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Proof of the original Ward identity Proof of
-1 . .
From S.(p)) =pF-m (13-20) original
( r )) Ward identity
we find
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Taking p, = p;, - kj , (13-22) becomes
oSz (p—k
Mz—SF(p—k)y”SF(p—k). (13-23)
a(p”—k,])
Then, with (13-23) used in the second line below, we have
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=—l _[iDFa/j(k)VaiSF(p_k)VﬂiSF(P_k)7ﬁd4kzAﬂ(P,P)~ (13-24)

(2n)'

End of proof
13.2.4 The Ward Identities

Ward’s name is associated with an additional set of identities, which play a key role in War. d id?” tities
renormalization, and also in scattering calculations. They are called Ward identities, but to dis tmgu'ls ﬁed
distinguish them from (13-19), we called the earlier relation the “original Ward identity”. We derive Jrom o.rlgm'al
the Ward identities in this section, but before that, we need a bit of background information. Ward identity
Gauge Invariance Means Amplitude Invariance

Local gauge invariance means our Lagrangian £ is symmetric in form under the transformations

oy =Wy A, >4 =4,-19 a(x), (13-25)
where the numeric (not operator) field a(x) is our gauge (and is not the QED coupling constant).
Since L (= Lo+ L)), is unchanged in form, then each of £; and L retains the same functional form,
as well. (See (11-36), pg. 294.) That is, under a symmetry transformation of the full £, even though
L alone is not symmetric in its own right, in combination with Lo, the transformation yields two T L.
. . . . ransition
terms £; and £, that are identical in form to the pre-transformation terms £; and L. amplitude and
And thus, our transition amplitude must also be the same in form, as depicted symbolically in probability are

Lsym — L;unchanged — H; unchanged — S unchanged — Sjunchanged — |S;* unchanged. ~ gauge invariant

Effectively, we can say that if £ is symmetric under (13-25), then so is the amplitude S;. For the
S operator,
S(y.4,)=S(v’.4,), (13-25)+1

i.e., it has the same functional form in terms of unprimed or primed (transformed) fields.

With M, our Feynman amplitude, the transition amplitude, as we found in Chap. 8, is
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Under the gauge transformation, the incoming and outgoing four-momenta P; and Prare unchanged,
as are the volume / and the external particle energies, @wand E. Thus, M is gauge invariant if Sy is.

Note that the gauge invariance applies to the total Feynman amplitude for a// diagrams for given
incoming and outgoing states. For example, in Bhabha scattering there are two ways for it to occur.
(See Chap. 8, Fig. 8-2, pg. 221.) That is, for a given order in ey, A" = A4\ + A1}, where
A" and A4 each have many sub diagrams for n > 2. The point is that M is gauge invariant,
but the individual 47} and .A4}; need not be.

Recognize that if £ is gauge invariant, then H; remains the same under any such gauge, and each
term in our S operator expansion (each term contains n factors of H;) does also. Thus, for each order
of interaction n, S ™ is effectively gauge invariant. Hence, so are S ) and M?.

An Example

Consider the initial photon of the LHS of Fig. 13-1 to be a real photon (rather than virtual, i.e.,
rather than a photon propagator). The self energy Feynman amplitude of the real photon is
MY

yself —

S. =0, +

4 =0,+| (27) 67 (P, -P) (13-26)

f i

Al = )

where we represent the part of the interaction that does not include the interaction photon

(2)mv

contributions as A7, . Of course, we know that k" = k and r" = r, but that is not important for

present purposes and we want to generalize, so we leave in the primes.

The point is that for every interaction having one or more external photons, we can represent the
Feynman amplitude in two factors, one for the photon polarization state(s) and one for the rest,
where the latter has spacetime indices (which are summed with those on the polarization vectors).

Generalization

For any interaction having one or more photons as initial or final particle(s), we can represent
the gauge invariant Feynman amplitude for any order n as

M = 6 (K (K3 ) (K3 )]

where we again note that (13-28) is gauge invariant only when the amplitude includes the sub
amplitudes for every diagram having the same incoming and outgoing states.

Ward Identities
As we prove below, gauge invariance leads to the Ward identities
by MU (K Ky, ) = gy MY (KK ) = gy MY (K Ky, ) = e = 0

Proof of Ward Identities

The gauge transformation of (13-25) means d,a(x) must satisfy Maxwell’s wave equation
(where since 4, is real, ofx) should be real), since, if our Maxwell equation has form

(K, Ky k) (13-28)

(13-29)

09,4, (x)=0 (13-29)+1
under (13-25), this becomes
99, (4, +1a,a)=0 — 070,4;,+19°0,0,0=0. (13-29)+2
If we require (which we do, as our theory is built upon Maxwell’s equation in this form)
099,4, =0, (13-29)+3
then from (13-29)+2, we see d,cqx) must satisfy Maxwell’s equation (LHS below).
— _ one such .
099,0,a =0 or 9,0%d,a=0 solufion solves 0%d,a =0, (13-29)+4

=&, (k’){WTrI SF(p)ieoy”SF(p—k)ieofd“p}ew (k) =&, (K') &, (k) A2 Ui (13-27)
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and ofx) can have essentially the same functional form as 4%, the solution to (13-29)+1."
For a real photon field described in the Lorentz gauge by the eigen state plane wave

Tt e, (0)a) ()e) (13-30)

1 i
= z m(f}ur (k)ar (k)e
k

a useful form (one particular gauge) for AAx) is

z \/_ (0{, (k)e_ikx +al (k)eikx ) @.(k), @' (k) numbers, not operators . (13-31)
Thus, for this case, the photon gauge transformation of (13-25) becomes
-3k, —id, (k)e""“ +id! (k)e" A ——Z G (%) (13-32)
5 wﬁ -

A, = A =4,-19 o(x)=4,-1 (ikﬂ&r(k)e + ik, 6 (k)e" )

m|~

call this &, ; (x) =du0(x)

ik | (gyr(k)“;r (k) —%ikﬂdi (k))el’kx).

Consider a typical term of S expressed in factors of 7, for example, the Compton scattering term
for n =2, (pg. 225), under the symmetry transformation (13-25), with (13-25)+1,

SO (v, 4,)= 52 (v 4, =—ezﬂd%ld%zN{(va)xl<v7Aw)x2}
| |

—en S0 ==& [[d nd o N@A) (Wi | (A7), |
=~ f[d'nd ' N, ™ (4, 7 =13 ,0(x) 7" ) [ vy 7, @ | (477, —20,a(x)y e ™y )}
=& [[d'xd e N{@ (4,7 ~20,0(x) 7" )[wi 7, |, (4 o7 —20,a(x) 7 Jw)}
=—é [[d'xd e N{@a,7), [vi. 7, |, 47V, }
St
- ¢ [[atva o n{(Tar) v 7, ], (~Lo.a(x)7 v, |
-¢ [[and e N g, (Lo ,a(x) 7 )[vi 75, ] (A7 v), ) (13-32)+1

_ eZIId4xld4x2N{y7x (_la a(x)r" )|:y/;1,1/7;2:| ( %ava(xz)}/”)wxz}

Using our definition of &, from (13-32), this becomes
SO (v, 4,)=SE) (v 4,)+ eff d4x1d4sz{(l/7Aﬂ7")xl (w7, |, (T )vf}
+eff d4x1d4x2N{l/7xl (Z ey, (%) 7" )I:l//;l A7 ]+ (Avva)XZ} (13-32)+2
~ [[d*xd*x,N {wx (Z )[le Ty |, (Zkkak (xz)yv)wxz}-

We can see immediately, because identical terms appear on both sides of (13-32)+2, that the last
three terms must sum to zero. More on that shortly.

! Alternatively, our theory was developed in the Lorentz gauge (see pg. 141), i.e., 0¥ 4,=0,s0 we need
Hogr _ U 4 _ U 1 —_ M 1y _ 1y
0“4, =0also. Thus,0=0%4, =0 ( " —;aﬂa)_a A, —50"0,a=0-50d,00. To keep the

Lorentz gauge under the transformation, 0“0, =0.
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For now, using our symbol iS* (x, —x, ) for the electron propagator, we find
S(CZZ = Sézz + e'[jd4x1d4x2N{(l/7Aﬂ7” )x iS* (x, —x, (Z )l//xz}
+eff d4x1d4x2N{l/7xl (Zkk#dr,k x) 7 )is+ (x, —xz)(Av;/y/)xz} (13-32)+3
_ Hd“xld4x2N{y7xl (Zk:lk;l&r,,k,(xl)y ) X —X, (Z )y/xz}
As long as we are restrictir;g ourselves to electron Compton scattering, and not positron

Compton scattering, we can express the electron propagator S as the full propagator S (where the
last three terms below sum to zero)

S =50+ Sk effd*xd* @ () N{(74,), (- %) 7w, )
r.k

S(CZ)IV (1st way, no initial photon)

+ Yk ef[d'xd'x, G,y (x) N{le 78 (5 —x,) (47 W), } (13-32)+4
r.k
S(g)z/’ (2nd way, no initial photon)

- z k/’l z kv jjd4xld4x2 6?r',k' (xl ) dr,k (xz )N{l/7xl 7/11S (xl ) ) 7vl//x2 }
Kk r.k

S(CZ)” ¥ (both ways, no initial or final photon)

The two terms in the sum Zka(Czl)V +EkﬂS(Cz;” have the same external particles, so that sum
must equal zero independently of EkVZk/'IS(CZ)” ", which has different external particles.

Recall that to find the amplitude S; = Scompon for Compton scattering (to 2" order on the RHS
below), we carry out steps, as we did in Chap. 8, to evaluate

— N/, (n)| = (2) — [,
SCompton - <f| S| l> - <ep’,s” 7k’,r’ ;S ‘ep,sa 7k,r> — SC()mpt()n - <ep’,s’ﬂ 7]('/

When we did that, we found

(2) — ' ' 1 / (2)
SC{)mpt()n - VEp 2V 2V p "+ k -pP- k) MC{)mpmn

M) o= MG+ M<2> M = =€ty (e, K iSp(q = p+ K, )7 ug(p)  (13-32)+6

Compton

s? ‘e;,s, yk’r> (13-32)+5

M) ==y (e, 0P iS g (g = p—K)e, (K7 ug (),

which results from the S term in (13-32)+4. Doing a similar thing with the 2™ and 3™ terms on
the RHS of (13-32)+4, where our initial state lacks the photon of (13-32)+6, we get (see Appendix)

<e;,’s,,}/k,’r, Zk“kvs(gﬁ” +Zk:kﬂs‘c2§/‘ lepy) =
: =
0=1 7 \/Iﬁ\/%\/;(zn) S (p'+k = p—k)ik, M2V (G.(&)+a)(-k)) (133247
must = 0
Mg = My + M M ==& £y (Y B! iS (' +K)7 g ()

MY ==& ey ity 07 1S (' + K7 us ()
Thus (where the RHS of (13-33) follows from similar analysis of the last term in (13-32)+4),

(Mc(lzw MC<22>v) ke M2V = Kk, MPH _q (13-33)

Compton Compton
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If we takek — k; andk' - k», then (13-32)+8 and (13-33) above equal (13-29) for gZom
scattering.

One should be able to visualize a similar result from any iardpl with fermion propagators
and external fermions and photons. For ghe- ¢ of (13-25), thee "™ ande'™™ factors will
always cancel. The externa) — A',, due to thex part, will always leave a series of terms in $he
operator expansion of form similar to those in (13-32Qih appropriately more such terms when
there are more factors &,.) And each of these terms must equal zero because a term like
Séze’, (41/, AA) in (13-32)+2 occurs on each side the relationship resutamg the transformation.

For a photon propagator, we have (with similar resultsDdf” ™ (x, —x,))

DA () = A" A, ( ﬂ++%aﬂm>J ( K+ 30 4)] AR SIESD
[A(l 2 ] { &1 a number ’ a number [%I é ]

Thus, any photon propagator in any amplitude keeps thefsameainder the transformation, so
we get no extra terms from it, as in (13-32)+4, that ragstl zero.

And so, we have proven the Ward identities (13-29) usigl Igauge invariance (which gnq of Ward
manifested in (13-25)+1, the starting point of our firoo identities proof
End of proof

Note that (13-19) is a relation for =2 order between the photon loop and the vertex loop,
whereas (13-29) is good at any order for any amplituddving at least one external photon.

Additional Identities

There are yet other identities called Ward-Takahashi identifes/hich (13-29) is a special
case, but we will not treat those here. In Ward-Takahashi tigsntthek;, are not restricted to
represent external photons, but can be off shell (propagatatsihe RHS of (13-29) is, for internal
photons, not zero. The Ward identities are the Ward-Takahasttitids for real photons.

Ward identities a
special case of
Ward-Takahashi
identities

The Process

For any amplitude relation of form on the LHS of (13-B8Jow, the RHS, representing the
Ward identities is true. That is, we simply replace the polarization vecyothb associated four- How to apply
momentum and the result equals zero. Ward identities

M Ky ko) =6 ™ (kg ) — et (ky kg )=0 | (13-35)

The Message o _ _ N Gauge invariance
Local gauge invariance leads to both charge coasiervand the Ward identities. All three ar¢ g \ward identities
different ways of saying the same thing. Each iegpthe other two. the same thing

charge conservation— local gauge invariances> Ward identities.

13.3 Ward | dentities, Renormalization, and Gauge I nvariance

Consider the scattering of light by light shownFiry. 13-2. Two incoming photons scatter vi: Application of
fermion virtual particles to yield two outgoing gbas. This is called photon-photon scattering Ward identities
light-by-light scatteringor less commonly, Delbriick scattering. Occasignallis referred to as a in renormalization
“four photon vertex”, but this is misleading asrthare really four vertices, not a single one wit for photon-photon
four photons connected directly to it. scattering case

Light-by-light scattering does not occur in classielectromagnetism, but does so in QFT due
higher order corrections. Classical electromagnetentains only terms linear in the photon field
A¥ and corresponds to our tree level diagrams. Howenea the Dyson-Wicks expansion in QFT,
we have terms contributing to the scattering amgét beyond tree level, at second and higher
order, which effectively make non-linear contriloumts.

Fig. 13-2 represents one way four external photamsscatter at second order. There are other
ways the same states can scatter at second ortkrPrab. 2 asks you to draw the Feynman
diagrams for at least three other possibilitiesteNhat in Fig. 13-2 we have depicted a certairetim
order (from left to right) for the vertices in ord® make the internal line four-momenta easy to
determine. Depicting a different vertex time or@&rch as the upper left vertex before, rather than
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. d
Corrections to 2" order

iDpy, (k) = D7, (k) = (iDp,, (k))(1= €3 4'(k,A) =TT (k) ). (13-73)
iSp (p)=i87"" (p) =ik (p))(1- & B(A) = 2. ( 7 — m)) (13-74)
u, (p) =u (p)=(1-1eiB(A))u, (p) @ (p) = (p)=(1-L&B(A)), (p)
v, (p) =" (p)=(1-1B(A))v, (p) ¥ (p) =¥ (p)=(1-2&B(A))7, (p) (13-75)
£,(k) =& (k) =(1-1e 4(A))e, (k)
iey" = iey vy (p.p) = M (1+&L(A))+eA“ (p.p)} (13-76)
NG

13.8 Appendix: Finding Ward Identities for Compton Scattering

Since we worked through every step of finding quite a number of amplitudes the long way in
Chap. 8, we will be briefer here. If you have trouble at any point, please refer to the detailed
derivation of the Compton scattering transition amplitude on pgs. 225-228, which closely parallels
the following.

For Compton scattering the first way (LH of Fig. 8-3, pg. 225) without the incoming photon, the
part of (13-77) with S(Czl)v becomes

Y hSEY |eps)

r.k

eﬂd4xld4x2 {(y/A 7“) —-x, (Zk )7 y/xz}
effdtnd‘x, (Zp\/# 0 (0" ]x (13-78)

re k7 1 4 . —1 -
z 2V1 ayrey o (k )el g i —4'[0’ qiS;(q)e i9(%-x;) X
K (27)

Y S Dk SA* ey ) =0 because Y k,SE +Y k,SAH =0 (13-77)
r.k r.k r.k r.k

(e Ty

)

(27

(lz T a0 g (k)e"’“z)JW(s%\/ﬁcy(p")us~<p")e"'f’"x2J|e;,s>
2 (s ’7/" Al e )e [t naty, (\/ﬁﬂs’(l’”)eip%j( ZVL&(,gﬂ’V”(k’)eik”xl yﬂ)

s"p” K
pprOss” é‘k’k”ar’r” (13-79)

d4 S —iq(x-xy) | . k 1 K ko, K V( “m_ —ipxzj

X(2”)4j qi F(Q)e lr,zk V\'ZVa)k( —a.( )e +a,( )e ) /4 JVEP ug(p)e

_, [ m / 1 [Cm N

= e\/ VEpr ZV%/ \/ VEP g,u,r'(k )uS'
(izkl k, /Wl ( -a, (k)e ko gt (k) )J{ _[ a4 xle—iqxl P ik J‘ d4x2eiqx2 P }

_, [ m [_1 [m N
= e\/ VEpr ZVCUk/ \/ VEP 8ﬂ’r/(k )MS/
(Zk: ,2Vlwk J'd4xle—1qxleszlezkx1 ik, (—dr(k)jd4xzequze_lpx2 zkx r(k)Id4 qu2 sz2 +ikx, ))

*qi F(‘[)?’V”s(l))x

(13-80)

" ug (p)x

(13-81)
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— 1 ) N— ’
—e\/Vg?pl 2Va)k,\/V1r5’: g,u,r’(k )Msr(p) H

(27)' 6" (¢ - p'~ ) (z ke (- ar<k><zzz)45“>(q—p—k>+a;<k><zzz>“6<“>(q—p+k))j

=1 /% /W /%(27[ & ey, (Kig V7S p (P +K)7 ug(p) X (13-82)
(2lv

qiSF (‘I)7V”s (p)X

=0 except when k=p'+k’~p, =0 except when k=—p’—k’+p, negative
the value 1n full Compton scattering of the value in full Compton scattering

izk ﬁkv[— a.)0Y (p'+k —p—k) + a.a)dW (p +k —p+k) ]

271') S (p'+k = p—k)iM2" (~k,d, (k) -k, ). (—k))

e\/VE \/2Vwk \/2Va)k

é\/VE \/ZVwk \/ZVwk VE

For Compton scattering the second way (RH of Fig. 8-3), the part of (13-77) with Séziﬂ , after

(13-83)

(27)" 8% (p'+ K = p—k) ik, ME (. (k) + G (ko)

similar evaluation, yields, with the sub amplitude 472" as shown in (13-32)+7,

(s 522 )

m [m_ 4 ’ ’ . v~ ~
=%\/VEP, \/ZVwk,\thk\/VEp (27)" 8 (p' 4K = p=k)ik, M (a0 + ) (1))

Qu
SC 2nd

(13-84)

(13-83) and (13-84) summed equal the LHS of (13-77), so their sum equals zero. To do this, the
coefficient of a, (k) , which is arbitrary, in that sum must vanish (as must the coefficient of a!.(-k) ).
The only way this can happen is if

k (MY + M) = by M, =0 (13-85)
13.9 Problems
1. Show that (/ + m)v, (p) =0. (Hint: Follow steps like we did to get (13-10).)

2. Draw at least three ways, other than that shown in Fig. 13-2, for which the incoming same two
photon state scatters at second order into the same outgoing two photon state.

3. Re-draw the Feynman diagram of Fig. 13-2 with the upper left vertex occurring before the
lower left vertex. Label the internal line four-momenta. Show by writing out the Feynman
amplitude for this diagram using Feynman rules, that the amplitude you get is the same as we got
in (13-36) for Fig. 13-2. (Hint: re-express (13-36) with p,, p;, and p4 in terms of p;. Then
express your new diagram where all propagator factors are in terms of p;. Remember that for
anti-particle internal lines, the four-momentum has opposite sign from physical reality. See
Wholeness Chart 8-1, pg. 234.) Realize that the diagram you drew for this problem is not one of
the answers for Prob. 2.

4.  Show that by using part b) of Fig. 13-5 for Feynman diagrams to 2" order of fermion self
energy, you obtain (13-55). Hint: In (13-54) take my — m and ie;X(p) —ie;Z(p)+idm.
5. Show (13-62) using similar logic to what we used for (13-60). Note that in (13-52), the

e02 I1, (k*) term is an expansion with terms in K to various powers, but that for a real photon I =
0.



