Continuous Solutions Creation and Destruction Operators Derivation

Robert D. Klauber June 2, 2016 www.quantumfieldtheory.info

1 Delta Function Units

Note first that the Dirac delta function has inverse units of its argument. For example, in

 $\int \delta(x - x') dx = 1 \text{ (unitless)} \qquad \int f(x) \delta(x - x') dx = f(x') \text{ (units of function } f) , \qquad (1)$

 $\delta(x - x')$ has units of 1/x (cm⁻¹ in cgs units, M^1 in natural units). Similarly, $\delta(k - k')$ has units of 1/k (cm in cgs, since units of wave number k are the inverse of length units; M^{-1} in natural units).

In 3D, $\delta^{(3)}(\mathbf{x} - \mathbf{x}')$ [often just written as $\delta(\mathbf{x} - \mathbf{x}')$] has units of 1/volume (cm⁻³ in cgs, M^3 in natural units); $\delta^{(3)}(\mathbf{k} - \mathbf{k}')$ [often just written as $\delta(\mathbf{k} - \mathbf{k}')$] has units of volume (cm³ in cgs, M^{-3} in natural units).

2 Creation and Destruction Operator Units

Thus, in the 3D relation for the coefficients of the continuous solutions,

$$\left[a(\mathbf{k}),a^{\dagger}(\mathbf{k}')\right] = \delta(\mathbf{k} - \mathbf{k}'), \qquad (2)$$

the delta function has units of $1/\mathbf{k}^3$ (M^{-3} in natural units), so the $a(\mathbf{k})$ and $a^{\dagger}(\mathbf{k})$ operators each have units of $1/\sqrt{\mathbf{k}^3}$ ($M^{-3/2}$ in natural units).

So, in

$$\phi(x) = \int \frac{d^{3}k}{\sqrt{2(2\pi)^{3}\omega_{k}}} a(\mathbf{k})e^{-ikx} + \int \frac{d^{3}k}{\sqrt{2(2\pi)^{3}\omega_{k}}} b^{\dagger}(\mathbf{k})e^{ikx} \quad (a)$$

$$= \phi^{+} + \phi^{-} \quad (3-37) \text{ in text} \quad (3)$$

$$\phi^{\dagger}(x) = \int \frac{d^{3}k}{\sqrt{2(2\pi)^{3}\omega_{k}}} b(\mathbf{k})e^{-ikx} + \int \frac{d^{3}k}{\sqrt{2(2\pi)^{3}\omega_{k}}} a^{\dagger}(\mathbf{k})e^{ikx} \quad (b)$$

$$= \phi^{\dagger+} + \phi^{\dagger-},$$

given that $\omega_{\mathbf{k}}$ and **k** have the same units, and $a(\mathbf{k})$ has units as shown just above (3), then ϕ has units of **k** (M^1 in natural units). $b(\mathbf{k})$

Note that ϕ having units of **k** (M^{1}) in the discrete case

$$\phi(x) = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} a(\mathbf{k}) e^{-ikx} + \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} b^{\dagger}(\mathbf{k}) e^{ikx}, \qquad (3-37a) \text{ in text}, \qquad (4)$$

means that $a(\mathbf{k})$ in that case is unitless. This follows from the commutation relation

$$\left[a(\mathbf{k}), a^{\dagger}(\mathbf{k}')\right] = \delta_{\mathbf{k}\mathbf{k}'} \qquad \text{discrete case,} \tag{5}$$

since $\delta_{\mathbf{k}\mathbf{k}'}$ is unitless.

3 Hamiltonian for Continuous Solutions

From <u>www.quantumfieldtheory.info/H_operator_and_noneigen_states.pdf</u>, equation (37) therein, for continuous solutions, the Hamiltonian operator is

$$H = \int \omega_{\mathbf{k}} \left(\mathcal{N}_{a}(\mathbf{k}) + \frac{1}{2}\delta(0) + \mathcal{N}_{b}(\mathbf{k}) + \frac{1}{2}\delta(0) \right) d^{3}k$$

$$\mathcal{N}_{a}(\mathbf{k}) = a^{\dagger}(\mathbf{k})a(\mathbf{k}) \qquad \mathcal{N}_{b}(\mathbf{k}) = b^{\dagger}(\mathbf{k})b(\mathbf{k}) \text{ (continuous)}$$
(10-8) in *SFQFT* text. (6)

For the vacuum terms in (6), the $\delta(0)$ factor of infinity has units of $1/(\mathbf{k}$ space vol), or equivalently, since $|\mathbf{k}| = 2\pi/\lambda$ (λ is wavelength), units of \mathbf{x} space volume. The $\delta(0)$ represents the infinite volume of space over which our Hamiltonian H represents the total energy. Thus, the \mathbf{x} (physical) space Hamiltonian volume density for the vacuum energy is

$$\mathcal{H}_{vac} = \frac{H_{vac}}{V_{\infty}} = \int \omega_{\mathbf{k}} \left(\frac{1}{2} + \frac{1}{2}\right) d^3 k = \int \omega_{\mathbf{k}} d^3 k .$$
(7)

Note, from (6), that the vacuum terms factor of 1/2 is dimensionless (no units). That is,

 $\frac{1}{2} = \left((\text{number of vacuum particle states}) / (\text{unit vol in } \mathbf{k} \text{ space}) \right) / (\text{unit vol in } \mathbf{x} \text{ space}),$ dimensions $M^3 / M^3 = \text{dimensionless}$.
(8)

4 Number Operator Units

For the number operator relations

$$N_a(\mathbf{k}) = a^{\dagger}(\mathbf{k})a(\mathbf{k}) \quad (\text{discrete}) \qquad \mathcal{N}_a(\mathbf{k}) = a^{\dagger}(\mathbf{k})a(\mathbf{k}) \quad (\text{continuous}) , \qquad (9)$$

we know that $N_a(\mathbf{k})$ is unitless (a number operator without dimensions). From the Hamiltonian operator for continuous solution scalars (6), we see that $\mathcal{N}_a(\mathbf{k})$ is a number density operator (density in \mathbf{k} space). That is,

 $\mathcal{N}_a(\mathbf{k}), \mathcal{N}_b(\mathbf{k}) = (\text{number of real particle states}) / \text{unit vol in } \mathbf{k} \text{ space, dimensions } 1 / M^3$ (10)

These operators act on all states spread through all of **x** space, as our integrations in **x** space (as well as **k** space) in the continuous solution approach are from $-\infty$ to $+\infty$ in all directions.

5 Creation and Destruction Operators Derived: Continuous Case

In parallel with the discrete solution derivation of Sect. 3.6.1, pg. 58, of *SFQFT*, consider the **k**th wave component of a wave packet ket as $|n_k\rangle$. Then

$$\mathcal{N}_{a}\left(\mathbf{k}\right)\left|n_{\mathbf{k}}\right\rangle = n_{\mathbf{k}}\left|n_{\mathbf{k}}\right\rangle,\tag{11}$$

where $n_{\mathbf{k}}$ has the same units as $\mathcal{N}_{a}(\mathbf{k})$, i.e., (number of real particle states)/(\mathbf{k} space vol). Note carefully, that $n_{\mathbf{k}}$ is for all space (infinite spatial volume).

We then ask, what is

 $a(\mathbf{k})|n_{\mathbf{k}}\rangle = |m_{\mathbf{k}}\rangle$? parallel to (3-71) for discrete case in text (12)

$$\mathcal{N}_{a}(\mathbf{k})|m_{\mathbf{k}}\rangle = \mathcal{N}_{a}(\mathbf{k})a(\mathbf{k})|n_{\mathbf{k}}\rangle = \underbrace{a^{\dagger}(\mathbf{k})a(\mathbf{k})}_{\text{use commutator}}a(\mathbf{k})|n_{\mathbf{k}}\rangle \qquad \text{parallel to (3-72)}$$
(13)

$$= (a(\mathbf{k})a^{\dagger}(\mathbf{k}) - \delta(0))a(\mathbf{k})|n_{\mathbf{k}}\rangle = a(\mathbf{k})a^{\dagger}(\mathbf{k})a(\mathbf{k})|n_{\mathbf{k}}\rangle - \delta(0)a(\mathbf{k})|n_{\mathbf{k}}\rangle = a(\mathbf{k})N_{a}(\mathbf{k})|n_{\mathbf{k}}\rangle - \delta(0)a(\mathbf{k})|n_{\mathbf{k}}\rangle = (n_{\mathbf{k}} - \delta(0)a(\mathbf{k})|n_{\mathbf{k}}\rangle - \delta(0)a(\mathbf{k})|n_{\mathbf{k}}\rangle = (n_{\mathbf{k}} - \delta(0))a(\mathbf{k})|n_{\mathbf{k}}\rangle = (n_{\mathbf{k}} - \delta(0))|m_{\mathbf{k}}\rangle.$$
(14)
So,

$$\mathcal{N}_{a}(\mathbf{k})|m_{\mathbf{k}}\rangle = (n_{\mathbf{k}} - \delta(0))|m_{\mathbf{k}}\rangle = m_{\mathbf{k}}|m_{\mathbf{k}}\rangle \qquad m_{\mathbf{k}} = n_{\mathbf{k}} - \underbrace{\delta(0)}_{=V_{*}} \qquad \text{parallel to (3-74).}$$
(15)

In (15), m_k and n_k are for all space (infinite in size in our continuous solution math where all integrals are over $-\infty$ to $+\infty$). Thus, for any finite number (however small) of **k** states per unit volume of space, m_k and n_k must be infinite.

If we define new quantities $_{u}n_{\mathbf{k}}$ and $_{u}m_{\mathbf{k}}$ as spatial densities, i.e., as number per unit spatial volume, such that

$$n_{\mathbf{k}} = {}_{u}n_{\mathbf{k}}V_{\infty}$$
 $m_{\mathbf{k}} = {}_{u}m_{\mathbf{k}}V_{\infty}$ ${}_{u}n_{\mathbf{k}}, {}_{u}m_{\mathbf{k}} = \frac{\text{number of }\mathbf{k} \text{ fields per unit }\mathbf{k} \text{ volume}}{\text{unit volume of space}}$, (16)

then the RHS of (15) becomes

$$m_{\mathbf{k}} = n_{\mathbf{k}} - V_{\infty} = {}_{u}m_{\mathbf{k}}V_{\infty} = {}_{u}n_{\mathbf{k}}V_{\infty} - V_{\infty}.$$

$$(17)$$

Dividing (17) by V_{∞} we have

$$_{u}m_{\mathbf{k}} = _{u}n_{\mathbf{k}} - 1\,,\tag{18}$$

and thus, from (15),

$$\frac{\mathcal{N}_{a}(\mathbf{k})}{V_{\infty}}|m_{\mathbf{k}}\rangle = (_{u}n_{\mathbf{k}}-1)|m_{\mathbf{k}}\rangle = _{u}m_{\mathbf{k}}|m_{\mathbf{k}}\rangle$$
(19)

(18) and (19) remind us of (3-74) in *SFQFT*. But, whereas (3-74) implied $a(\mathbf{k})$ in the discrete solutions case decreased the total number of \mathbf{k} states by one, here in the continuous solutions case, $a(\mathbf{k})$ decreases the \mathbf{k} states per unit \mathbf{k} volume per unit \mathbf{x} volume by one.

Similar analysis leads to $a^{\dagger}(\mathbf{k})$ in the continuous state increasing the **k** states per unit **k** volume per unit **x** volume by one. Thus, the continuous solutions coefficients $a(\mathbf{k})$ and $a^{\dagger}(\mathbf{k})$ are respectively, destruction and creation operators. By parallel logic, $b(\mathbf{k})$ and $b^{\dagger}(\mathbf{k})$ behave in the same way for *b* type states.