Dirac Delta Function Summary of Different Forms

Robert D. Klauber www.quantumfieldtheory.info

	∞ Volume (No boundary conditions)	Finite Volume (Boundary conditions)
Volume = 4D spacetime V	$\delta^{(4)}(x-y) = \frac{1}{(2\pi)^4} \int e^{-i(x-y)p} d^4p$ Continuous momenta p	$\delta^{(4)}(x-y) = \frac{1}{V} \sum_{n=-\infty}^{\infty} e^{-i(x-y)p_n}$ Discrete momenta p_n
	∞ or finite p volume See bottom LH or bottom RH block Continuous x or discrete x_n	∞ or finite p volume See bottom LH or bottom RH block Continuous x or discrete x_n
Valence AD	$\delta^{(4)}(p'-p) = \frac{1}{(2\pi)^4} \int e^{-i(p'-p)x} d^4x$	$\delta^{(4)}(p'-p) = \frac{1}{V_p} \sum_{n=-\infty}^{\infty} e^{-i(p'-p)x_n}$
Volume = 4D momentum space V _p	Continuous spacetime x ∞ or finite x volume See top LH or top RH blocks Continuous p or discrete p_n	Discrete spacetime events x_n ∞ or finite x volume See top LH or top RH blocks Continuous p or discrete p_n

Note: Since integrals and sums are over all negative and positive values, the relations are equally valid with -i replaced by i in the exponentials above.