$$\frac{1}{\left(2\pi\right)^{4}} \int \frac{1}{\left(p^{2}-m^{2}\right)^{2}} d^{4}p \rightarrow \frac{i}{\left(4\pi\right)^{2}} \left(\ln\frac{\Lambda^{2}}{m^{2}}\right) - \frac{i}{\left(4\pi\right)^{2}} \frac{\Lambda^{2}}{\infty^{2}} + \dots = \frac{i2}{\left(4\pi\right)^{2}} \left(\ln\Lambda - \ln m - \frac{1}{2} \frac{\Lambda^{2}}{\infty^{2}}\right) + \dots (15-59)$$

SEE NEXT PAGE ALSO

where γ here is the <u>Euler-Mascheroni constant</u> ≈ 0.5772 , which will always cancel, or be negligible, in observable quantities. We also use the standard relation

$$a^{x} = 1 + x \ln a + \frac{(x \ln a)^{2}}{2!} + \frac{(x \ln a)^{3}}{3!} + \dots$$
 (15-76) Expansion of a^{x}

with $a = 1/m^2$ and $x = \eta/2$ to obtain

$$\left(\frac{1}{-m^2}\right)^{2-\frac{D}{2}} = \left(-1\right)^{\frac{\eta}{2}} \left(\frac{1}{m^2}\right)^{\frac{\eta}{2}} \xrightarrow[D \to 4]{} = 1 + \frac{\eta}{2} \ln \frac{1}{m^2} + \mathcal{O}\left(\eta^2\right) = 1 - \frac{\eta}{2} \ln m^2 + \mathcal{O}\left(\eta^2\right). \quad (15-77) \quad \text{Using limiting values as } D \to 4$$

(15-74), with $\Gamma(2) = 1$, is then

$$\frac{1}{(2\pi)^{D}} \int \frac{1}{\left(p^{2}-m^{2}\right)^{2}} d^{D}p \xrightarrow[D \to 4]{i} \frac{i}{(4\pi)^{2}} \left(\frac{2}{\eta} - \gamma + \mathcal{O}(\eta)\right) \left(1 - \frac{\eta}{2} \ln m^{2}\right) = \frac{i2}{\left(4\pi\right)^{2}} \left(\frac{1}{\eta} - \frac{\gamma}{2} - \ln m\right). (15-78)$$

Of course, in the full limit $\eta \to 0$ and $D \to 4$, (15-74) then becomes

$$\frac{1}{(2\pi)^4} \int \frac{1}{(p^2 - m^2)^2} d^4 p \xrightarrow[D \to 4]{\eta \to 0} \frac{i2}{(4\pi)^2} \frac{1}{\eta}, \qquad (15-79) \quad \text{We get integral} \\ \text{for } D = 4$$

found via dimensional regularization.

15.4.4 Important Conclusion

We can compare our dimensional regularization result (15-78)-(15-79) to that for the same integral found via Pauli-Villars regularization (15-59)-(15-60), and if we assume they must give us the same result, we can conclude that,

for finite
$$\Lambda$$
 and η small, $\ln \Lambda = \frac{1}{\eta} - \frac{\gamma}{2}$. For $\Lambda \to \infty$ and $\eta \to 0$, $\ln \Lambda = \frac{1}{\eta}$. (15-80)

Comparing result with Pauli-Villars to relate Λ to η

For this integral at least, $(1/\eta - \gamma/2)$ plays the role of $\ln \Lambda$. Both go to infinity in the limiting condition, where the Euler-Mascheroni constant γ becomes negligible. This conclusion is true in general for regularization of any integral, though we won't prove that here. Hopefully, this one example will provide some justification for adopting (15-80) as an identity in what follows.