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Square of
absolute value
of transition

Definition: The_transition amplitude is that complex nemlihe square of the absolute magnituds

of which is the probability of measuring a transition frangiven initial state to a specific final

state. (As discussed Bhaps. 1, 7, 8, etc.) )
amplitude =

Symbolism: The transition amplitude for a time of intdmactapproaching infinity, as in the probability of
canonical quantization approach, is typically writterSgagsee chapters cited above). However, ir transition

the path integral approach, where elapsed finbetween measurements of the initial stagtend

' . o . . Symbol U
final stategs is commonly finite, it is more typical to write for path
U(g T for T - o ,U= S of canonical quantizatid. 18-7) integrals
i) | S q 9 (A8 With T finite:

This terminology carries over to inelastic caseBee particles change types). (Most of QFT, a for T -, o,
seen in the rest of this book, is devoted to ddteng the transition amplitudes for the different U=Sof
possible interactions between particles.) '

) " . canonical
Schrodinger Approach FransitionAmplitudes case
The Schrodinger approach to QM leads to an exmnessi the transition amplitude of form
(note the parallel with (7-62), p98) U for NRQM
: Schrodinger
_ —iHT /7 ;
U(gwiT)= (o] € 2 (18-8)  wave mechanics
— .. ——
final state initalstate at, approach

rgte_?iut;eu evolved state &f +t,

whereH is the Hamiltonian operator, and we retain thetsyim even thoughi = 1 in natural units.
Alternative nomenclature: The transition amplitudaes sometimes called the propagator (though
not the QFT Feynman propagator). It projects the wawetion atT + t, that evolved from the
initial state §,) atty onto the final stateg) at timeT + t,. It “propagates” the particle frontof.

18.3.2Position Eigenstates

When the particle has a definite position, exg.the ket is an eigenstate of position, written.| X, _e_igen_state of
The transition amplitude for measuring a partioigally atx;, and finally atx;, would take the form  position, In X

= space rep, is a
U(x.x:T)=(x|e T/ 18-9 2
(% %) <)? |_{|_¥> (18-9) delta function;
evolved state, which can be
In x space ¥ - . effectively
A position eigenstate such ag)|  represented by a
Wl Peak velocity = is, in x space, a delta function of steep, narrow
Group velocity Vg T form'  J(x — x), schematically wave packet
represented on the right in Fig. 18-1.
|_llJ| at o presente g 9 It spreads as
Effective , — tme=0 ~__ As the initial state at; evolves into it evolves
Dirac delta Dire delt Y, however, it, like wave packets
function atX{A Plae — fuIrZ?:(t:iorfa?Xf generally do, spreads, and its peak \yhen measured
time T \ diminishes (wave function envelope at %, wave
| x at right in E|g. 18-1)) The amp!ltude packet collapses
dx—— Xpeak for measuring the particle at tinie ¢ . tat
X at x;, i.e., for measuringx{) that o|Xf>,'e.|gen.sae
llapsed fromy, is (18-9) of posttion, Le., a
Figure 18-1. Propagation of an Effectively Initial COWep can re—w,rite (18—95 in wave delta function
Position Eigenstate Quantum Wave mechanics notation, as So U for
+oo position
U (%, X JT):J._OO S(x=% )y (x.T) deg(x T (18-10)  eigenstate at
2_
Xf, — |U| -
probability

! There are different ways to normalize positioreeitatesHere we use what is easi¢stunderstand for density at x
our purposes. Also, in practice, a position measerd is always over finitAx, notdx, so our initial delta

function actuallycorresponds t@ very narrow, very high real world wave packefth the standard
normalization, such that the square of its absolatee is probability density).
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. _ | probability density of measurir
06 DYCx T =" particle a;  attima.  (18-11)

2
Thus, ‘U (% % ;T)‘ :‘l/l( % ,T)
Modification to definition: Hence, from (18-10hd square of the absolute value of the transition
amplitude for eigenstates of position (with the sdmnormalization and considering the initial state
a very high, very narrow wave packet) piobability density not probability, as was the case for
energy eigenstate wave functions of form (18-5).

As we will see, the value found using the RHS &-@), i.e., that of the Schrddinger approach,
is the same as the value found using Feynman’s maimg approach.

=

18.4Expressing the Wave Function Peak in Terms of thadrangian

18.4.1Background Path integral

One of Feynman’s assumptions for his path integpgdroach to NRQM, RQM (relativistic zgp:ggggs wave
guantum mechanics), and QFT was to express the fuaedon value at the peak of a wave packe furlloction cak
(see Fig. 18-1) in terms of the Lagrangian (exatation shown at the end of this section 18.4). P

have never seen much justification for this in likerature, other than it is simply an assumptior Il_n terms .Of
that works (so learn to live with it and move on!) agrangian
In the present section | take a different tack,pbyviding rationale for why we could expect
Feynman’s expression for the value of the wavetfangeak to work. The logic herein may well
parallel what went on in Feynman’s mind as he waglbping his path integral approach.
18.4.2Deducing Feynman’s Phase Peak Relationship
The Simplified, Heuristic Argument Heuristic way
In NRQM, the plane wave function solution to thd@clinger equation, to dedECﬁ//peak
w = Ag (EL-PR)/A (18-12) = pdli™
means the phase angle, at any givemdt, is
p=—(Et-pX)/#n . (18-13)

If we have a particle wave packet, it is an aggieegd many such waves, so it is not in an
energy or momentum eigenstate. However, it doge baergy and momentum expectation values
that correspond to the classical values for théigher The wave packet peak travels at the wave
packet group velocity, which corresponds to thesitzal particle velocity.

Now, imagine that we approximate the wave packét wi(spatially short) wave function such
as i, whereE and p take on the values of the wave packet expectatadnes for energy and
momentum, respectively. X represents the position of the wave packeak (the middle of our
approximated wave functiog), the time rate of change of phase & then

dp_-(E-plV) _-T-V+py | (18-14)
dt h h

wherev is the velocity of the wave peakis kinetic energy, and is potential energy. Non-
relativistically,

T:%m\/2 p=nv - pv=2T, (18-15)
S0, in terms of the classical Lagrangigr{18-14) becomes
dgp_T-V_1L _ (18-16)
dt h h
More formally, using the Legendre transformation
H=pg-L (E=p-L herg, (18-17)

directly in (18-14), after the first equality, wetg18-16).
Thus, from (18-16), the phase difference betweendwents the particle traverses is

! This definition ofU differs from that of other authors. We address thiSect. 18.9.1 and the appendix.
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We would then repeat that procedure for every offeént on the screen. For a fixed source at
(%, ¥i) , and a fixeds for the screen, the amplitude would be spatiatily a function ofy;, and we

could express it simply as(ys).

18.6.5 Finding the Proportionality Constant: By Example Feynman result of
The square of the absolute value of the amplitudes the probability density. So we can summation is only
normalizeU over the length of the screen, i.e., proportional to
\ 2 , JUP. Need to find
yg =+oo : iS; /n _ (Y=t _ roportionalit
J.yf =—o CN“Too ._1e D]y _J-yf :—oo‘ U( ¥ )‘ oy =1, (18-27) EonF;tant ano%/her
1= way.

and thus, once the value of the limit is determjmeddily find the proportionality consta@t

18.7 Summary of Approaches

18.7.1Feynman’s Postulates

Richard Feynman was probably well aware of mucthefforegoing when he speculated on the
viability of the following four postulates for his many paths approach. Subsémansive
analysis by Feynman and many others has validasaditial speculation.

The postulates of the many paths approach to quettiteories are:

1. A particle is assumed classical in the sense tlen be considered a point-like object, wit
both its position and its 3-momentum well definddng each individual path, so those
values determine the Lagrangian at any point amé tlong any given path. However,
the particle is assumed quantum mechanical in likata wave function, it has a phase
(at the point).

Path integral
four starting
postulates

2. The phasor value at any final event is equai'?g” where the actiol$ is calculated along a
particular path beginning with a particular initealent.

3. The probability density for the final event is givdy the square of the magnitude of a
typically complex amplitude.

4. That amplitude is found by adding together the phaslues at that final event from all
paths between the initial and final events, inatgdclassically impossible paths. The
amplitude of the resultant summation must then bemalized relative to all other
possible final events, and it is this normalizedrfef the amplitude referred to in 3.

Note two things.

First, there is no weighting of the various pattagrs. The nearly classical paths are nc’
weighted more heavily than the paths that arerfanfclassical. That is, the different individual Phasors are not
paths in the summation do not have different ammptis (see (18-24) and Fig. 18-3). The Weightedwhen
correlation with the classical result comes fronstdective interference among the paths far fron SUMMIng them
classical, and constructive interference amongp#tbs close to classical.

Second, time on all paths (all histories) must mforgvard. This is implicit in the exponent
phase value of (18-19), where the integral ¢ over time, with time moving forward. Our paths
do not include particles zig-zagging backward amvérd through time

18.7.2Comparison of Approaches to QM

Wholeness Chart 18-2 summarizes the major siméariand differences between alternative (ezol:?vpaﬁgrr:tg 3
approaches to NRQM. agproaches to
NRQM

! Caveat: A famous quote by Freeman Dyson statésFgymman, while speculating on this approach,
told him that one particle travels all paths, imthg those going backward in time. But the usual
development of the theory (see Section 18.6) omtyudes paths forward in time. Perhaps all paths
backward in time sum to zero and so are simplyrigao In such case, Dyson’s quote would be accurate
But | have not personally investigated this andhdbknow for sure.
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Wholeness Chart 18-2. Equivalent Approachesto Non-relativistic Quantum M echanics

Heisenberg
Schrédinger Wave Mechanics  Matrix Feynman Many Paths
Mechanics
Probability
DF?Q;'t%r?f lamplitudéd lamplitudéd
Eigenstates
N is; i
Same U(%,%;T)=C lim > &’
Transition T\ = $iIHT /7 results as N =iz
X U(x,%;T)= e )
Amplitude (X' f ) <)§ ‘ | ?(> other two (T Ly
approaches :Cj'xf el P9
%
Above interpretatiomssumes Need to determin€. Some others
Comments| X is high narrow wave packet includeC in definition of Dx(t).
and k) is a pure delta function
in position space We haven’t done the integral part yet.

18.8Finite Sums to Functional Integrals

18.8.1Time Slicing: The Concept

After all of the foregoing groundwork, it is time extend the phasor sum of a finite number o gjicing time into
paths, such as we saw in Fig. 18-3 and (18-24); oue an infinite sum, or in other words, an «nieces” for
integral. To do this, we first consider finite itss” of time, for a finite number of paths in one {iscrete time
spatial dimension, as shown in Fig. 18-5 where ctmvenience, we plot time vertically and space analysis
horizontally. As opposed to our spatially 2D exé&nim Fig. 18-3, different paths in Fig. 18-5
actually refer to the particle traveling along thaxis only between andf, though at varying (both
positive and negative) velocities. The paths betweach slice are straight lines, but there ioBs | A simple
in generality, as one can take the time betweerslit — dt, and thus, any possible shape path ca example
be included.

As noted earlier, for any single path, the

ifffbat
phasor af = e 7~ =dS/" (18-28)
one path

The amplitudeJ for the transition froni to f is proportional to the sum of (18-28) for all path

o W isirn
sum of o phasors dt= lim » e™ " . (18-29)
N - o00%
=
t
f t
t 2 f
t; t \23 — X
t3 )/ tl 11112 ﬂ e Xl
t ¢ a~b c
§ } At 0 x o ! Xg X(t) — %o
RNV T8,
b . X(t) ~ 2 -

i |
Figure 18-5. Time Slicing for Finite Figure 18-6. Space Slicing for Three
Number of Paths Discrete Paths
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18.8.5Practicality and Calculations

Practically, for the first approximation addresgeection 18.8.4, we really don’t have to tdke Practically can
to infinity, as we know that paths outside of asm@ably large range from the initial and final take | large
spatial locations will sum to very close to zefo we can live with significant, but not infinite, enough to give

For the second approximation, we only need smalughAt such that taking a smaller value accurate answer
does not change our answer much.

If we use (18-38), with judicious choices fsrandl, we can, in many cases, obtain valid closec And can taket
form solutions for the amplitude. We can also obraimerical solutions with a digital computer by small as needed
using approximations fdr between time slices, as we did previously. Thawe can approximate as well
the RHS of (18-38) in the manner we did for thestfitine of (18-37), but extending the
approximation of (18-37) frorf to n time slices. XXXX 210 3

i herd
18.9An Example: Free Particle

We will first determine the amplitude (and thused#ibn probability density) of a free particle Free particle
via the Schrddinger approach and then compardlitatiofor Feynman’s many paths approach. example in

18.9.1Schrédinger Transition Amplitude NRQM

Recall, from Section 18.3.2, that, in the Schrédmgpproach, a position eigenstate is
effectively a delta function, and as it evolves, the wave foncenvelope spreads and the peal First, via

diminishes. Y|? for such functions is the probability density la final pointx;, after timeT. We  Schrodinger

. . o wave mechanics
should then expeclt)|2 to decrease aEincreases, and teffectively equal infinity atxpeakwhenT approach
=0.

We start with the Schrédinger transition amplituelation (18-9),

U(>q,xf;T)=<xf‘e_iHT/h| K) (18-41)
where we take the bra to be a pure delta functiod the ket, a normalized wave packet
approximation to a delta function. It is simpler thematically to use a pure delta function to

representy]), but then we have to normalize it in a manner sintaa wave packet. There is a lot
behind this that we summarize in the appendix §0§), but here, we simply ugeto represent the
normalization factor in the ket ¢18-41).

U(xx:T)= [0 (0(x=x ) €M/ As(x- %)) o, (18-42)

with the well-known relations

. P
1+ ik(x-x) 1 et i—(x=%)
Olx—-%)=—| e dk=—— el d|. 18-43
(x=x)=2-]., o] | (18-43)
(Box 2-3, pg. 27, explains the use of operators in expondntessence, one can express the
—iTH/L _ XXXX +to —

exponential quantity as a Taylor series expandeditab= 0, i.e..f(T) =e 1 —iTH/A - Y2

herebefore ¥2
THYR +... Then, operate on the ket/state term by temitifgg terms inET/A to various powers],
and finally re-express the resulting Taylor sedssan exponential £ T/A. We have taken the ket

with timetj = 0 to make things simpler, but even if you thofkkhe Hamiltonian operator as a time
derivative, when it acts on that ket, it functi@ssan energy operator and still yields the energy.)

For the exponential with thd operator acting on the initial state, dae p2/2m, (18-42) is

iE X=X +00 i iP(x-
U(xi 'Xf;T)ZIj;[(ﬁ_E:e h( f)dFjJ[A%lJ._m e hTH eh( X) d%j dx

- fm[(i I_*:eig(xf‘x)dp,j( A % [ ~iTp?/2mh (%) dpﬁ ix

271mh —o0
where we tookX — %) - (x —X) in the 2%line on purpose We then re-arrange (18-44) to get

(18-44)
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1 ¢r —iTo?
U(Xi,Xf;T):A%”e'Tp /2

iX(o-p i _i
ij (Ie%(p P) d @p,Xf ehpx dpc
27Th

- 9(p-p)
I
. T olx -
- A 1 J‘e—lTpZ/thehp(f ’f)dp.
271h
Using the integral formula

J_w g & +bxd \/7€§/4a Ré a1>0 , (18—46)

[ grarles)
U (. x:T)=A el : (18-47)

The astute reader may question whether (18-46l, eaimplexa andb, converges. It does because
the integrand oscillation rate increases with lafgein such a way as to make successive cycles
shorter. Asg| gets very large, the cycles become so shortthigatontribution from each cycle
(think area under a sine curve) tends to zero,itaddes so in a manner that allows the integral to
converge. Said another way, the smaller and smadletributions ag| gets large alternate between
positive and negative values (for both real andmerportions), and thus convergence is assured.

From (18-47), the probability density at evéid Probability

density at final
(18-48)  event for free

(18-45)

we find

‘U SRR )‘ =Kot 2nhT

. o o S particle via
which, as we said it must, decreases with incrgakiand equals infinity fol = o Schradinger
18.9.2Many Paths Transition Amplitude approach

We now seek to derive (18-47) using the many papipsoach. NOV\." Ifor free

A free, non-relativistic particle has Lagrangiali {@lues are wave packet expectation values BZ[ECirigé?al
€.9.,Xf =X = Xpeak V = Vg) approach

x(t+At) - x(t)
L=3mv = n‘(—) (18-49)

where the RHS is an approximation between adjatmet slices. Takind; = 0, andl — o (see
Fig. 18-6, pg. 498), (18-38) becomes

- - t =T
Xy =00 X =00 =00 f Ldt tn —d t2 Ldt t]_L
u(ifm)=c [ .. ] j ol emnth 00" g, g
)(nZ—OO X2=—OO )&——00
i1 X7 Xo—3\2 X%
) h’2 s | & ;I'l‘%”{ pr l] At %%”{ & ] At
=C J. J. J. e e e dxdx ..dx . (18-50)
X2 —00 )(1=—00
_ 2 im Y im — 2 im
e Zh(At)(f m] XpZeo 2}’1(At)()g )" %z 271(At)(x2 el sa(an) )
=C J- e . e J. e e dx dx, ...dx%,
xn=—oo f( X2=—00 fy )&=—°0 fﬁ fa
f (%)

! Note that probability density for a wave functidvat is an exact delta function at tifie= 0, is a straight line any timé
> 0. This may seem confusing, but that is what4&8{with nox; dependence) tells us. For a wave packet approxmati
to a delta function (instead of an exact delta fiom¢, for T > 0, we have the behavior as in Fig. 18-1, pd.. 49
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1 [ Lp Xs — X
U(xl-,xf;T):% —ooU( p)eh ( f X)dp
T, (18-58)
oL (12 80) e o g,
21th m o0 '

In (18-58), we could have simply usgdin the exponent, as we have been taking 0, and our
result would have been in terms)gf In that casek would have been the distance betwgeand

X5, 1.e., % —X;. In order to frame our final result in the moshgral terms, we re-introducedas
having any coordinate value in (18-58).

With (18-46) again, (18-58) becomes

. N/2 im % -x )2
U (% .%:T)= CE'Z”’?['TEM)] /iz;“ﬂehﬂ( 5 (18-59)

By comparison with (18-47), we see the phase amertience o is the same as in the wave
mechanics approach. Using that comparison, wesearthat the constant of proportionality is

m N/2
C=A| ——— . 18-60
(izm(m)) ( )
And thus, the probability density at the final eteis the same as (18-48), i.e.,
2 m
U (%, ;T = A2——, 18-61
CRT R (18-61)

where the equal sign is appropriate Kb co.

We can find the normalization factérby integratingU|* over all space and setting the result tc path integral
one, as is usual in NRQM. (See the appendix, pg, fa®d more on this.)

approach =
Note that forv = (x — x)/T, the amplitude (18-59) can be expressed in terithenclassical ~ Schrodinger
action as approach
i mv?

i i

m 51 m LT m =S _
U(x,x:T)=A eh 2 =A e =A eh X = X= X¢. (18-62
(%x:7) 27T Vi2mnT \i 2 peak - (18:62)

18.9.3The Message

It has probably not escaped the reader that thlia@i@n of a free particle using Feynman’s P'_USES and
many paths approach is considerably more compticael lengthy than the Schrédinger approact minuses of

This is true for most, if not all, problems in NRQivid RQM. path integral
The disadvantages of the many paths approach inNNRG@Q RQM are these. method
1. It is generally more mathematically cumbersome dinte consuming than the wave
mechanics approach. More limited
2. The quantity calculated is only proportional to thaplitude, and further analysis is required and generally
to determine the precise amplitude. harder

3. The approach is suitable primarily for position exigtates and is not readily amenable tc
more general states, so it is generally not asrapassing in nature.

The advantages of the many paths approach are these

1. The approach also applies to QFT. In a numbemnstances therein, development of the
theory is more direct, and calculation of amplitside easier, than with the alternative approac!
(canonical quantization).

Has some
advantages for
QFT

2. Philosophically, we see that there is more thanwagto skin a cat. We learn anew that the
physical world can be modeled in different, equewdlways. We learn caution with regard to
interpreting a given model as an actual pictureeafity.
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Particle Theory Field Theory
Quantum Theories
NRQM and RQM via QFT via Wave Mechanics =
Wave Mechanics Canonical Quantization
Quantum x and all dynamical variables @and all dynamical variables
character change — operators — operators
New guantum state|y) = state|) different from
entity wave functiony (operator) fieldp
Fields create & destroy states.
Note States can be multi-particle
(|a.@,))
Operators functions of x, X, t functions ofg,g,, .t
Expectation E=(¢|H|y) E=(¢gH|¢
values of etc. for other operators or for multi-particle state
operators =_
E=(g..|Hap.)
For wave functiorny For quantum fieldp
. " XXX deleted
M: Schrddinger e
Q gereq comma before
Equations of RQM: Klein-Gordon Dirac, QFT: Klein-Gordon, Dirac, “egs” in last
motion Maxwell, Proca es| Maxwell, Proca eqgs column
or equivalently, or equivalently,
Euler-Lagrange formulations Euler-Lagrange formulations
M i Deduced from above and Deduced from above and
facrci_equa lons expectation values of force, expectation values of relevant
of motion acceleration gquantities
Transition R —iHT T\ = —iHT
armplitudeU U (g oxeT)= (| €| ) U(q.0r:T)=(or [T )
(finite T) i & f are eigenstates of position| i & f states can be multi-particle
2 probability density o
I = (for normalizations chosen herein probability

18.10.2“Derivation” of Many Paths Approach for QFT

From the next to last row of Wholeness Chart 18/ see that the transition amplitude for the
QFT canonical approach, which is essentially a waeghanics approach for relativistic fields, is Extend
similar in form to that of the NRQM/RQM wave mechanapproach, given that we note the the same
correspondence — ¢ between NRQM/RQM and QFT. An additional fundaméntifference ~ 2nlogies to
between NRQM and QFT is the form of the Hamiltonk&n In NRQM, H is a non-relativistic ~ Path integrals
function ofx, dx/dt,and (rarely}. In QFT, it is a relativistic function af d¢dt, and (rarely}.

Since the canonical (wave mechanics) QFT approacbnsthe wave mechanics NRQM/RQM
approach, one could postulate (and Feynman proldil)ythat the many paths approach in QFT
would mirror the many paths approach in NRQM/RQNBee Wholeness Chart 18-2 in Section
18.7.2 for the corresponding NRQM transition anyalés using each approach.) Simply using the
same correspondences— ¢ andHponrel — Hrel (and thuslLponrel — Lrel) for the many paths
approach yields Wholeness Chart 18-5.
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18.10.4More Ahead in Path Integral QFT

Note that we have only scratched the surface ohthay paths approach to QFT. There is a
great deal more, including some fairly fundamentaicepts. However, hopefully, all of the above
will provide a solid foundation for that, by explig more simply, more completely, and in smaller
steps of development what traditional introductitmghe subject often treat more concisely.

There is more
to learn about
QFT path

18.11Chapter Summary integrals. This

It is time to try your hand at creating a wholenglsart summary by doing Prob. 1. was an intro.

18.12Appendix XXX WHOLE APPENDIX ISNEW. SUBSTITUTED FOR PRIOR XXX

There are issues with normalization of positioreagtates that complicate the interpretation of )
the resulting transition amplitude for an initiadgition eigenstate transitioning to a final positio e will compare

eigenstate. To investigate this, we first consiiés be a normalization constant to be determined i hormalization
constants for

‘xj> OHPesien, :AJ( X X% ) (18-65)  different methods
space . .

. . . of normalization

and then determing for different ways to normalize. for position

18.12.1Standard NRQM/RQM Normalization eigenstates

In standard NRQM, eigenstates are generally orthoab For (18-65), this means
f(x)

- . — Standard NRQM
<Xi‘)q<>:51'k Ds?a@sfgf):rg_' J.Ad( x= )ﬁ) M( x 3() dx1, (18-66) no(’jrlrr:wazliirzationQ

probability density

where the square of the absolute value of the wavetiin equals probability density and the total XXX ::hange “is”
probability of measuring the position eigenstatgverere n space is one, as it should be. If we 0N
consider one of the delta functions to be just &kg function ok, f(x), then (18-66) leads to

Standard NRQM

|A? f(xj):|A25(>ﬁ - >f):| Ao(0)=1 - A 1 (18-67) nhormalization

Ja(0) constant

While at first blush it may seem strange to havackor with the square root of infinity in the
(et —kx)

denominator, it is not much different from havingvave function like Ag” that extends
from —w to + o along thex axis. In that caseA=1/+/w as well. So, if we can live with this

hypothetically pure position eigenstate, then f&@M, as usually done, (18-65) becomes Standard NRQM
izai _ 1 normalized
‘Xi> D'ﬁrﬁggﬁgﬁﬁﬁ - 5(0) J(X_ % ) (18-68) position
- o eigenstate
and probability density is
o (x— X; ))
(x)=(—1=5 X—X.) . 18-69) Standard NRQM
PRRQM 5(0) (x=xi) ( ) otal probability
(18-69) is infinite ak = x; and zero elsewhere. Total probability, its intégreer all space, is one. 1S ON€

For this normalization of both bra and ket, thesition amplitudel and U [* are
LHT /A 5 Standard NRQM
Unrom (% 2% 5 7) =(% |e ! |X) — |Unrou| = total probability of transitiol, (18-70)  |UJ’is total
transition

which is what we have come to expédf fo represent. probability

18.12.2Normalization Found in Other QFT Texts
Other QFT texts, when discussing the path integpptoach, use a different normalization

! See Peskin. M. &Schroeder, B\ Introduction to Quantum Field Theofferseus 1995), pg. 277, (9-
3) LHS and the first sentence in the paragraphnmgg after (9-7) on pg. 279. See Zee, @uantum
Field Theory in a Nutshe{Princeton 2010), pg. 10“3ine down under heading “Dirac’s formulation”.



509¢ Chapter 18. Path Integrals in Quantum Theories:
— S
(%) =00 = %) D LLITEEE [ AS(x x) #( x ¥ des0). 871)
Taking one of the delta functions on the RHS of {18 asf(x) as we did above, we find
AZ5(x - %)= A%5(0) = 6(0) - A1, (18-72)
so (18-65) becomes
) CUTESRIERE™ =00 x). (18-73)
Note that what we generally consider probabilitpsity is
2
pother(x)=(5(x— xj)) : (18-74)

texts

and the integral of (18-74) over all space, whatuseally interpret as total probability, is infiait
(and thus cannot represent total probability).

For this normalization of both bra and ket, thesition amplitude and U [* are

Uother (% % s T) =(x [T x) O [2B9LPLEPRRAL

texts

2 _ 2 ( nophysical
Uother =% linter ;
pretatio

texts,i= f

J .(18-75)

If there is no physical interpretation wh&rr 0, it follows that there is none wher O.

Other texts
normalization

Other texts
normalization
constant

Other texts
normalized
position
eigenstate
Other texts total
probability is
infinity

Other texts |U]
has no physical
meaning

18.12.3Hybrid Normalization Found in This Text

In Sect. 18.3.2, pg. 491, we considered a surrdgattine initial position eigenstate ket to be a
high, narrow wave packet approximating a delta fion¢ but, importantly, normalized as is usual in

This text assumes
ket is normalized
as in standard

NRQM (see (18-66)), i.e., NRQM. i.e.,as if
<xi | >§>=1 |>g> a high, narrow wave packet approx tsition eigenstat . (18-76) S;Y:(Ie(re(et awave

That, along with considering the bra to be a peiadunction, as is (18-73), let us interpuef|
of (18-11) as probability density. Had we takenhbibie ket and the bra as pure delta functions, suc
as in (18-73), we would have no readily compret#agbhysical meaning fol|>. (See (18-75).)
Since the path integral approach yields a quathigy is proportional to the probability density, I,
the author, felt it best to present the backgrotdRIQM material in a manner amenable to
correlating it with that approach. as if it were a
However, in Sect. 18.9.1, pg. 502, the math is tiyresimplified by using an actual delta Pure delta
function for the initial ket, rather than a limitjrcase wave packet. But, we then need to normaliz function
our initial delta function ket to satisfy (18-7@)hat is, we need the initial ket of delta functfonm

to have A=1/+/5(0) , i.e., to be of form (18-68).
This gives us

So, the normalization constaAtin Sects. 18.9.1 and 18.9.2 equak\/5(0) , but | felt that  a|U[*that is
introducing the square root of infinity at that poivould be inordinately confusing and take us probability
away from the main purpose of the section. density and can

These three approaches to normalization of positigenstates, and the ramifications of each thus be readily
are summarized in Wholeness Chart 18-7 on thepage. related to path

integral result
18.12.4Bottom Line

All of this appendix is focused on NRQM, and is sotrelevant to QFT, except as part of an The important
introduction to the path integral methodology sljust background for the most important concep' thing: what we
in the chapter, stated below. find in path

Bottom line: The path integral approach result ispprtional to probability density. We only integral

discuss position eigenstates as an aid to devejdpiat concept and later, to extrapolating it to approach is
QFT. proportional to

probability
density

But this text
assumes bra is
normalized as in
other texts, i.e.,



Section 18.13 Problem

Wholeness Chart 18-7. Comparing Nor malization Methodsfor Position Eigenstates

Standard Some Other Texts ThisText
Position _
Eigenstate ‘xj> as at left as at left
ket: ¢y, (x)= high, narrow
In position 1 5ix-x Slx=x normalized wave packet
space /JL(O) ( J) ( J) brec Sl
ra: (x xj)
X.‘ (x) = :
Normalization <xj‘>q<>:5jk <xj‘>1(>:5(xj —)5() < 9% > ka()ﬁ)
= wave function value &
Total probab of . o <xk‘z/ka (x)> not total
measuring <Xk|xk> = unity <Xk|xk> = infinity probability, but wave
(takej = k) function value a
Transition : - SIHT | ()
Amplitude U U (%% ,T) <>§‘ €| ¥ in each case

|UF represents

Total probability of measuring
X; state at timd'.

Not total probability, nor
probability density of
measuring at timeT.

Probability density of evolved
State.

1) Usual NRQM analysis.

2) Easy to visualize.

What most authors use.

1) Easy to visualize.

2) Easier to accept probability
density thano as substitute for

Pro total probability.
3) Easier to relate to path integr
result, which is proportional to
probability density.
1) Not easy to see how total 1) o probability, 1) Probability density not total
probability related to probability contradicts NRQM. probability, contradicts NRQM.
Soenzltti‘/r’ovx?lcgtﬁmsimzatr:lle want 2) Impossible to visualizg 2) Not what most (any other?)
Con a groach P 9 meaning ofJ>. Students | authors use.
P ' have no idea what
2) Trying to do this witho in means.
denominator can be confusing,
1) Path integral approach result is proportiongirtmbability density. Don’t need to use any of
above approaches if set integral of that result allespace equal to one and solve for
proportionality constant. (But then no real proof that path integral apptogields what is
_ claimed.)
Bottom line

2) Can compare any of above three wave mechart@gpnetations to path integral approach tg
determine proportionality consta@t Just need to interpret final result as equah#b of the
particular wave mechanics approach used, i.emgrening in ‘U represents” row above.
(Provides a proof that wave mechanics and patlgiat@approaches are consonant.)

18.13Problem

1. Create a wholeness chart summarizing this chapter.
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