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So finally, where terms noted in under brackets refer to (7-111), and we use (7-112) 
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Other cases other than t3 < t2 < t1

For cases where t3 < t2 < t1 is not true, we would have the same result for the RHS of (7-105), 

i.e., it would equal the RHS of (7-113). But the time ordered side would be ordered using the Tc

operator (using the commutator/anti-commutator relations when switching field positions.) As with 

the two field case, we would get commutator/anti-commutator relations on the time ordered side 

that would cancel with identical relations on the Nc ordered side. You can do Prob. 15 to prove the 

case for t2 < t3 < t1, and then, if you wish, play around with other time sequences to prove it in 
general. The final result is that (7-113) holds for any time sequence for any three fields. 
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7.11.2 Wick’s Theorem via Induction 

Comparing (7-114) for three fields to (7-97) for two fields, we can see a pattern emerging. If we 

were to carry out one more example with four fields, we would see additional types of terms 

entailing two contractions. This pattern would be fully reflected by (7-82), and thus by Wick’s 
theorem in full, (7-78). 

7.12 Appendix B: Operators in Exponentials and Time Ordering 

7.12.1 Math Reference 

For what follows we recall (hopefully, you have seen this relation before) the Baker-Campbell-
Hausdorff formula, where, for A and B as operators, 
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If A and B commute, or are c numbers, we get the familiar simple addition of exponents result. 

7.12.2 Solution of Differential Equation with Operator 

Consider (7-59), which we repeat below for convenience, 
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= , (7-59) 

and consider what we might naïvely expect to be the solution, (7-60), 
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Then, the LHS of (7-59) can be found via (with (7-65) in the last line below) 
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For Commuting Variables in the Exponent

If the first term in the 2
nd

 line of (7-116) contained only c numbers or commuting operators in 
HI

I
, then we would have, via (7-115), 

Same result for 

all time orders = 

Wick’s theorem 

for three fields

Result: Wick’s 

theorem for three 

fields, this time 

order case 

A pattern emerges   

for more fields.  

That pattern is 

Wick’s theorem 
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which is the same as (7-59). 

But, the first term in the 2
nd

 line of (7-116) contains operators in HI
I
, that do not commute at 

different times (during the integration over time process), and so, it seems, due to (7-115), we 
cannot conclude that (7-60) is a solution of (7-59). 

However, we can still make (7-60) meaningful by attaching a particular interpretation to the 
symbolism, as we show below.  

For Commuting or Non-commuting Variables in the Exponent

To find a viable solution to (7-59) that is good regardless of the implications of (7-115), we start 
by noting that (7-59) can be solved with 
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though this assumes we know the form of Soper(t1, ti). But we can use (7-118) repeatedly to solve 
(7-59) via iteration. That is, plug 
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into (7-118), then express Soper(t2, ti) in terms of integration over t3 using (7-118), etc. The resulting 

infinite series looks like 
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where no assumption need be made about the commutation properties of factors in the integrands. 

In this case, for the bottom line term above, we must integrate over t3 first, then t2, then t1. In the 

term with an integration over tn, the order is tn, tn-1, …. t2, t1. The LHS of Fig. 7-4 is a graphic 
representation of the integration regions involved in the double integral term in (7-120). 

Fig. 7-4 should be relatively self explanatory (a picture is worth a thousand words). From the last 
line in that figure, where we simply switch dummy variables in the last term of the first line below, 
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Thus, for the double integration term in (7-120), we can substitute 
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The above relation re-written as
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The above two relations are equal, even for operators in integrands, since RHS obtained by switching dummy variables               in LHS.1 2t t↔

The above relation re-written as

    Figure 7-4. Regions of Integration Related to Double Integration Term in Soper Expansion

  
For the triple integration term in the bottom row of (7-120), we get 
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or  
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Repeating the procedure for higher integration number terms, we end up with (7-67) (with tf there 
equal to t here). 

Thus, we need to interpret the exponentials in (7-60), (7-61), (7-66), and (7-67) as being defined 

by (7-67), i.e., as implying time ordering in the expansion. Only by doing this can we avoid the 
issues that non-commutation would bring in via the Baker-Campbell-Hausdorff formula, (7-115). 

Note that some authors use the time ordering symbol T to indicate this, as in 
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We don’t do that in this book, but we need to keep in mind that by (7-61) we mean (7-67). 


