Chapter 6 Problem Solutions

Original Prob 14 of 1% edition below.

Problem 14. Use Noether’s theorem for scalars and the transformation x' — x’ + ¢ to show that three-momentum ; is
conserved. Then, show the same result via commutation of the three-momentum operator of Chap. 3 (which can be found in
Wholeness Chart 5-4 at the end of Chap. 5) with the Hamiltonian.

Prob 14, Correction version of 2" edition.

Problem 14. Show that the total (not density) 3-momentum &’ for free scalars is conserved. Use our knowledge that the
conj ugate momentum for x is &;, the total (not density) 3-momentum (expressed in covariant components), and it is conserved
if L is symmetric (invariant) under the coordinate translation transformation x' — x'i = x' + ¢/, where ¢ is a constant 3D
vector. Then, show the same result via commutation of the three-momentum operator of Chap. 3 (see Wholeness Chart 5-4,
pg. 158) with the Hamiltonian. (Solution is posted on book website. See pg.xvi, opposite pg. 1.)

Ans. (first part).
The Lagrangian density is L;)O :¢T, #¢’/‘ — 124" ¢ . We must integrate this over all volume to get the total Lagrangian L.

L= j Lé) dV . If k ; is conserved, then of course, so is k'. So, we need to show L is invariant under x' — x’=x"+ .
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We have to integrate each term in £ over all volume to find L. When we do this to the first term ¢T, u® *# above, the first

sub-term on the RHS inside the parentheses immediately above will only survive if k; = — k";. The same is true of the last
sub-term. The 2™ and 3™ sub-terms will only survive if k; = k" . So, therefore (where we note that for k; = — k";,
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The time dependent terms may seem strange until we remember that L here is an operator and its expectation value is what
we would be related to our real-world measurement. For any state |¢1¢1 2 the contrlbutlon to the expectation value from
the first and last terms in (A) is zero since, for example, < |a |¢1 ||¢k¢k¢1 > =0.

Now, let’s see what we get when we transform the spatial coordlnates via x' — x’ i=x'+d.
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Once again, the first and last sub-terms above, when integrated over all space, can only be non-zero if k; = — k", and in

those cases ¢fi? @' =1 The 2™ and 3 sub-terms will only survive if k= k”; . In that case, €' a'g7ik{a" _1 When
we do this, we get
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transformed term in L
Since (A) and (B) are the same, the first term in L is symmetric under the transformation.

The 2™ term in L;)O, - ,u2¢T¢
The second term in L follows in almost identical fashion (and is simpler, since no derivatives exist in it) to the first.
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When we transform the spatial coordinates via x' — x'i=x'+ o/, we get
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When we integrate the above over space, the same sub-terms will drop out in the same way as did to get (B). Thus, we
end up with
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Since (C) and (D) are the same, the second term in L is also symmetric under the transformation, and thus L is symmetric
under it.
From macro variational mechanics, we know that if L is symmetric in some coordinate, then the conjugate momentum
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of that coordinate is conserved. k;, the particle(s) 3-momentum is the conjugate momentum of x ! Thus, k; is conserved.
Note one subtlety. To get to macro mechanics we integrated over all field coordinates x ! so there was no x ' coordinate
left in L. Macroscopically, we would then need to consider our x ! coordinate as that of the position of the center of mass
of our solid body (particle). A transformation on the field coordinates x ' would then be the same transformation on the

center of mass x ' coordinate used in macro, solid body, variational mechanics analysis.

Ans. (second part).
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Thus P is conserved for the free Hamiltoman.
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