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where γ  here is the Euler-Mascheroni constant ≈ 0.5772, which will always cancel, or be negligible, 

in observable quantities. We also use the standard relation 
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with a = 1/m 

2
 and x = η /2 to obtain 

 ( ) ( ) ( )
2

2 2 2

2 2 20
4

2
2

2

2 2

1 1 1
1 1 1

D

D

m
m m m

ln ln
η

η
η

η η
η η

→
→

−
   

= − → = + + = − +   
−   

O O . (15-77) 

(15-74), with Γ(2) = 1, is then 
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Of course, in the full limit η → 0 and D → 4, (15-74) then becomes 
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found via dimensional regularization. 

15.4.4 Important Conclusion 

We can compare our dimensional regularization result (15-78)-(15-79) to that for the same 

integral found via Pauli-Villars regularization (15-59)-(15-60), and if we assume they must give us 

the same result, we can conclude that, 
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2

, ln . , ln
γ

η η
η η

Λ Λ = − Λ →∞ → Λ = . (15-80) 

For this integral at least, (1/η – γ /2) plays the role of ln Λ. Both go to infinity in the limiting 

condition, where the Euler-Mascheroni constant γ becomes negligible. This conclusion is true in 

general for regularization of any integral, though we won’t prove that here. Hopefully, this one 

example will provide some justification for adopting (15-80) as an identity in what follows. 
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