Chap10_rev_10-37

Replace the section on pg. 357 from (10-36) to (10-38) with the following.

$$
\tilde{\mathcal{M}}=\left[\begin{array}{cc}
m_{v} & 0 \tag{10-36}\\
0 & M
\end{array}\right] .
$$

As noted earlier, all neutrinos then must be Majorana, and since for them, as can be seen from Wholeness Chart $10-1$, pg. 353, if particles are the same as antiparticles,

$$
\begin{equation*}
v_{L}^{c}=v_{R} \quad \bar{v}_{L}^{c}=\bar{v}_{R} \quad v_{R}^{c}=v_{L} \quad \bar{v}_{R}^{c}=\bar{v}_{L} . \tag{10-36}
\end{equation*}
$$

Then, (10-33) becomes (with wavy underlines to distinguish the more massive neutrino from the less massive one and a notation change in the second line to that commonly found elsewhere)

$$
\begin{align*}
\mathcal{L}_{\text {mass }}^{\text {terms }} & =-\frac{m_{v}}{2}\left(\bar{v}_{L} v_{L}^{c}+\bar{v}_{L}^{c} v_{L}\right)-\frac{M}{2}\left(\bar{v}_{\sim} V_{\sim}^{v}\right. \\
& =-\frac{m_{v}}{2} \bar{v} v-\frac{M}{2} \overline{v_{R}^{c}}{\underset{\sim}{v}}^{c} v=-\frac{m_{v}}{2} \bar{v} v-\frac{M}{2} \bar{N} N=-\frac{1}{2}(\bar{v} \bar{N}) \tilde{\mathcal{M}}\binom{v}{N} . \tag{10-37}
\end{align*}
$$

χ^{w} and N are the fields directly coupled to the Higgs. The eigenstates are then

$$
\begin{equation*}
\tilde{V}_{1}=\binom{\boldsymbol{v}}{0} \quad \tilde{V}_{2}=\binom{0}{N} . \tag{10-38}
\end{equation*}
$$

Consider a diagonal

 neutrino mass matrixyields Lagrangian mass terms expressed via two new kinds of neutrinos, v and N

Eigenvectors of this diagonal mass matrix

