Page 17 Derivation of (2-28), the Gell-Mann $S U(3)$ matrix. by Luc Longtin

We recall that this matrix (2-28) is valid only in the limit of small independent parameters.
We start from the totally general 3 X 3 complex matrix in the form of (2-26), to which we impose the conditions (2-27) for a special unitary group. With a view of writing the matrix in a form that will reduce to the identity matrix in the limit where the independent parameters vanish, we write:

$$
N=\left[\begin{array}{ccc}
1+\delta_{1} & \delta_{4} & \delta_{5} \\
\delta_{7} & 1+\delta_{2} & \delta_{6} \\
\delta_{8} & \delta_{9} & 1+\delta_{3}
\end{array}\right] \quad \ldots \text { with conditions } N^{\dagger} N=I \text { and } \operatorname{Det} N=1
$$

From the special condition, Det $N=1$, we must have:

$$
\left(1+\delta_{1}\right)\left[\left(1+\delta_{2}\right)\left(1+\delta_{3}\right)-\delta_{6} \delta_{9}\right]-\delta_{4}\left[\delta_{7}\left(1+\delta_{3}\right)-\delta_{6} \delta_{8}\right]+\delta_{5}\left[\delta_{7} \delta_{9}-\delta_{8}\left(1+\delta_{2}\right)\right]=1
$$

Now, this equation must be valid for all values of the variable parameters. In particular, it must also be valid in the limit of small parameters. We can use this fact to find relations that must be satisfied among the parameters in that limit. Thus, keeping only first-order terms, we get:

$$
\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)\left(1+\delta_{3}\right) \approx\left(1+\delta_{1}\right)\left(1+\delta_{2}+\delta_{3}\right) \approx 1+\delta_{1}+\delta_{2}+\delta_{3}=1
$$

So: $\quad \delta_{1}+\delta_{2}+\delta_{3} \approx 0$
From the unitary condition, $N^{\dagger} N=I$, we must thus have:

$$
N^{\dagger} N=\left[\begin{array}{ccc}
1+\delta_{1}^{*} & \delta_{7}^{*} & \delta_{8}^{*} \\
\delta_{4}^{*} & 1+\delta_{2}^{*} & \delta_{9}^{*} \\
\delta_{5}^{*} & \delta_{6}^{*} & 1+\delta_{3}^{*}
\end{array}\right]\left[\begin{array}{ccc}
1+\delta_{1} & \delta_{4} & \delta_{5} \\
\delta_{7} & 1+\delta_{2} & \delta_{6} \\
\delta_{8} & \delta_{9} & 1+\delta_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Again, this equation must be valid for all values of the variable parameters. In particular, it must also be valid in the limit of small parameters. Thus, keeping only first-order terms, we get:

Element Expression

$1-1$	$\left(1+\delta_{1}^{*}\right)\left(1+\delta_{1}\right) \approx 1+\delta_{1}+\delta_{1}^{*} \approx 1$	so	$\delta_{1}+\delta_{1}^{*} \approx 0$ $2-2$
$\left(1+\delta_{2}^{*}\right)\left(1+\delta_{2}\right) \approx 1+\delta_{2}+\delta_{2}^{*} \approx 1$	so	$\delta_{2}+\delta_{2}^{*} \approx 0$	
$3-3$	$\left(1+\delta_{3}^{*}\right)\left(1+\delta_{3}\right) \approx 1+\delta_{3}+\delta_{3}^{*} \approx 1$	so	$\delta_{3}+\delta_{3}^{*} \approx 0$
$1-2$	$\delta_{4}+\delta_{7}^{*} \approx 0$	$1-3$	$\delta_{5}+\delta_{8}^{*} \approx 0$

The first three results tell us that $\delta_{1}, \delta_{2}, \delta_{3}$ are pure imaginary complex numbers. Making use of the last six results (three of which are independent), and the special condition, we can write:

$$
N=\left[\begin{array}{ccc}
1+\delta_{1} & \delta_{4} & \delta_{5} \\
-\delta_{4}^{*} & 1+\delta_{2} & \delta_{6} \\
-\delta_{5}^{*} & -\delta_{6}^{*} & 1-\left(\delta_{1}+\delta_{2}\right)
\end{array}\right] \quad \text {...a friendlier form than (2-28)! }
$$

NOTE: This matrix has eight independent (real) parameters, namely the real and imaginary parts of $\delta_{4}, \delta_{5}, \delta_{6}$ (which count for six) and the pure imaginary δ_{1}, δ_{2} (which count for $t w o$).

We can reproduce Gell-Mann's form, (2-28), via the following change of variables:

$$
\delta_{1}=i \alpha_{3}+i \frac{\alpha_{8}}{\sqrt{3}} \quad \delta_{2}=-i \alpha_{3}+i \frac{\alpha_{8}}{\sqrt{3}} \quad \text { so } \quad \delta_{1}+\delta_{2}=i \frac{2 \alpha_{8}}{\sqrt{3}}
$$

NOTE: α_{3}, α_{8} are both real parameters; this ensures that δ_{1}, δ_{2} are both pure imaginary

$$
\delta_{4}=\alpha_{2}+i \alpha_{1} \quad \delta_{5}=\alpha_{5}+i \alpha_{4} \quad \delta_{6}=\alpha_{7}+i \alpha_{6}
$$

NOTE: In these relations, all the α variables are real parameters. Therefore, we can write:

$$
-\delta_{4}^{*}=-\alpha_{2}+i \alpha_{1} \quad-\delta_{5}^{*}=-\alpha_{5}+i \alpha_{4} \quad-\delta_{6}^{*}=-\alpha_{7}+i \alpha_{6}
$$

So: $\quad N=\left[\begin{array}{ccc}1+i \alpha_{3}+i \frac{\alpha_{8}}{\sqrt{3}} & \alpha_{2}+i \alpha_{1} & \alpha_{5}+i \alpha_{4} \\ -\alpha_{2}+i \alpha_{1} & 1-i \alpha_{3}+i \frac{\alpha_{8}}{\sqrt{3}} & \alpha_{7}+i \alpha_{6} \\ -\alpha_{5}+i \alpha_{4} & -\alpha_{7}+i \alpha_{6} & 1-i \frac{2 \alpha_{8}}{\sqrt{3}}\end{array}\right] \quad$..factoring out a factor of $i \ldots$
Or: $\quad N=i\left[\begin{array}{ccc}-i+\alpha_{3}+\frac{\alpha_{8}}{\sqrt{3}} & \alpha_{1}-i \alpha_{2} & \alpha_{4}-i \alpha_{5} \\ \alpha_{1}+i \alpha_{2} & -i-\alpha_{3}+\frac{\alpha_{8}}{\sqrt{3}} & \alpha_{6}-i \alpha_{7} \\ \alpha_{4}+i \alpha_{5} & \alpha_{6}+i \alpha_{7} & -i-\frac{2 \alpha_{8}}{\sqrt{3}}\end{array}\right]$
Or: $\quad N=N(0)+i\left[\begin{array}{ccc}\alpha_{3}+\frac{\alpha_{8}}{\sqrt{3}} & \alpha_{1}-i \alpha_{2} & \alpha_{4}-i \alpha_{5} \\ \alpha_{1}+i \alpha_{2} & -\alpha_{3}+\frac{\alpha_{8}}{\sqrt{3}} & \alpha_{6}-i \alpha_{7} \\ \alpha_{4}+i \alpha_{5} & \alpha_{6}+i \alpha_{7} & -\frac{2 \alpha_{8}}{\sqrt{3}}\end{array}\right]$
\ldots where $N(0)=I$, the identity

The advantage of this form is that all the α parameters are real.
NOTE: We recall that this derivation of the matrix representation for the $S U(3)$ group is valid only in the limit of small independent parameters. That is, for $\left|\alpha_{i}\right| \ll 1$.

