory

We note that we have presented group theory in the simplest possible way, and have done more
“showing” than “proving”. In particular, strict mathematical derivations of abstract Lie algebras are
intimately involved with the concept of differentiation on manifolds (which we won’t define here)
and manifold tangent spaces. Matrix Lie algebras, as opposed to abstract ones, can be derived and
defined using parametrizations and exponentiation. For matrix groups, the two approaches (abstract
and matrix) are equivalent, though the latter is generally considered easier to grok (English vernacular
for “understand”). Though we have focused in this chapter on matrix Lie groups and the matrix
approach, we have related that to differentiation of group matrices and thus indirectly to differentiable
manifolds. (See Fig. 2-1, pg. 51, and recall the Lie algebra is the tangent space of the Lie group.)

Additionally, you may have heard of other types of groups associated, for example, with string (or
M) theory, such as Eg and O(32) groups. We will not be delving into any of these in this book. In fact,
U(1) and special unitary groups SU(n) are all we will be concerned with from here on out, and only
those in the latter group with n =2 or 3.

Finally, as you may be aware, there are many more aspects and levels to group theory than we
have covered here. These include additional terminology, advanced theory, and numerous
applications®. We have developed what we need for the task at hand, i.e., understanding the SM.

2.9 Chapter Summary

There are several ways to summarize this chapter. The first is the graphic overview in Section
2.9.1. Second is the verbal summary of Section 2.9.2. Third is in chart form and found in Section
2.9.3. To get a more detailed summary simply review the other wholeness charts in the chapter. Being
structured, graphic, and concise yet extensive, they paint a good overview of group theory as it applies
to QFT.

! For veterans of tensor analysis only: To be precise, a group element in this context is a mixed tensor, as
it transforms a vector to another vector in the same vector space (not to a vector in the dual vector space.)
For real vectors and orthonormal bases, there is no need to bring up this distinction, as there is no difference
between the original vector space and its dual space.

2 See the references on pg. 8. Also, for a thorough, pedagogic treatment of even more advanced group
theory, such as that needed for study of grand unified theories, see Marina von Steinkirch’s Introduction
to Group Theory for Physicists (2011). She wrote it as a grad student, for grad students, as an elaboration
on H. Georgi’s far more terse Lie Algebras in Particle Physics (1999). Free legal download available at
www.astro.sunysb.edu/steinkirch/books/group.pdf.

Group members
of SO(n) and

SU(n) are tensors

But we will refer to them
as “matrices”’, and
avoid the term “tensors”

There is much more to
group theory, but we ve
developed what we
need for the SM
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2.9.1 Pictorial Overview

Wholeness Chart 2-11. is a schematic “big picture” view of this chapter, and needs little in the
way of explanation.

Wholeness Chart 2-11. Schematic Overview of Chapter 2

Groups
(For us, SO(n) & SU(n) represented by matrices)

Non-Lie groups Lie groups
(continuous parameters)

v

Lie algebras
(generators generate Lie group via exponentiation,
Taylor expansion, or matrix addition)

— T

QFT (SM) Other applications
/ ¢ \ (spin, etc.)
UuQ) SU2) SUQ3)
(e/m) (weak) (strong)

1. £ symmetric under group operations
(conserved charges, pins down interaction terms in L)

2. Evolution of state vector under S operator group action
(final interaction products [final state] from given initial state)

3. Eigenvalues of Cartan sub-algebra generators acting on fields identify particles
(multiplets — charges on component parts of multiplet; singlets — zero charge)

2.9.2 Verbal Summary

A group can be represented as a set of matrices and a binary operation between the matrices that
satisfy the properties of a group, such as closure, being invertible, etc. The group may act on vectors
in a vector space, and in our applications will virtually always do so.

There are many classifications of groups (orthogonal, unitary, special, Abelian, Lie, direct product,
finite, and more) and a particular group could belong to one or several of these classifications. For
unitary (orthogonal) groups, the complex conjugate transpose (transpose) of any element equals the
inverse of that element. For special groups, the determinant of every element equals unity. Special
orthogonal groups [SO(n)] rotate vectors (active transformation) or coordinate systems (passive
transformation) in real spaces. Special unitary groups [SU(n)] can be conceptualized as comparable
“rotations” in complex spaces.

An algebra can be represented as a set of matrices with scalar multiplication and two binary
operations that satisfy certain properties such as closure.

Lie groups have all elements that vary as continuous, smooth functions of one or more continuous,
smooth variables (parameters). Lie algebras have elements that satisfy the properties of an algebra,
generate an associated Lie group, and, as a result, are continuous, smooth functions of one or more
continuous, smooth variables (parameters).

The basis elements of a Lie algebra can generate the Lie group

1) globally, and locally, as factors in the terms of a Taylor expansion about the identity,

2) globally and locally, via exponentiation (which is simplified locally), or

3) locally (generally, but in some particular cases globally, as well), via matrix addition of the

identity plus the Lie algebra basis elements times the independent parameters.

Such Lie algebra elements are called the generators of the group. The generators can generate the
group via exponentiation, though in the global case, finding the form of the associated real variables
used in the exponentiation can be very complicated for all but the simplest matrix groups. For
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infinitesimal values of the parameters, however, the exponentiation simplifies, as we only deal with
first order terms in the expansion of the exponential.

Lie algebras we will deal with comprise matrices and the operations of matrix addition and
commutation. Structure constants relate such commutation to the particular matrices (within the Lie
algebra) the commutation results in.

A symmetry under any group operation (matrix multiplication for us) means some value, as well
as the functional form of that value, remains unchanged under that operation.

For a given group SU(n), there will generally be multiplets (vectors) of » dimensions and singlets
(scalars) of dimension one, upon which the group elements operate. Diagonal Lie algebra elements
of the associated Lie group commute, and when operating on multiplets with one non-zero
component, yield associated eigenvalues. The set of such diagonal elements is called the Cartan
subalgebra. Operation of such elements on singlets yields eigenvalues of zero. The dimension of a
representation of the group equals the number of components in the multiplet (or singlet) upon which
it acts. The same group, when acting on different dimension vectors, is represented by different
matrices, i.e., it has different representations.

In the standard model (SM), the weak force is embodied by the SU(2) group; the strong force, the
SU(3) group; and the electromagnetic force, the U(1) group. Cartan subalgebra elements in these
spaces acting on quantum field multiplets yield eigenvalues that are the same as those of associated
operators acting on single particle states. For SU(2) and SU(3), these eigenvalues, alone or in sets,
correspond to weak and strong (color) charges. Certain symmetries in each of the U(1), SU(2), and
SU(3) groups dictate the nature of the interactions for each of the various forces. Much of the rest of
this book is devoted to exploring these symmetries and their associated interactions.

2.9.3 Summary in Chart Form

Wholeness Chart 2-12. Table Overview of Chapter 2

Entity Definition/Application Comment
Group Elements satisfy criteria for a group

. Elements = continuous smooth function(s) of continuous
Lie Group

smooth parameter(s) o;

SU(n) Lie Group DetP=1 P'P=1 P(n) = matrix rep of SU(n)
Generatorg = Bases of Y, =—i opP i=1,...n%-1
Lie Algebra oo,
. . . Usually different structure constants
Y. Y; .
Commutation relations [ ey ] LGk cijk for different parameters ;.
Lie Algebra, nd Elt?m.ents satisfy glge.bra cr.it.eria.
0 . i1y, Y 1* binary operation is addition.
peration .
Both operations have closure.
Group from Algebra P= eiﬂi(af )Yi Can also construct P from Taylor
For o] << 1 — Pr eiaiYi ~I+iqY; OP~iaY expansion with ¥; used therein.

Cartan subalgebra

Diagonal generators of ¥; (symbol ¥;““" here)
Acting on vector space — eigenvectors & eigenvalues

All elements commute.

QFT

Y;“@ eigenvalues of field multiplets (vectors in a vector space)
correspond to weak & strong (color) charges.

Later chapters to show these do, in
fact, correspond to such charges.

P & Y; act on vector space of quantum fields.
S operator acts on Fock (vector) space of (multiparticle) states.

J.‘I"TP Ydix & J.‘I"TY;- Wd3x act on Fock (vector) space of states|

Y; acting on field multiplet yields
same eigenvalue(s) as
[ W'Y, wd’x acting on

associated single particle state.

Symmetries of £ for quantum field multiplet transformations
under SU(n) operators yield 1) charge conservation (via

Noether’s theorem) and 2) the form of the interaction L.

To be shown in later chapters.
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2.10 Appendix: Proof of Particular Determinant Relationship

In Problem 27 one is asked to start with relation (2-144) from matrix theory, where 4 and B are
matrices.

If B=e”, then Det B = ¢4 (2-144)

Here we prove that relation.

We can diagonalize 4 in the first relation of (2-144) via a similarity transformation, and B will be
diagonalized at the same time.

Bliag = e (2-145)
For any component of the matrix in (2-145) with row and column number £ ,
B, = ot (2-146)
Then, taking determinants, we have
Det Bjyg = Bcllilagsz%ngsz?ag = eAb’!”g eAg’%’g eAg?”g = e( Ail}angAjizang?ag j = diag (2-147)

The Baker-Campbell-Hausdorf relation is not relevant for the next to last equal sign because all
exponents are mere numbers. Since both the trace and the determinant are invariant under a similarity
transformation, we have, therefore,

Det B = ¢4 (2-148)

2.11 Problems
1. Give your own examples of a group, field, vector space, and algebra.

2. Is a commutative group plus a second binary operation a field?
Is a commutative group plus a scalar operation with a scalar field a vector space?
Is a vector space plus a second binary operation an algebra?
Does a field plus a scalar operation with a scalar field comprise an algebra? Is this algebra unital?

3. Show that 3D spatial vectors, under addition, form a vector space. Then show that QM states do
as well. What do we call the space of QM states?

4. Show that the matrices N below are an orthogonal group O(2) that is not special orthogonal, i.e.,
not SO(2).

]\7(9) _ {—cos@ sin 9}

sin@ cos@

Show the operation of N on the vector [1,0] graphically. Graph the operation on the same vector
for &= 0. Do these graphs help in understanding why special orthogonal transformations are more
appropriate to represent the kinds of phenomena we see in nature? Explain your answer. For the
operation Av = v’, from matrix theory, we know |[v'| = |Det 4 ||v|. Does this latter relation make
sense for your graphical depiction? Explain.

5. Write down a 2D matrix that cannot be expressed using (2-6) and a 3D matrix than cannot be
expressed using (2-12) and (2-13).

6. Show that U of (2-17) forms a group under matrix multiplication.

7. Show that any unitary operation U (not just (2-17)) operating on a vector (which could be a
quantum mechanical state) leaves the magnitude of the vector unchanged.
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8. Does ¢'? [which is a representation of the unitary group U(1)] acting on a complex number
characterize the same thing as the SO(2) group representation (2-6) acting on a 2D real vector?
Explain your answer mathematically. (Hint: Express the components of a 2D real vector as the

real and imaginary parts of a complex scalar. Then, compare the effect of ¢'% on that complex
scalar to the effect of (2-6) on the 2D real vector.) Note that U(1) and SO(2) are different groups.

We do not say that ¢'% here is a representation of SO(2). U(1) and SO(2) can describe the same
physical world phenomenon, but they are not different representations (of a particular group), as
the term “representation” is employed in group theory.

9. Show that M of (2-20) obeys the group closure property under the group operation of matrix
multiplication.

10. Show (2-35) in terms of matrices.

- 0
11. Show that X:{ )
—i

i

0} along with a scalar field multiplier € comprise an algebra. Use
Wholeness Chart 2-1 as an aid. Note that every 6X is in the set of elements comprising the algebra,
and the operations are matrix addition and matrix commutation. This is considered a trivial Lie
algebra. Why do you think it is considered such?

12. Show there is no identity element for the 2™ operation (2-52) in the SO(3) Lie algebra. (Hint:
The identity element has to work for every element in the set, so you only have to show there is
no identity for a single element of your choice.)

13. Why did we take a matrix commutation relation as our second binary operation for the algebra
for our SO(3) Lie group, rather than the simpler alternative of matrix multiplication? (Hint:
Examine closure.)

14. Find the generators in SO (3) for the parametrization € = — 6; in (2-12). Then, find the
commutation relations for those generators.

15. Obtain the ¢, values for (2-58) up to third order.

10 i 0
group. (Hint: Use (2-61), along with (2-20), (2-23), and the derivative of (2-23) to get M, and
prove that all elements shown in the text in that expansion can be obtained with the generators and
the identity matrix. Then, presume that all other elements not shown can be deduced in a similar
way, with similar results.) Then sum up the second order terms in the expansion to see if it gives
you, to second order, the group matrix (2-20).

16. Show that X, :{0 1},)(2 :{0 _l}, and X5 :“) _OJ generate the three-parameter SU (2)

17. For SU(2) with e, |, |as] << 1, show /(@1 Xaras)

=~ I+i6¥1X1 +i6¥2X2 +i6¥3X3 ~M.
cos Hlelgz sin6, e/

—i6

18. Show that M (6,,6,,6;)= »
—sin6e "3 cosbe

] is an SU(2) Lie group. That is, verify that

the group is both unitary and special.

19. Although this is already explicit in (2-81), confirm that the A;, in (2-80), are the generators of the
matrix N of (2-28). (Hint: Expand N in terms of ¢;. Comparing with (2-61) to (2-63) and (2-79)
may help.)

20. Show that [A1, A2] =i 243 and that [, A7] = iv34g —ils .
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Ve
21. Show that the three terms £y ce guar =w, v, +1/7gi§1//g +u, 8wy, = [1/7r 7 1/7,,][5 Y, | are

terms
Y

symmetric under an SU(3) transformation that is independent of space and time coordinates x*'.

22. Show that for a non-unitary group acting on any arbitrary vector, the vector magnitude is generally
not invariant.

23. Prove (2-122). This is time consuming, so you might just want to look directly at the solution in
the solutions booklet.

24.Show the effect of the diagonal SU(2) generator on a doublet where neither component is zero.
What do you conclude from the result?

25. Find the strong interaction quantum numbers for the down red quark, the up blue quark, the LC
electron, and the RC electron neutrino states.

By
26. For any unitary matrix P, PTP=1.If P= elﬂ; ", show thatall ¥; are Hermitian. For any orthogonal

matrix P, PTP=1.If P= ei@ﬂ@ , show that all ¥; are purely imaginary and Hermitian.

27. Given what was stated in Problem 26, and using the relation from matrix theory below, show that
all special orthogonal and special unitary generators must be traceless. The relation below is
derived in the appendix of this chapter.

From matrix theory: For B = gA, Det B = el7ace 4.

28. Show that if the brackets in the Jacobi identity[[X,¥],Z ]| +[[¥,Z], X |+[[Z,X],Y ]=0 are

commutators, then the identity is satisfied automatically.

29. Find the SU(3) raising operator that turns a blue quark into a green one. Then find the lowering
operator that does the reverse, i.e., changes a green quark into a blue one. In terms of Fig. 2-2,
what does the action of each of these operators do. What does the action of the Y4(41 + iA2) operator
do to a blue quark?
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