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 Translation  Lorentz Transformations (Rotations and Boosts) 

 Particle –  1 Spatial D Field –  4D  Particle –  4D Field –  4D 

  Dependent variable    x x t p p t       t , t ,       x y       x x p p           t , t ,       x x   

  Classical     x y  below to save space    

  Poisson brackets   u v u v
u,v
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    
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As 2 columns to left                As 2 columns to left                        

     Special case   1
x p x p

x, p
x p p x

    
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    
  

    

   x y x y

 

 M x p x p        

Lorentz charges, Zwiebach (11.76),  x


and p

 satisfy {x,p} relations 

        M  

M d   xM  

 and  satisfy{ , } relations 

  Transformation x x x     
  

              
 

smallx x x x    
            x x

       
            

    Via Poisson brackets    x x, p x, p     
  

 , d
     

          y     2
1x x , M x   

         2
1 d, M

  
     y   

      Transform operator p   (via Poisson bracket)    (via Poisson bracket) 
 ‒ ½ M


  (via Poisson bracket) ‒ ½ M


  (via Poisson bracket) 

Quantum       

  Commutators    1x, p i ℏ   , i , ig    
                  As 2 columns to left                As 2 columns to left                         

  Transformation x x x        As at left for x indep variable  smallx x x x    
         As at left for x indep variable 

    Via commutators    x x, i p i x, p         N/A: x

 indep, not dep variable 

 
2
1x x , M x   

       
Zwiebach (11.79)  

N/A: x

 indep, not dep variable 

    Transform operator 
d

p i
dx

   (via commutator)  N/A for x 
 

‒ ½ M


 (via commutator) N/A for x 

 transformation 
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  
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 

  

  


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  , i d

    

     
 

    

      

    

      y
 

Mirrors x for particle 

 

Scalar  unchanged under Lorentz 

transf. Ditto for Et ‒ px 
2
1, M d

    


   
 

     

    

   

     y
 

     transform operator 
i pT e 

   ‒i   (via field commutator) 
 Identity operator 2

1 M
  (via field commutator) 

 

   
   

    

i Et px i Et pxi p

i Et p x

t ,x T t ,x

T Ae e Ae

Ae t,x








 

 

   

  

 

 

  

N/A 



ˊ(xˊ) = (x) N/A 
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Notes 
  

Recall from Klauber Vol. 1, Chaps. 1 and 2, that a basic postulate for quantization (going from classical theory to quantum theory) is the taking of the classical Poisson 

brackets over into commutators (with an extra factor of i and ℏ = 1). This is what we do in this chart. It is virtually never noted in texts that the generator of translation, so 

often referred to quantum theory, has a direct analogue in classical theory. The difference is simply that for one we use commutators, and for the other, Poisson brackets. 

The parallel between the classical and quantum realms extends beyond merely translation to the general Lorentz (including rotation) transformation. 

‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

For the 1d (x and t) particle case, in quantum theory, the  translation operator comprises a Lie group, with continuous parameter . As there is only one parameter in 

this case, it is a U(1) group. The operator p is then a generator of the associated Lie algebra. 

Note that in 3d, since [pi, pj] = 0 the Lie algebra generators for different spatial dimensions (i = 1,2,3) all commute. So, they don’t collectively form a higher degree Lie 

algebra. There are simply three different, independent U(1) Lie groups/algebras (for translation), each acting on its own without regard to the others. We will see this is not 

the case for rotation, or for Lorentz boosts. The operators there do not commute, and their non-zero commutation relations lead to higher degree Lie groups. 

Similar logic applies to 4D fields in translation. Each of the four components of a field may each be translated independent of the others. 

‒‒‒‒‒‒‒‒‒‒- 

For Lorentz transformations for a particle, there are six independent M, three for boosts and three for rotations. M is antisymmetric, so it has 6 independent 

parameters. Various values for these parameters determine the degree of rotation or boost the particle undergoes during transformation. 

We know rotations do not commute, so it should be no surprise that the different components of M do not generally commute. Thus, unlike translation, each M (for 

given  and ) does not form an independent Lie group. The commutation relations between the M give rise to higher degree Lie groups. The rotation subgroup, for 

example, is SO(3), which should be no surprise. M is Hermitian. 

Note that for i,j = 1,2,3, Mij = xipj ‒ xjpi is angular momentum in the direction perpendicular to the i-j plane. 

In the quantum realm, the commutator of M with 4D position vector generates the change in that vector under a Lorentz transformation (including rotations), as shown 

in the chart. 

In Zwiebach (11.80), pg. 230, M ,M i M i M i M i M
                    (which can be proven via substitution). This commutator defines the Lorentz 

Lie algebra. Any quantum theory one poses must satisfy this commutation relation in order to be Lorentz covariant. The commutator is a constraint any potential theory 

must meet to be viable. 

‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

All of this is background for Zwiebach taking these results into the light-cone gauge and light-cone coordinates.  See pg. 4 for the world sheet coordinates as a 4D field 

dependent on parameters  on the world sheet. 

With specific regard to M, in the covariant gauge with light-cone coordinates, the above commutation relation holds, as Zwiebach shows on pg.233. Since the 

commutator is a 4D covariant relationship, it should, of course, remain valid under a change of coordinates. 

In the light -cone gauge, however, one must modify the M carefully in order to have it satisfy the commutator above and also, to be Hermitian (which is necessary 

for any generator of a Lie Algebra).  
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Showing Lorentz Transformation Generation via Poisson Bracket 
 

  
?

2
1x x x , M   

        (1) 

     
2 2
1 1x , M x , x p x p

      
        (2) 

 

    
       

         

2

2

2 2

1

1

1 10 0

x ,x p x ,x p

x p x p x p x px x x x

p p p px x x x

x p x p
x g g x x g g x

x x

     


          

    
   

   
         

    





   

  

       
     
        

  
        
   

  (3) 

In the row below, we make use of the anti-symmetry of . 

 (3)
2 2 2 2
1 1 1 1x x x x x x

       
                    (4) 
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Continuation of Chart on Page 1  

 

 Translation  Lorentz Transformations (Rotations and Boosts)  

 
Particle –  

1d 

Field –  

4D 

 Particle 

–  4D 

Field –  

4D 
World Sheet Coordinates X as Field 

    Covariant Fields, Light-Cone Coordinates         |      Light Cone gauge & Coordinates 

  Dependent variable See pg. 1 ↓ See pg. 1 ↓  See pg. 1 ↓ See pg. 1 ↓        t , X , t , ,         x x P  As at left, but light-cone gauge 

  Classical        

  Poisson brackets   

 

 

 Like 1st & 3rd columns to left: 

   
r r

r r

u v u v
u,v

X X
  

           P P
   

     Special case   

 

 

 X X     M P P  

M d   xM  

X and P satisfy{X, P} Poisson bracket relations 

Must modify definition of Lorentz 

generators M to keep correct 

commutation relations for M (which 

are needed to keep Lorentz invariance) 

  Transformation   
 

 
    X x X x X X

       
            

The above restricts the theory to D=26 

and leads to unstable tachyon scalars. 

      Via Poisson brackets    
 

 
  2

1X d XX , M
  

   y   See Zwiebach pgs. 260-262. 

      Transform operator   
   ‒ ½ M


 (via Poisson bracket)  

Quantum         

  Commutators   

 

 

 Like 1st & 3rd columns to left: 

     

 

X , , , i

X , ig

 
 

  

       

  

    

     

P

P

  

 

  Transformation   
 

 
 Similar to left for  indep variables, but  &  

transfs not discussed 

 

    Via commutators      N/A:  indep, not dep variable  

    Transform operator      N/A for   

(=X here) transformtn   

 

 

    
2
1

X x X x X X

X X , M d X

       
  

   
 

 

   

      

     
 

 

     transform operator      ‒ ½ M


 (via field commutator)  

      N/A  

 


