Continuous Solutions Creation and Destruction Operators Derivation

Robert D. Klauber
June 2, 2016
www.quantumfieldtheory.info

1 Delta Function Units

Note first that the Dirac delta function has inverse units of its argument. For example, in

$$
\begin{equation*}
\int \delta\left(x-x^{\prime}\right) d x=1 \text { (unitless) } \quad \int f(x) \delta\left(x-x^{\prime}\right) d x=f\left(x^{\prime}\right) \text { (units of function } f \text {), } \tag{1}
\end{equation*}
$$

$\delta\left(x-x^{\prime}\right)$ has units of $1 / x\left(\mathrm{~cm}^{-1}\right.$ in cgs units, M^{1} in natural units). Similarly, $\delta\left(k-k^{\prime}\right)$ has units of $1 / k(\mathrm{~cm}$ in cgs, since units of wave number k are the inverse of length units; M^{-1} in natural units).

In 3D, $\delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ [often just written as $\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$] has units of $1 /$ volume $\left(\mathrm{cm}^{-3}\right.$ in cgs, M^{3} in natural units); $\delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$ [often just written as $\delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$] has units of volume $\left(\mathrm{cm}^{3}\right.$ in cgs, M^{-3} in natural units).

2 Creation and Destruction Operator Units

Thus, in the 3D relation for the coefficients of the continuous solutions,

$$
\begin{equation*}
\left[a(\mathbf{k}), a^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]=\delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \tag{2}
\end{equation*}
$$

the delta function has units of $1 / \mathbf{k}^{3}\left(M^{-3}\right.$ in natural units), so the $a(\mathbf{k})$ and $a^{\dagger}(\mathbf{k})$ operators each have units of $1 / \sqrt{\mathbf{k}^{3}}$ ($M^{-3 / 2}$ in natural units).

So, in

$$
\begin{align*}
& \phi(x)=\underbrace{\int \frac{d^{3} \boldsymbol{k}}{\sqrt{2(2 \pi)^{3} \omega_{\mathbf{k}}}} a(\mathbf{k}) e^{-i k x}}+\underbrace{\int \frac{d^{3} \boldsymbol{k}}{\sqrt{2(2 \pi)^{3} \omega_{\mathbf{k}}}} b^{\dagger}(\mathbf{k}) e^{i k x}} \tag{a}\\
& =\quad \phi^{+} \quad+\quad \phi^{-} \\
& \phi^{\dagger}(x)=\underbrace{\int \frac{d^{3} \boldsymbol{k}}{\sqrt{2(2 \pi)^{3} \omega_{\mathbf{k}}}} b(\mathbf{k}) e^{-i k x}}+\underbrace{\int \frac{d^{3} \boldsymbol{k}}{\sqrt{2(2 \pi)^{3} \omega_{\mathbf{k}}}} a^{\dagger}(\mathbf{k}) e^{i k x}} \tag{b}\\
& =\quad \phi^{\dagger+} \quad+\quad \phi^{\dagger-} \text {, } \\
& \text { (3-37) in text } \tag{3}
\end{align*}
$$

given that $\omega_{\mathbf{k}}$ and \mathbf{k} have the same units, and $a(\mathbf{k})$ has units as shown just above (3), then ϕ has units of \mathbf{k} (M^{1} in natural units). $b(\mathbf{k})$

Note that ϕ having units of $\mathbf{k}\left(M^{1}\right)$ in the discrete case

$$
\begin{equation*}
\phi(x)=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}} a(\mathbf{k}) e^{-i k x}+\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}} b^{\dagger}(\mathbf{k}) e^{i k x} \tag{4}
\end{equation*}
$$

means that $a(\mathbf{k})$ in that case is unitless. This follows from the commutation relation

$$
\begin{equation*}
\left[a(\mathbf{k}), a^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]=\delta_{\mathbf{k k}^{\prime}} \quad \text { discrete case } \tag{5}
\end{equation*}
$$

since $\delta_{\mathbf{k k}^{\prime}}$ is unitless.

3 Hamiltonian for Continuous Solutions

From www.quantumfieldtheory.info/H_operator_and_noneigen_states.pdf, equation (37) therein, for continuous solutions, the Hamiltonian operator is

$$
\begin{align*}
H= & \int \omega_{\mathbf{k}}\left(\mathcal{N}_{a}(\mathbf{k})+\frac{1}{2} \delta(0)+\mathcal{N}_{b}(\mathbf{k})+\frac{1}{2} \delta(0)\right) d^{3} k \tag{10-8}\\
& \mathcal{N}_{a}(\mathbf{k})=a^{\dagger}(\mathbf{k}) a(\mathbf{k}) \quad \mathcal{N}_{b}(\mathbf{k})=b^{\dagger}(\mathbf{k}) b(\mathbf{k}) \quad \text { (continuous) }
\end{align*}
$$

For the vacuum terms in (6), the $\delta(0)$ factor of infinity has units of $1 /(\mathbf{k}$ space vol), or equivalently, since $|\mathbf{k}|=2 \pi \lambda$ (λ is wavelength), units of \mathbf{x} space volume. The $\delta(0)$ represents the infinite volume of space over which our Hamiltonian H represents the total energy. Thus, the \mathbf{x} (physical) space Hamiltonian volume density for the vacuum energy is

$$
\begin{equation*}
\mathcal{H}_{\text {vac }}=\frac{H_{\text {vac }}}{V_{\infty}}=\int \omega_{\mathbf{k}}\left(\frac{1}{2}+\frac{1}{2}\right) d^{3} k=\int \omega_{\mathbf{k}} d^{3} k . \tag{7}
\end{equation*}
$$

Note, from (6), that the vacuum terms factor of $1 / 2$ is dimensionless (no units). That is,

$$
\begin{gather*}
\frac{1}{2}=((\text { number of vacuum particle states }) /(\text { unit vol in } \mathbf{k} \text { space })) /(\text { unit vol in } \mathbf{x} \text { space }), \\
\text { dimensions } M^{3} / M^{3}=\text { dimensionless } . \tag{8}
\end{gather*}
$$

4 Number Operator Units

For the number operator relations

$$
\begin{equation*}
N_{a}(\mathbf{k})=a^{\dagger}(\mathbf{k}) a(\mathbf{k}) \quad(\text { discrete }) \quad \mathcal{N}_{a}(\mathbf{k})=a^{\dagger}(\mathbf{k}) a(\mathbf{k}) \quad \text { (continuous) }, \tag{9}
\end{equation*}
$$

we know that $N_{a}(\mathbf{k})$ is unitless (a number operator without dimensions). From the Hamiltonian operator for continuous solution scalars (6), we see that $\mathcal{N}_{a}(\mathbf{k})$ is a number density operator (density in \mathbf{k} space). That is,

$$
\begin{equation*}
\mathcal{N}_{a}(\mathbf{k}), \mathcal{N}_{b}(\mathbf{k})=(\text { number of real particle states }) / \text { unit vol in } \mathbf{k} \text { space, dimensions } 1 / M^{3} \tag{10}
\end{equation*}
$$

These operators act on all states spread through all of \mathbf{x} space, as our integrations in \mathbf{x} space (as well as \mathbf{k} space) in the continuous solution approach are from $-\infty$ to $+\infty$ in all directions.

5 Creation and Destruction Operators Derived: Continuous Case

In parallel with the discrete solution derivation of Sect. 3.6.1, pg. 58, of SFQFT, consider the kth wave component of a wave packet ket as $\left|n_{\mathbf{k}}\right\rangle$. Then

$$
\begin{equation*}
\mathcal{N}_{a}(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle=n_{\mathbf{k}}\left|n_{\mathbf{k}}\right\rangle, \tag{11}
\end{equation*}
$$

where $n_{\mathbf{k}}$ has the same units as $\mathcal{N}_{a}(\mathbf{k})$, i.e., (number of real particle states)/(k space vol). Note carefully, that $n_{\mathbf{k}}$ is for all space (infinite spatial volume).

We then ask, what is

$$
\begin{align*}
& \qquad a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle=\left|m_{\mathbf{k}}\right\rangle \text { ? parallel to (3-71) for discrete case in text } \tag{12}\\
& \mathcal{N}_{a}(\mathbf{k})\left|m_{\mathbf{k}}\right\rangle=\mathcal{N}_{a}(\mathbf{k}) a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle=\underbrace{a^{\dagger}(\mathbf{k}) a(\mathbf{k})}_{\text {use commutator }} a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle \quad \text { parallel to (3-72) } \tag{13}\\
& =\left(a(\mathbf{k}) a^{\dagger}(\mathbf{k})-\delta(0)\right) a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle=a(\mathbf{k}) a^{\dagger}(\mathbf{k}) a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle-\delta(0) a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle=a(\mathbf{k}) N_{a}(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle-\delta(0) a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle \tag{14}\\
& =a(\mathbf{k}) n_{\mathbf{k}}\left|n_{\mathbf{k}}\right\rangle-\delta(0) a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle=n_{\mathbf{k}} a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle-\delta(0) a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle=\left(n_{\mathbf{k}}-\delta(0)\right) a(\mathbf{k})\left|n_{\mathbf{k}}\right\rangle=\left(n_{\mathbf{k}}-\delta(0)\right)\left|m_{\mathbf{k}}\right\rangle .
\end{align*}
$$

So,

$$
\begin{equation*}
\mathcal{N}_{a}(\mathbf{k})\left|m_{\mathbf{k}}\right\rangle=\left(n_{\mathbf{k}}-\delta(0)\right)\left|m_{\mathbf{k}}\right\rangle=m_{\mathbf{k}}\left|m_{\mathbf{k}}\right\rangle \quad m_{\mathbf{k}}=n_{\mathbf{k}}-\underbrace{\delta(0)}_{=V_{\infty}} \quad \text { parallel to (3-74). } \tag{15}
\end{equation*}
$$

In (15), $m_{\mathbf{k}}$ and $n_{\mathbf{k}}$ are for all space (infinite in size in our continuous solution math where all integrals are over $-\infty$ to $+\infty$). Thus, for any finite number (however small) of \mathbf{k} states per unit volume of space, $m_{\mathbf{k}}$ and $n_{\mathbf{k}}$ must be infinite.

If we define new quantities ${ }_{u} n_{\mathbf{k}}$ and ${ }_{u} m_{\mathbf{k}}$ as spatial densities, i.e., as number per unit spatial volume, such that

$$
\begin{equation*}
n_{\mathbf{k}}={ }_{u} n_{\mathbf{k}} V_{\infty} \quad m_{\mathbf{k}}={ }_{u} m_{\mathbf{k}} V_{\infty} \quad{ }_{u} n_{\mathbf{k}},{ }_{u} m_{\mathbf{k}}=\frac{\text { number of } \mathbf{k} \text { fields per unit } \mathbf{k} \text { volume }}{\text { unit volume of space }}, \tag{16}
\end{equation*}
$$

then the RHS of (15) becomes

$$
\begin{equation*}
m_{\mathbf{k}}=n_{\mathbf{k}}-V_{\infty}={ }_{u} m_{\mathbf{k}} V_{\infty}={ }_{u} n_{\mathbf{k}} V_{\infty}-V_{\infty} . \tag{17}
\end{equation*}
$$

Dividing (17) by V_{∞} we have

$$
\begin{equation*}
{ }_{u} m_{\mathbf{k}}={ }_{u} n_{\mathbf{k}}-1, \tag{18}
\end{equation*}
$$

and thus, from (15),

$$
\begin{equation*}
\frac{\mathcal{N}_{a}(\mathbf{k})}{V_{\infty}}\left|m_{\mathbf{k}}\right\rangle=\left({ }_{u} n_{\mathbf{k}}-1\right)\left|m_{\mathbf{k}}\right\rangle={ }_{u} m_{\mathbf{k}}\left|m_{\mathbf{k}}\right\rangle \tag{19}
\end{equation*}
$$

(18) and (19) remind us of (3-74) in SFQFT. But, whereas (3-74) implied $a(\mathbf{k})$ in the discrete solutions case decreased the total number of \mathbf{k} states by one, here in the continuous solutions case, $a(\mathbf{k})$ decreases the \mathbf{k} states per unit \mathbf{k} volume per unit \mathbf{x} volume by one.

Similar analysis leads to $a^{\dagger}(\mathbf{k})$ in the continuous state increasing the \mathbf{k} states per unit \mathbf{k} volume per unit \mathbf{x} volume by one. Thus, the continuous solutions coefficients $a(\mathbf{k})$ and $a^{\dagger}(\mathbf{k})$ are respectively, destruction and creation operators. By parallel logic, $b(\mathbf{k})$ and $b^{\dagger}(\mathbf{k})$ behave in the same way for b type states.

