
16.4  

16.4.1 Sophomore Physics Review 
As a refresher, an elementary review of the electron magnetic moment is hereby provided. 
Consider a circular loop of current I encompassing an area A, which acts like a magnetic dipole, 

i.e., acts just as if fictitious positive and negative “magnetic charges” were separated by a small 
distance. If the current loop is placed in an external magnetic field B 

e
, the torque ττττ it experiences 

(which can be visualized as equal magnitude, opposite direction forces on the two fictitious 
“magnetic charges”) is (where A has magnitude of area A and direction normal to the plane of the 
loop aligned with the thumb of the right hand when the fingers point in the direction of the current) 

 e eI= × = ×A B Bµµµµττττ , (16-32) 

where µµµµ = IA is called the magnetic moment of the current loop. The energy of the loop/external 
field, with θ the angle between µµµµ and B 

e
, where we define the θ = π/2 position as zero potential 

energy, is 
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If the current is composed of a single particle of charge – e (as one would have, for example, in the 
Bohr theory orbit of an electron in an atom), its speed is v, its time for one orbit is Torbit, and the 
circular area A has radius r, then the orbital angular momentum of that charge is 
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where ⊥e is a unit vector pointing in the direction of the right hand thumb above, and L is orbital 
angular momentum. In an atomic orbit, angular momentum magnitude is 

 lL m= ℏ  (16-35) 

with ml an orbital quantum number. So with (16-34), we can define the Bohr magneton µB via 
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As to the electron itself, one can view it classically as a charge that is distributed internally, 
rather than being pointlike, and that charge rotates, or “spins” around some internal axis. So, in 
effect, we would have a circular current loop of sorts similar to that described above for an atom. In 
quantum theory, that spin of the electron is quantized, and the intrinsic (ignoring orbital 

contribution) angular momentum is spin angular momentum S = ℏms ⊥e = ±ℏ/2 ⊥e (ms = ± ½ is spin 

quantum number). So, one might consider 
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However, the RHS of (16-37) is derived assuming charge is distributed as a neat current loop, as in 
(16-36), which is naïve.  Given the unknown nature of this distribution, researchers introduced a 
constant g, called the gyromagnetic ratio3 or the g-factor, which could be determined by experiment. 
So, the most general form for the magnetic moment µµµµ of the electron and its magnitude µ would be 
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If our naïve analysis (current distributed in a neat loop) were correct, then the gyromagnetic ratio 
g would be found equal to 1. 

 

                                                 
3 This term is used in the literature for two things, the g-factor described herein (which is dimensionless) 
and the ratio of magnetic dipole moment to angular momentum (which is often denoted by the symbol γ, 
and which has SI dimensions of radians per second per tesla). In this book, the term gyromagnetic ratio 
will be used as equivalent to g, as shown above. 
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