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Definition:  The transition amplitude is that complex number, the square of the absolute magnitude 
of which is the probability of measuring a transition from a given initial state to a specific final 
state. (As discussed in$Chaps. 1, 7, 8, etc.) 
Symbolism:  The transition amplitude for a time of interaction approaching infinity, as in the 

canonical quantization approach, is typically written as Sfi (see chapters cited above). However, in 

the path integral approach, where elapsed time T between measurements of the initial state ψi and 

final state ψf is commonly finite, it is more typical to write 

 ( ) ( ); for of canonical quantizationi f fiU , T T ,U Sψ ψ → ∞ = . (18-7) 

This terminology carries over to inelastic cases (where particles change types). (Most of QFT, as 
seen in the rest of this book, is devoted to determining the transition amplitudes for the different 
possible interactions between particles.) 
Schrödinger Approach – Transition Amplitudes 

The Schrödinger approach to QM leads to an expression of the transition amplitude of form 
(note the parallel with (7-62), pg.$198) 
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, (18-8) 

where H is the Hamiltonian operator, and we retain the symbol ℏ even though ℏ = 1 in natural units. 
Alternative nomenclature: The transition amplitude U is sometimes called the propagator (though 
not the QFT Feynman propagator). It projects the wave function at T + ta that evolved from the 
initial state |ψι〉 at ta onto the final state |ψ.f.〉 at time T + ta. It “propagates” the particle from i to f. 

18.3.2 Position Eigenstates 
When the particle has a definite position, e.g., xi, the ket is an eigenstate of position, written |xi

.
〉.  

The transition amplitude for measuring a particle initially at xi, and finally at xf, would take the form 
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;i f f i
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U x ,x T x xe
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 . (18-9) 

    A position eigenstate such as |xf.〉 
is, in x space, a delta function of 
form1 δ (x_–_xf..), schematically 
represented on the right in Fig. 18-1.  
As the initial state at xi . evolves into 
ψ, however, it, like wave packets 
generally do, spreads, and its peak 
diminishes (wave function envelope 
at right in Fig. 18-1.) The amplitude 
for measuring the particle at time T 
at xf, i.e., for measuring |xf

.
〉 that 

collapsed from ψ, is (18-9). 
   We can re-write (18-9), in wave 
mechanics notation, as 

 ( ) ( )( ) ( )i f f fU x ,x ;T x x x,T dx x ,Tδ ψ ψ
+∞

−∞
= − =∫  (18-10) 

                                                 
1 There are different ways to normalize position eigenstates. Here we use what is easiest to understand for 
our purposes. Also, in practice, a position measurement is always over finite ∆x, not dx, so our initial delta 
function actually corresponds to a very narrow, very high real world wave packet (with the standard 
normalization, such that the square of its absolute value is probability density). 

Figure 18-1. Propagation of an Effectively Initial  
                     Position Eigenstate Quantum Wave 
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Thus,   ( ) ( ) {2 2 probability density of measuring
( ) ( )      particle at  at time i f f f f f

U x ,x ;T x ,T * x ,T x ,T x T .ψ ψ ψ= = = (18-11) 

Modification to definition:  Hence, from (18-10), the square of the absolute value of the transition 
amplitude for eigenstates of position (with the chosen normalization and considering the initial state 
a very high, very narrow wave packet), is probability density, not probability, as was the case for 
energy eigenstate wave functions of form (18-5).1 

As we will see, the value found using the RHS of (18-9), i.e., that of the Schrödinger approach, 
is the same as the value found using Feynman’s many paths approach. 

18.4 Expressing the Wave Function Peak in Terms of the Lagrangian 

18.4.1 Background 
One of Feynman’s assumptions for his path integral approach to NRQM, RQM (relativistic 

quantum mechanics), and QFT was to express the wave function value at the peak of a wave packet 
(see Fig. 18-1) in terms of the Lagrangian (exact relation shown at the end of this section 18.4).  I 
have never seen much justification for this in the literature, other than it is simply an assumption 
that works (so learn to live with it and move on!) 

In the present section I take a different tack, by providing rationale for why we could expect 
Feynman’s expression for the value of the wave function peak to work.  The logic herein may well 
parallel what went on in Feynman’s mind as he was developing his path integral approach. 

18.4.2 Deducing Feynman’s Phase Peak Relationship  

The Simplified, Heuristic Argument 
In NRQM, the plane wave function solution to the Schrödinger equation, 

 ( )i Et /Aeψ − − ⋅= p x h  , (18-12) 

means the phase angle, at any given x and t, is 

 ( )Et /φ = − − ⋅p x h   . (18-13) 

If we have a particle wave packet, it is an aggregate of many such waves, so it is not in an 
energy or momentum eigenstate.  However, it does have energy and momentum expectation values 
that correspond to the classical values for the particle.  The wave packet peak travels at the wave 
packet group velocity, which corresponds to the classical particle velocity. 

Now, imagine that we approximate the wave packet with a (spatially short) wave function such 
as ψ, where E and p take on the values of the wave packet expectation values for energy and 
momentum, respectively.  If x represents the position of the wave packet “peak”  (the middle of our 
approximated wave function ψ), the time rate of change of phase at x is then 

 
( )Ed T V

dt

φ − − ⋅ − − + ⋅= =
p v p v
h h

 , (18-14) 

where v is the velocity of the wave peak, T is kinetic energy, and V is potential energy.  Non-
relativistically,  

 21
2

2T mv m T= = → =p v p v� , (18-15) 

so, in terms of the classical Lagrangian L, (18-14) becomes 

 
d T V L

dt

φ −= =
h h

 . (18-16) 

More formally, using the Legendre transformation 

 ( )herei iH p q L E L= − = ⋅ −p v& , (18-17) 

directly in (18-14), after the first equality, we get (18-16). 
Thus, from (18-16), the phase difference between two events the particle traverses is 

                                                 
1 This definition of U differs from that of other authors. We address this in Sect. 18.9.1 and the appendix. 

Path integral 
approach 
expresses wave 
function peak    
in terms of 
Lagrangian 

Heuristic way    
to deduce ψpeak       

Li dt
Ae=

∫
h  



 
 Section 18.7 Summary of Approaches 497 

 
 

We would then repeat that procedure for every other point on the screen.  For a fixed source at 

(xi, yi) , and a fixed xf  for the screen, the amplitude would be spatially only a function of yf, and we 

could express it simply as U(yf). 

18.6.5  Finding the Proportionality Constant: By Example 
The square of the absolute value of the amplitude U is the probability density.  So we can 

normalize U over the length of the screen, i.e., 
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, (18-27) 

and thus, once the value of the limit is determined, readily find the proportionality constant C. 

18.7 Summary of Approaches 

18.7.1 Feynman’s Postulates 
Richard Feynman was probably well aware of much of the foregoing when he speculated on the 

viability of the following four postulates for his many paths approach.  Subsequent extensive 
analysis by Feynman and many others has validated his initial speculation. 

The postulates of the many paths approach to quantum theories are: 

1. A particle is assumed classical in the sense that it can be considered a point-like object, with 
both its position and its 3-momentum well defined along each individual path, so those 
values determine the Lagrangian at any point and time along any given path. However, 
the particle is assumed quantum mechanical in that, like a wave function, it has a phase 
(at the point). 

2. The phasor value at any final event is equal to e
iS/ℏ where the action S is calculated along a 

particular path beginning with a particular initial event. 

3. The probability density for the final event is given by the square of the magnitude of a 
typically complex amplitude. 

4. That amplitude is found by adding together the phasor values at that final event from all 
paths between the initial and final events, including classically impossible paths. The 
amplitude of the resultant summation must then be normalized relative to all other 
possible final events, and it is this normalized form of the amplitude referred to in 3. 

Note two things. 
First, there is no weighting of the various path phasors.  The nearly classical paths are not 

weighted more heavily than the paths that are far from classical.  That is, the different individual 
paths in the summation do not have different amplitudes (see (18-24) and Fig. 18-3).  The 
correlation with the classical result comes from destructive interference among the paths far from 
classical, and constructive interference among the paths close to classical. 

Second, time on all paths (all histories) must move forward.  This is implicit in the exponent 
phase value of (18-19), where the integral of L is over time, with time moving forward.  Our paths 
do not include particles zig-zagging backward and forward through time1. 

18.7.2 Comparison of Approaches to QM 
Wholeness Chart 18-2 summarizes the major similarities and differences between alternative 

approaches to NRQM. 

                                                 
1 Caveat: A famous quote by Freeman Dyson states that Feynman, while speculating on this approach, 
told him that one particle travels all paths, including those going backward in time.  But the usual 
development of the theory (see Section 18.6) only includes paths forward in time.  Perhaps all paths 
backward in time sum to zero and so are simply ignored.  In such case, Dyson’s quote would be accurate.  
But I have not personally investigated this and do not know for sure. 
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          Wholeness Chart 18-2.  Equivalent Approaches to Non-relativistic Quantum Mechanics 
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Comments 

Above interpretation assumes 
|xi〉 is high narrow wave packet 
and |xf.〉 is a pure delta function 
in position space 

Need to determine C. Some others 
include C in definition of Dx(t). 

We haven’t done the integral part yet. 
 
 

18.8 Finite Sums to Functional Integrals 

18.8.1 Time Slicing: The Concept 
After all of the foregoing groundwork, it is time to extend the phasor sum of a finite number of 

paths, such as we saw in Fig. 18-3 and (18-24), over into an infinite sum, or in other words, an 
integral.  To do this, we first consider finite “slices” of time, for a finite number of paths in one 
spatial dimension, as shown in Fig. 18-5 where, for convenience, we plot time vertically and space 
horizontally.  As opposed to our spatially 2D example in Fig. 18-3, different paths in Fig. 18-5 
actually refer to the particle traveling along the x axis only between i and f, though at varying (both 
positive and negative) velocities.  The paths between each slice are straight lines, but there is no loss 
in generality, as one can take the time between slices ∆t → dt, and thus, any possible shape path can 
be included. 

As noted earlier, for any single path, the 

 

one path

phasor at

t f
t iS /i

Li dt
e e= =∫ hh

1442443

f  , (18-28) 

The amplitude U for the transition from i to f is proportional to the sum of (18-28) for all paths, 
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18.8.5 Practicality and Calculations 
Practically, for the first approximation addressed in Section 18.8.4, we really don’t have to take l 

to infinity, as we know that paths outside of a reasonably large range from the initial and final 
spatial locations will sum to very close to zero.  So we can live with significant, but not infinite, l. 

For the second approximation, we only need small enough ∆t such that taking a smaller value 
does not change our answer much. 

If we use (18-38), with judicious choices for ∆t and l, we can, in many cases, obtain valid closed 
form solutions for the amplitude.  We can also obtain numerical solutions with a digital computer by 
using approximations for L between time slices, as we did previously.  That is, we can approximate 
the RHS of (18-38) in the manner we did for the first line of (18-37), but extending the 
approximation of (18-37) from 3 to n time slices. 

18.9 An Example: Free Particle 
We will first determine the amplitude (and thus detection probability density) of a free particle 

via the Schrödinger approach and then compare it to that for Feynman’s many paths approach. 

18.9.1 Schrödinger Transition Amplitude 
Recall, from Section 18.3.2, that, in the Schrödinger approach, a position eigenstate is 

effectively a delta function, and as it evolves, the wave function envelope spreads and the peak 

diminishes.  |U|2 for such functions is the probability density at the final point xf, after time T. We 

should then expect |U|2 to decrease as T increases, and to effectively equal infinity at xpeak when T 
= 0. 

We start with the Schrödinger transition amplitude relation (18-9), 

 ( ); iHT /
f fi iU x ,x T x e x−= h   (18-41) 

where we take the bra to be a pure delta function and the ket, a normalized wave packet 
approximation to a delta function. It is simpler mathematically to use a pure delta function to 

represent |xi〉, but then we have to normalize it in a manner similar to a wave packet. There is a lot 
behind this that we summarize in the appendix (pg. 509), but here, we simply use A to represent the 
normalization factor in the ket of (18-41). 

 ( ) ( ) ( )( );f f i
iHT /

iU x ,x T e dxx x x xAδ δ
∞

−∞
−= − −∫

h , (18-42) 

with the well-known relations 
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(Box$2-3,$pg. 27, explains the use of operators in exponents. In essence, one can express the 

exponential quantity as a Taylor series expanded about T = 0, i.e., f (T) = e
–iTH/ℏ = 1 – iTH/ℏ – ½ 

T2H2/ℏ2 +…  Then, operate on the ket/state term by term [getting terms in iET/ℏ to various powers], 

and finally re-express the resulting Taylor series as an exponential in iET/ℏ.  We have taken the ket 

with time ti = 0 to make things simpler, but even if you think of the Hamiltonian operator as a time 
derivative, when it acts on that ket, it functions as an energy operator and still yields the energy.) 

For the exponential with the H operator acting on the initial state, and E =  p2/2m, (18-42) is 
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 (18-44) 

where we took (x – xf ) → (xf  – x) in the 2nd line on purpose.  We then re-arrange (18-44) to get 
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 (18-45) 

Using the integral formula 
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we find 
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 . (18-47) 

The astute reader may question whether (18-46), with complex a and b, converges.  It does because 
the integrand oscillation rate increases with larger |p| in such a way as to make successive cycles 
shorter.  As |p| gets very large, the cycles become so short that the contribution from each cycle 
(think area under a sine curve) tends to zero, and it does so in a manner that allows the integral to 
converge. Said another way, the smaller and smaller contributions as |p| gets large alternate between 
positive and negative values (for both real and complex portions), and thus convergence is assured. 

From (18-47), the probability density at event f is 

 ( )
2 2;

2fi
m

U x
T

A,x T
π

=
h

, (18-48) 

which, as we said it must, decreases with increasing T, and equals infinity for T = 01. 

18.9.2 Many Paths Transition Amplitude 
We now seek to derive (18-47) using the many paths approach. 
A free, non-relativistic particle has Lagrangian (all values are wave packet expectation values, 

e.g., xf = x̅ = xpeak, v = vg) 
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where the RHS is an approximation between adjacent time slices.  Taking ti = 0, and l → ∞ (see 

Fig. 18-6, pg. 498), (18-38) becomes 
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(18-50) 

                                                 
1 Note that probability density for a wave function that is an exact delta function at time T = 0, is a straight line any time T  
> 0. This may seem confusing, but that is what (18-48) (with no xf dependence) tells us. For a wave packet approximation 
to a delta function (instead of an exact delta function), for T  > 0, we have the behavior as in Fig. 18-1, pg. 491. 
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 (18-58) 

In (18-58), we could have simply used xf in the exponent, as we have been taking xi = 0, and our 

result would have been in terms of xf.  In that case, xf would have been the distance between xi and 

xf, i.e., xf – xi.  In order to frame our final result in the most general terms, we re-introduced xi as 
having any coordinate value in (18-58). 

With (18-46) again, (18-58) becomes 
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By comparison with (18-47), we see the phase and dependence on T is the same as in the wave 
mechanics approach.  Using that comparison, we can see that the constant of proportionality is 
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And thus, the probability density at the final event f is the same as (18-48), i.e.,  
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, (18-61) 

where the equal sign is appropriate for N → ∞. 

We can find the normalization factor A by integrating |U|2 over all space and setting the result to 
one, as is usual in NRQM. (See the appendix, pg. 509, for more on this.) 

Note that for v = (xf – xi)/T, the amplitude (18-59) can be expressed in terms of the classical 
action as 
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18.9.3 The Message 
It has probably not escaped the reader that the evaluation of a free particle using Feynman’s 

many paths approach is considerably more complicated and lengthy than the Schrödinger approach.  
This is true for most, if not all, problems in NRQM and RQM. 

The disadvantages of the many paths approach in NRQM and RQM are these. 
1. It is generally more mathematically cumbersome and time consuming than the wave 
mechanics approach. 

2. The quantity calculated is only proportional to the amplitude, and further analysis is required 
to determine the precise amplitude. 

3. The approach is suitable primarily for position eigenstates and is not readily amenable to 
more general states, so it is generally not as encompassing in nature. 

The advantages of the many paths approach are these. 
1. The approach also applies to QFT.  In a number of instances therein, development of the 
theory is more direct, and calculation of amplitudes is easier, than with the alternative approach 
(canonical quantization). 

2. Philosophically, we see that there is more than one way to skin a cat.  We learn anew that the 
physical world can be modeled in different, equivalent ways.  We learn caution with regard to 
interpreting a given model as an actual picture of reality. 

Path integral 
approach = 
Schrödinger 
approach 
 

Pluses and 
minuses of 
path integral 
method 
 

More limited 
and generally 
harder 

Has some 
advantages for 
QFT 
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               Particle Theory             Field Theory 

             Quantum Theories 

 
NRQM and RQM via 

Wave Mechanics 

QFT via Wave Mechanics = 
Canonical Quantization 

Quantum 
character change 

x and all dynamical variables 
 → operators 

φ and all dynamical variables 
 → operators 

New quantum 
entity 

state ψ  = 

wave function ψ 

state φ  different from  

(operator) field φ 

Note  

Fields create & destroy states.  
States can be multi-particle 

( 1 2,, ...φ φ ) 

Operators functions of x,x,t&  functions of , , ,tµφ φ  

Expectation 
values of 
operators 

E Hψ ψ=  

etc. for other operators 
 

E Hφ φ=  

or for multi-particle state 

1 2 1 2E , ... H , ...φ φ φ φ=  

Equations of 
motion 

For wave function ψ 

QM: Schrödinger eq 

RQM: Klein-Gordon, Dirac, 
Maxwell, Proça eqs 

or equivalently, 

Euler-Lagrange formulations 

For quantum field φ 

 

QFT: Klein-Gordon, Dirac, 
Maxwell, Proça eqs 

or equivalently, 

Euler-Lagrange formulations 

Macro equations 
of motion 

Deduced from above and 
expectation values of force, 

acceleration 

Deduced from above and 
expectation values of relevant 

quantities 

Transition 
amplitude U 
(finite T) 

( ); iHT
i if fU x ,x T x e x−=  

i & f are eigenstates of position 

( ); iHT
if fU , T eiφ φ φ φ−=  

i & f states can be multi-particle 

|U|2 = 
      probability density 

         (for normalizations chosen herein) 
           probability 

 

18.10.2 “Derivation” of Many Paths Approach for QFT 
From the next to last row of Wholeness Chart 18-4, we see that the transition amplitude for the 

QFT canonical approach, which is essentially a wave mechanics approach for relativistic fields, is 
similar in form to that of the NRQM/RQM wave mechanics approach, given that we note the 
correspondence x → φ between NRQM/RQM and QFT.  An additional fundamental difference 
between NRQM and QFT is the form of the Hamiltonian H.  In NRQM, H is a non-relativistic 
function of x, dx/dt, and (rarely) t.  In QFT, it is a relativistic function of φ, dφ/dt, and (rarely) t. 

Since the canonical (wave mechanics) QFT approach mirrors the wave mechanics NRQM/RQM 
approach, one could postulate (and Feynman probably did) that the many paths approach in QFT 
would mirror the many paths approach in NRQM/RQM.  (See Wholeness Chart 18-2 in Section 
18.7.2 for the corresponding NRQM transition amplitudes using each approach.)  Simply using the 
same correspondences x → φ  and Hnonrel → Hrel  (and thus, Lnonrel → Lrel)  for the many paths 
approach yields Wholeness Chart 18-5. 

Extend         
the same 
analogies to 
path integrals 

XXX deleted 
comma before 
“eqs” in last 
column 
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18.10.4 More Ahead in Path Integral QFT 

Note that we have only scratched the surface of the many paths approach to QFT.  There is a 
great deal more, including some fairly fundamental concepts.  However, hopefully, all of the above 
will provide a solid foundation for that, by explaining more simply, more completely, and in smaller 
steps of development what traditional introductions to the subject often treat more concisely. 

18.11 Chapter Summary 
It is time to try your hand at creating a wholeness chart summary  by doing Prob. 1. 

18.12 Appendix  XXX WHOLE APPENDIX IS NEW. SUBSTITUTED FOR PRIOR XXX 
There are issues with normalization of position eigenstates that complicate the interpretation of 

the resulting transition amplitude for an initial position eigenstate transitioning to a final position 
eigenstate. To investigate this, we first consider A to be a normalization constant to be determined in 

 ( )in position
spacej jx A x xδ→ = − , (18-65) 

and then determine A for different ways to normalize. 

18.12.1 Standard NRQM/RQM Normalization 
In standard NRQM, eigenstates are generally orthonormal. For (18-65), this means  

 ( ) ( )
( )

in position
space for 

probability density

1*
j k jk j jj k

f x

x x A x x A x x dxδ δ δ
=

= → − − =∫
64748

14444244443

, (18-66) 

where the square of the absolute value of the wave function equals probability density and the total 
probability of measuring the position eigenstate anywhere in space is one, as it should be. If we 
consider one of the delta functions to be just like any function of x, f.(x), then (18-66) leads to 

 ( ) ( ) ( )
( )

2 2 2 1
0 1

0
j j jA f x A x x A Aδ δ

δ
= − = = → = . (18-67) 

While at first blush it may seem strange to have a factor with the square root of infinity in the 

denominator, it is not much different from having a wave function like ( )i t kxAe ω− − that extends 

from – ∞ to + ∞ along the x axis. In that case, 1A /= ∞  as well. So, if we can live with this 
hypothetically pure position eigenstate, then for NRQM, as usually done, (18-65) becomes 

 
( ) ( )NRQM normalization

in position space

1

0
j jx x xδ

δ
→ = − , (18-68) 

and probability density is 

 ( ) ( )( )
( ) ( )

2

0

j
NRQM j

x x
x x x

δ
ρ δ

δ

−
= = − . (18-69) 

(18-69) is infinite at x = xj and zero elsewhere. Total probability, its integral over all space, is one. 

For this normalization of both bra and ket, the transition amplitude U and |U.|2 are 

 ( ) 2
; total probability of transitioni f f iNRQM NRQM

iHT /U x ,x T x xe U−= → =h , (18-70) 

which is what we have come to expect |U|2 to represent. 

18.12.2 Normalization Found in Other QFT Texts 
Other QFT texts, when discussing the path integral approach, use a different normalization1, 

                                                 
1 See Peskin. M. &Schroeder, D., An Introduction to Quantum Field Theory (Perseus 1995), pg. 277, (9-
3) LHS and the first sentence in the paragraph beginning after (9-7) on pg. 279. See Zee, A., Quantum 
Field Theory in a Nutshell (Princeton 2010), pg. 10, 3rd line down under heading “Dirac’s formulation”. 

There is more 
to learn about 
QFT path 
integrals. This 
was an intro. 

We will compare 
normalization 
constants for 
different methods 
of normalization 
for position 
eigenstates 

Standard NRQM 
normalization 

Standard NRQM 
normalization 
constant 

Standard NRQM 
total probability 
is one 

Standard NRQM 
|U|2 is total 
transition 
probability  

Standard NRQM 
normalized 
position 
eigenstate 

XXX change “is” 
to “in”  
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 ( ) ( ) ( ) ( )in position
space for 

0*
j k j k j jj k

x x x x A x x A x x dxδ δ δ δ
=

= − → − − =∫ . (18-71) 

Taking one of the delta functions on the RHS of (18-71) as f.(x) as we did above, we find 

 ( ) ( ) ( )2 2
0 0 1j jA x x A Aδ δ δ− = = → = , (18-72) 

so (18-65) becomes 

 ( )other texts normalization
in position spacej jx x xδ→ = − . (18-73) 

Note that what we generally consider probability density is 

 ( ) ( )( )2
other j
texts

x x xρ δ= − , (18-74) 

and the integral of (18-74) over all space, what we usually interpret as total probability, is infinite 
(and thus cannot represent total probability). 

For this normalization of both bra and ket, the transition amplitude U and |U.|2 are 

 ( ) 2in position space 2
for 0, i.e., 

;
 no physical
interpretationi f f iother otherT i f

texts texts,i f

iHT /U x ,x T x xe U
= =

=

−  = → = ∞  
 

h . (18-75) 

If there is no physical interpretation when T = 0, it follows that there is none when T ≠ 0. 

18.12.3 Hybrid Normalization Found in This Text 
In Sect. 18.3.2, pg. 491, we considered a surrogate for the initial position eigenstate ket to be a 

high, narrow wave packet approximating a delta function, but, importantly, normalized as is usual in 
NRQM (see (18-66)), i.e.,  

 1  a high, narrow wave packet approx to position eigenstatei i ix x x=  .    (18-76) 

That, along with considering the bra to be a pure delta function, as is (18-73), let us interpret|U.|2 
of (18-11) as probability density. Had we taken both the ket and the bra as pure delta functions, such 
as in (18-73), we would have no readily comprehensible physical meaning for |U.|2. (See (18-75).) 
Since the path integral approach yields a quantity that is proportional to the probability density, I, 
the author, felt it best to present the background NRQM material in a manner amenable to 
correlating it with that approach. 

However, in Sect. 18.9.1, pg. 502, the math is greatly simplified by using an actual delta 
function for the initial ket, rather than a limiting case wave packet. But, we then need to normalize 
our initial delta function ket to satisfy (18-76). That is, we need the initial ket of delta function form 

to have ( )1 0A / δ= , i.e., to be of form (18-68). 

So, the normalization constant A in Sects. 18.9.1 and 18.9.2 equals ( )1 0/ δ , but I felt that 
introducing the square root of infinity at that point would be inordinately confusing and take us 
away from the main purpose of the section. 

These three approaches to normalization of position eigenstates, and the ramifications of each, 
are summarized in Wholeness Chart 18-7 on the next page. 

18.12.4 Bottom Line 
All of this appendix is focused on NRQM, and is not so relevant to QFT, except as part of an 

introduction to the path integral methodology. It is just background for the most important concept 
in the chapter, stated below. 
Bottom line: The path integral approach result is proportional to probability density. We only 
discuss position eigenstates as an aid to developing that concept and later, to extrapolating it to 
QFT. 
 
 
 

Other texts total 
probability is 
infinity 

Other texts 
normalization 

Other texts 
normalization 
constant 

Other texts 
normalized 
position 
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constant 

Other texts |U|2 

has no physical 
meaning 

This text assumes 
ket is normalized 
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NRQM. i.e.,as if 
it were a wave 
packet 

But this text 
assumes bra is 
normalized as in 
other texts, i.e., 
as if it were a 
pure delta 
function 

This gives us 
a|U|2 that is 
probability 
density and can 
thus be readily 
related to path 
integral result 
 

The important 
thing:  what we 
find in path 
integral 
approach is 
proportional to 
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density 
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 Wholeness Chart 18-7. Comparing Normalization Methods for Position Eigenstates 

 Standard Some Other Texts This Text 

Position 
Eigenstate jx

 
as at left as at left 

In position 
space ( ) ( )1

0
j

L

x xδ
δ

−  ( )jx xδ −  

ket: ( )
kx xψ = high, narrow 

normalized wave packet 

bra: ( )jx xδ −  

Normalization j k jkx x δ=  ( )j k j kx x x xδ= −  
( ) ( )j jk kx xx x xψ ψ=  

= wave function value at xj 

Total probab of 
measuring 
(take j = k) 

k kx x = unity k kx x = infinity 
( )k kxx xψ  not total 

probability, but wave 
function value at xk 

Transition 
Amplitude U ( ) iHT

i f f iU x ,x ,T x e x−=  in each case 

|U|2 represents 
Total probability of measuring 
xf state at time T. 

Not total probability, nor 
probability density of 
measuring xf at time T. 

Probability density of evolved 
state.  

Pro 

1) Usual NRQM analysis. 

2) Easy to visualize. 

What most authors use. 1) Easy to visualize. 

2) Easier to accept probability 
density than ∞ as substitute for 
total probability. 

3) Easier to relate to path integral 
result, which is proportional to 
probability density. 

Con 

1) Not easy to see how total 
probability related to probability 
density, which is what we want 
to get from path integral 
approach. 

2) Trying to do this with ∞ in 
denominator can be confusing. 

1) ∞ probability, 
contradicts NRQM. 

2) Impossible to visualize 
meaning of |U|2. Students 
have no idea what U 
means. 

1) Probability density not total 
probability, contradicts NRQM. 

2) Not what most (any other?) 
authors use. 

Bottom line 

1) Path integral approach result is proportional to probability density. Don’t need to use any of 
above approaches if set integral of that result over all space equal to one and solve for 
proportionality constant C. (But then no real proof that path integral approach yields what is 
claimed.) 

2) Can compare any of above three wave mechanics interpretations to path integral approach to 
determine proportionality constant C. Just need to interpret final result as equal to that of the 
particular wave mechanics approach used, i.e., the meaning in “|U|2 represents” row above. 
(Provides a proof that wave mechanics and path integral approaches are consonant.) 

 
 

18.13 Problem 

1. Create a wholeness chart summarizing this chapter. 
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