Dirac Delta Function Summary of Different Forms Robert D. Klauber www.quantumfieldtheory.info | | ∞ Volume
(No boundary conditions) | Finite Volume
(Boundary conditions) | |---|---|--| | Volume = 4D
spacetime V | $\delta^{(4)}(x-y) = \frac{1}{(2\pi)^4} \int e^{-i(x-y)p} d^4p$ Continuous momenta p | $\delta^{(4)}(x-y) = \frac{1}{V} \sum_{n=-\infty}^{\infty} e^{-i(x-y)p_n}$ Discrete momenta p_n | | | ∞ or finite p volume
See bottom LH or bottom RH block
Continuous x or discrete x_n | ∞ or finite p volume
See bottom LH or bottom RH block
Continuous x or discrete x_n | | Valence AD | $\delta^{(4)}(p'-p) = \frac{1}{(2\pi)^4} \int e^{-i(p'-p)x} d^4x$ | $\delta^{(4)}(p'-p) = \frac{1}{V_p} \sum_{n=-\infty}^{\infty} e^{-i(p'-p)x_n}$ | | Volume = 4D
momentum
space V _p | Continuous spacetime x ∞ or finite x volume See top LH or top RH blocks Continuous p or discrete p_n | Discrete spacetime events x_n ∞ or finite x volume See top LH or top RH blocks Continuous p or discrete p_n | Note: Since integrals and sums are over all negative and positive values, the relations are equally valid with -i replaced by i in the exponentials above.