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Proof of the original Ward identity

From                                                 ( )( )
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= −  (13-20) 

we find 
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Taking pη → pη - kη , (13-22) becomes 
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Then, with (13-23) used in the second line below, we have 

                                         (13-24) 

End of proof

13.2.4 The Ward Identities 

Ward�s name is associated with an additional set of identities, which play a key role in 
renormalization, and also in scattering calculations. They are called Ward identities, but to 
distinguish them from (13-19), we called the earlier relation the �original Ward identity�. We derive 
the Ward identities in this section, but before that, we need a bit of background information. 

Gauge Invariance Means Amplitude Invariance

Local gauge invariance means our Lagrangian L is symmetric in form under the transformations 

( )( ) 1
v

i x
ee A A A xν ν ν

αψ ψ ψ α−′ ′→ = → = − ∂ , (13-25) 

where the numeric (not operator) field α(x) is our gauge (and is not the QED coupling constant). 
Since L (= L0 + LI), is unchanged in form, then each of LI and L0 retains the same functional form, 
as well. (See$(11-36), pg. 294.) That is, under a symmetry transformation of the full L, even though 
LI alone is not symmetric in its own right, in combination with L0, the transformation yields two 
terms LI and L0 that are identical in form to the pre-transformation terms LI and L0. 

And thus, our transition amplitude must also be the same in form, as depicted symbolically in 

L sym  →  LI unchanged  → HI unchanged →  S unchanged  →  Sfi unchanged  →  |Sfi|
2
  unchanged. 

Effectively, we can say that if L is symmetric under (13-25), then so is the amplitude Sfi. For the 
S operator,  

                                                     ( ) ( )S ,A S ,Aµ µψ ψ ′ ′= ,                                                 (13-25)+1 

i.e., it has the same functional form in terms of unprimed or primed (transformed) fields. 

With M, our Feynman amplitude, the transition amplitude, as we found in Chap.$8, is  

Transition 

amplitude and 

probability are 

gauge invariant 

Ward identities 

distinguished 

from original 

Ward identity 

Proof of 

original 

Ward identity 
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Under the gauge transformation, the incoming and outgoing four-momenta Pi and Pf are unchanged, 
as are the volume V and the external particle energies, ω and E. Thus, M is gauge invariant if Sfi is. 

Note that the gauge invariance applies to the total Feynman amplitude for all diagrams for given 
incoming and outgoing states. For example, in Bhabha scattering there are two ways for it to occur. 

(See Chap. 8, Fig.$8-2, pg.$221.) That is, for a given order in e0
n
, ( ) ( ) ( )

1 2

n n n

B B
= +M M M , where 

( )
1

n

B
M  and ( )

2

n

B
M  each have many sub diagrams for n > 2. The point is that M

(n)
 is gauge invariant, 

but the individual ( )
1

n

B
M  and ( )

2

n

B
M  need not be. 

Recognize that if L is gauge invariant, then HI remains the same under any such gauge, and each 
term in our S operator expansion (each term contains n factors of HI) does also. Thus, for each order 
of interaction n, S 

(n)
 is effectively gauge invariant. Hence, so are 

( )n

fiS  and M
(n)

. 

An Example

Consider the initial photon of the LHS of Fig. 13-1 to be a real photon (rather than virtual, i.e., 
rather than a photon propagator). The self energy Feynman amplitude of the real photon is 
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where we represent the part of the interaction that does not include the interaction photon 

contributions as 
( )2

self

µν
γM . Of course, we know that k′ = k and r′ = r, but that is not important for 

present purposes and we want to generalize, so we leave in the primes. 

The point is that for every interaction having one or more external photons, we can represent the 
Feynman amplitude in two factors, one for the photon polarization state(s) and one for the rest, 
where the latter has spacetime indices (which are summed with those on the polarization vectors). 

Generalization

For any interaction having one or more photons as initial or final particle(s), we can represent 
the gauge invariant Feynman amplitude for any order n as 

( ) ( ) ( ) ( ) ( ) ( )
1 2 31 2 3 1 2 3

n n ...

r r rfi fi... , , ,...
µνη

µ ν ηε ε ε= k k k k k kM M , (13-28) 

where we again note that (13-28) is gauge invariant only when the amplitude includes the sub 
amplitudes for every diagram having the same incoming and outgoing states. 

Ward Identities

As we prove below, gauge invariance leads to the Ward identities

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 1 2 0
n n n

fi fi fik , ,.. k , ,.. k k , ,.. .....
µ ν µν

µ ν µ ν= = = =k k k k k kM M M  (13-29) 

Proof of Ward Identities

The gauge transformation of (13-25) means ∂να(x) must satisfy Maxwell�s wave equation 
(where since Aν is real, α(x) should be real), since, if our Maxwell equation has form 

                                                       ( ) 0A xα
α ν∂ ∂ =                                                          (13-29)+1 

under (13-25), this becomes 

                                  ( )1 10 0e eA A
α α α

α ν ν α ν α να α′ ′∂ ∂ + ∂ = → ∂ ∂ + ∂ ∂ ∂ = .                   (13-29)+2 

If we require (which we do, as our theory is built upon Maxwell�s equation in this form) 

                                                                0Aα
α ν′∂ ∂ = ,                                                     (13-29)+3 

then from (13-29)+2, we see ∂να(x) must satisfy Maxwell�s equation (LHS below). 

           
one such

solution solves
0 or     0 0 ,

α α α
α ν ν α αα α α∂ ∂ ∂ = ∂ ∂ ∂ = → ∂ ∂ =              (13-29)+4 

Thus, Feynman 

amplitude also 

gauge invariant 

But it must be the 
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given order n) 
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and α(x) can have essentially the same functional form as A
µ
, the solution to  (13-29)+1.

1

For a real photon field described in the Lorentz gauge by the eigen state plane wave 
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a useful form (one particular gauge) for α(x) is 
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Thus, for this case, the photon gauge transformation of (13-25) becomes 
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Consider a typical term of S expressed in factors of HI, for example, the Compton scattering term  
for n = 2, (pg.$225), under the symmetry transformation (13-25), with (13-25)+1, 

                                                   

                                          (13-32)+1

Using our definition of r ,α k
ɶ from (13-32), this becomes 
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We can see immediately, because identical terms appear on both sides of (13-32)+2, that the last 
three terms must sum to zero. More on that shortly.  

                                                

1 Alternatively, our theory was developed in the Lorentz gauge (see pg.$141), i.e., 0A
µ

µ∂ = , so we need 

0A
µ

µ′∂ = also. Thus, ( )1 1 10 0e e eA A Aµ µ µ µ µ
µ µ µ µ µ µα α α′= ∂ = ∂ − ∂ = ∂ − ∂ ∂ = − ∂ ∂ . To keep the 

Lorentz gauge under the transformation, 0µ
µα∂ ∂ = . 
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For now, using our symbol ( )1 2iS x x
+ − for the electron propagator, we find 
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As long as we are restricting ourselves to electron Compton scattering, and not positron 
Compton scattering, we can express the electron propagator S 

+
 as the full propagator S (where the 

last three terms below sum to zero) 
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The two terms in the sum 
( ) ( )2 2

1 2C Ck S k S
ν µ

ν µΣ + Σ  have the same external particles, so that sum 

must equal zero independently of 
( )2
Ck k S

µν
ν µ′Σ Σ , which has different external particles. 

Recall that to find the amplitude Sfi = SCompton for Compton scattering (to 2
nd

 order on the RHS 
below), we carry out steps, as we did in Chap. 8, to evaluate
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When we did that, we found 
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which results from the (2)

C
S  term in (13-32)+4. Doing a similar thing with the 2

nd
 and 3

rd
 terms on 

the RHS of (13-32)+4, where our initial state lacks the photon of (13-32)+6, we get (see Appendix) 
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Thus (where the RHS of (13-33) follows from similar analysis of the last term in (13-32)+4), 
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If we take k → k1 and k′ → k2, then  (13-32)+8 and (13-33) above equal (13-29) for Compton 

scattering. 
One should be able to visualize a similar result from any amplitude with fermion propagators 

and external fermions and photons. For the ψ → ψ′ of (13-25), the e 
–iα(x) and e 

iα(x) factors will 
always cancel. The external Aν →  A′ν, due to the α part, will always leave a series of terms in the S 
operator expansion of form similar to those in (13-32)+5 (with appropriately more such terms when 
there are more factors of Aν.) And each of these terms must equal zero because a term like 

( )(2) ,
C e

S Aµψ− in (13-32)+2 occurs on each side the relationship resulting from the transformation. 

For a photon propagator, we have (with similar results for ( )1 2iD x xµν − − ) 
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(13-34) 

Thus, any photon propagator in any amplitude keeps the same form under the transformation, so 
we get no extra terms from it, as in (13-32)+4, that must equal zero. 

And so, we have proven the Ward identities (13-29) using local gauge invariance (which 
manifested in (13-25)+1, the starting point of our proof). 
End of proof 

Note that (13-19) is a relation for n =2 order between the photon loop and the vertex loop, 
whereas (13-29) is good at any order for any amplitude involving at least one external photon. 

Additional Identities 
There are yet other identities called Ward-Takahashi identities, of which (13-29) is a special 

case, but we will not treat those here. In Ward-Takahashi identities, the kiµ are not restricted to 
represent external photons, but can be off shell (propagators), and the RHS of (13-29) is, for internal 
photons, not zero. The Ward identities are the Ward-Takahashi identities for real photons. 

The Process 
For any amplitude relation of form on the LHS of (13-35) below, the RHS, representing the 

Ward identities, is true. That is, we simply replace the polarization vector by the associated four-
momentum and the result equals zero. 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 0n n n
r jfi fi fijj j j,..., ,... ,..., ,... k ,..., ,...µ µ

µ µε= → =k k k k k kM M M  . (13-35) 

The Message 
Local gauge invariance leads to both charge conservation and the Ward identities. All three are 

different ways of saying the same thing. Each implies the other two. 

charge conservation   ↔   local gauge invariance   ↔   Ward identities. 

13.3 Ward Identities, Renormalization, and Gauge Invariance 
Consider the scattering of light by light shown in Fig. 13-2. Two incoming photons scatter via 

fermion virtual particles to yield two outgoing photons. This is called photon-photon scattering, or 
light-by-light scattering, or less commonly, Delbrück scattering. Occasionally, it is referred to as a 
“four photon vertex”, but this is misleading as there are really four vertices, not a single one with 
four photons connected directly to it. 

Light-by-light scattering does not occur in classical electromagnetism, but does so in QFT due to 
higher order corrections. Classical electromagnetism contains only terms linear in the photon field 
Aµ and corresponds to our tree level diagrams. However, via the Dyson-Wicks expansion in QFT, 
we have terms contributing to the scattering amplitude beyond tree level, at second and higher 
order, which effectively make non-linear contributions. 

Fig. 13-2 represents one way four external photons can scatter at second order. There are other 
ways the same states can scatter at second order, and Prob. 2 asks you to draw the Feynman 
diagrams for at least three other possibilities. Note that in Fig. 13-2 we have depicted a certain time 
order (from left to right) for the vertices in order to make the internal line four-momenta easy to 
determine. Depicting a different vertex time order (such as the upper left vertex before, rather than 

Ward identities a 
special case of 
Ward-Takahashi 
identities 

How to apply 
Ward identities 

Gauge invariance 
& Ward identities 
the same thing 

Application of 
Ward identities    
in renormalization 
for photon-photon 
scattering case 

End of Ward 
identities proof 
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Corrections to 2
nd

 order
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13.8 Appendix: Finding Ward Identities for Compton Scattering  

Since we worked through every step of finding quite a number of amplitudes the long way in 
Chap. 8, we will be briefer here. If you have trouble at any point, please refer to the detailed 
derivation of the Compton scattering transition amplitude on pgs.$225-228, which closely parallels 
the following. 
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For Compton scattering the first way (LH of Fig. 8-3, pg.$225) without the incoming photon, the 

part of (13-77) with 
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For Compton scattering the second way (RH of Fig. 8-3), the part of (13-77) with 
( )2

2CS
µ , after 

similar evaluation, yields, with the sub amplitude 
( )2

2C

ν
M  as shown in (13-32)+7, 
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(13-83) and (13-84) summed equal the LHS of (13-77), so their sum equals zero. To do this, the 

coefficient of ( )ra kɶ , which is arbitrary, in that sum must vanish (as must the coefficient of �
( )ra −kɶ ). 

The only way this can happen is if 

( ) ( )( ) ( )2 2 2

1 2 0C C Comptonk k
ν ν ν

ν ν+ = =M M M . (13-85) 

13.9 Problems 

1. Show that ( ) ( ) 0rp m v+ =p . (Hint: Follow steps like we did to get (13-10).) 

2. Draw at least three ways, other than that shown in Fig. 13-2, for which the incoming same two 
photon state scatters at second order into the same outgoing two photon state. 

3. Re-draw the Feynman diagram of Fig. 13-2 with the upper left vertex occurring before the 
lower left vertex. Label the internal line four-momenta. Show by writing out the Feynman 
amplitude for this diagram using Feynman rules, that the amplitude you get is the same as we got 
in (13-36) for Fig. 13-2.  (Hint: re-express (13-36) with p2, p3, and p4 in terms of p1. Then 
express your new diagram where all propagator factors are in terms of p1. Remember that for 
anti-particle internal lines, the four-momentum has opposite sign from physical reality. See 
Wholeness Chart$8-1, pg.$234.) Realize that the diagram you drew for this problem is not one of 
the answers for Prob. 2. 

4. Show that by using part b) of Fig. 13-5 for Feynman diagrams to 2
nd

 order of fermion self 
energy, you obtain (13-55). Hint: In (13-54) take m0 → m and ( ) ( )2 2

0 0ie p ie p i mδΣ → Σ + . 

5. Show (13-62) using similar logic to what we used for (13-60). Note that in (13-52), the 
2 2
0 ( )ce kΠ  term is an expansion with terms in k

2
 to various powers, but that for a real photon k

2
 = 

0.  


