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coefficient commutation relations. Even if we chose to use these terms directly, without employing 
the commutation relations, the a(k)a†(k) term is not coupled to the b(k)b†(k)term so both terms 
together would not represent a vertex in a Feynman diagram. In that interpretation, one might think 
of the a(k)a†(k) as representing creation of a particle and destruction of the same particle at the 
same event, i.e., nothing would happen as time evolves. No evanescence. No pair popping. 

In summary, for free fields 
• Terms in the free Hamiltonian density containing two creation operators that might create a 
particle/antiparticle pair at an event drop out of the full (not density) Hamiltonian. 

• The only terms surviving in the full Hamiltonian have creation and destruction operators 
paired. These would create and destroy the same particle at the same event, i.e., nothing would 
effectively happen. 

We conclude that the free field components of the Hamiltonian do not lead to 
particle/antiparticle pairs popping in and out of the vacuum. 

10.12 Appendix E: Considerations for Finite Volume Interactions 
All of the foregoing material in this chapter related to “standard” QFT, in which fields/particles 

are considered to extend over infinite volume V and infinite time T. That assumption, as we will see 
in Part 4 of this book, leads to accurate real world predictions for real world fields/particles of finite 
extensions in V and T.  

In developing our theory, this assumption gave rise to delta functions (see (8-30), pg.$222) 
because we integrated over unbounded space and time. These delta functions, arising in each 
transition amplitude, led to strict conservation of 4-momentum at every vertex. Had V and T been 
finite instead of unbounded, integration would not have led to delta functions, and so one might 
question if, with finite V and T, if the resulting relation would lead to uncertainty in outgoing 4-
momentum. Presumably, for large V and T, the relation would approximate a delta function 
implying approximate, but not exact, conservation of 4-momenta. And thus, smaller V and T would 
mean 4-momenta would be less constrained to be conserved. 

This would give rise to an uncertainty in outgoing 4-momentum at any vertex for which the 
fields did not have infinite extension in V and T. Smaller V and T means greater uncertainty, and this 
correlates with the familiar uncertainty principle. 

To examine this more closely, consider the delta function shown in (8-30), pg.$222, where k = Pf 
is the 4-momentum leaving the vertex and Pi = p1 + p2 is the incoming 4-momentum, 
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Now consider the RHS of (10-32) integrated over finite, instead of infinite, V and T, where, to 
keep things simple, we use the 1D correlate of the 4D integral, and represent that with the symbol I, 
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The integral is easy to evaluate, and I is found to be 
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In the development of NRQM, RQM, and QFT (see (3-24)$to (3-25), pg 46 and Sect.$3.4.1, pgs. 
53-54), we typically assume 
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because (10-35) results in orthogonal functions of eiPx and zero values for quantities like probability 
density in NRQM for particles at L/2 and – L/2, as well as certain terms in the probability of RQM 
and in the Hamiltonian of QFT that must be zero. (See above references.) 

ni and nf as integers 
For (10-35) in (10-34), we find 
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Due to the numerator, this is zero except for nf  = ni. Then 
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So, I is zero, except when nf  = ni, i.e., when Pf  = Pi. That behaves like a delta function for 
argument Pf  ≠ Pi. However when Pf  = Pi , I is not ∞, as a delta function is, as long as L is finite.  

Looking again at our transition amplitude calculation in (8-30), pg.$222, we see that the finite L 
(V there for 3D case; V and T, for 4D) will still leave us with zero value unless Pf  = Pi (k = p1 + p2 
there.) The value of the transition amplitude will change because we now have L (V for 3D, VT for 
4D) as finite when Pf  = Pi, but other values for Pf  are prohibited (have zero probability of 
occurring.)1 
 
Bottom line: For ni and nf as integers, and finite volume and time, we still must have strict 4-
momentum conservation at a vertex. That is, there is no uncertainty principle at play giving rise to 
evanescent energy and 3-momentum “popping in and out” of the vacuum. 
 
ni and nf as non-integers 

If, however, ni and nf could be non-integers, then I of (10-36) can have non zero values when nf  
≠ ni (and thus when Pf  ≠ Pi). Analogous results hold for 4D, so for finite V and T, we could have 
non-zero probability (due to a non-zero value in (10-32)) for Pf  ≠ Pi and not have strict conservation 
of 4-momentum2. 
 
Bottom line: For ni and nf as non-integers, and finite volume and time, we do not have strict 4-
momentum conservation at a vertex. That is, there is an uncertainty principle of sorts at play, which 
could give rise to evanescent energy and 3-momentum “popping in and out” of the vacuum. For 
infinite volume and time, strict conservation exists. 
 
Impact of ni and nf as non-integers on various kinds of “vacuum fluctuations” 
 

If non-integer values for ni and nf manifest in nature, then the following may be surmised for 
each type of “vacuum fluctuation” in QFT. 
 
“Pair Popping” 

The functional form of the transition amplitude and thus questions involving the delta function 
found therein are not relevant to the pair popping story, as there are no transition amplitudes having 
vertices with only two (not three, as for vacuum bubbles) particles. (See “Virtual Bubbles” section 
below.) 
 
Zero Point Energy 

The non-integer ni and nf condition would not modify anything we have said herein about the 
ZPE ½ quanta, as they represent free fields, with no vertices, i.e., no interactions. However, it does 
relate to virtual vacuum bubbles and radiative corrections, which are manifestations of interacting 
fields. (See Wholeness Chart 10-1, pg. 278.) 
 

                                                 

1 In the limit where L → ∞, (10-37) becomes 2π δ (Pf = Pi.). When V → ∞, we get the the 3D delta 
function, and for T, V → ∞, the 4D relation. 
2 Additional analysis, which we mention but not do here, leads to the conclusion that for ni and nf as non-
integers, we do get a delta function in (10-33) (and (10-32) as L → ∞ (V,T → ∞). 
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Virtual Bubbles 

A 3-particle virtual bubble has zero initial 4-momentum, but as noted above for finite V and T, it 
could then, after the first vertex, have a non-zero total 4-momentum (solely for non-integer ni and 
nf). And this then starts to look like the pair popping scenario (even though there are three, not two 
particles.)  

However, we have seen that negative energy virtual particles are as likely as positive energy 
ones. So, the sum total energy of the bubble could be positive or negative. The sum over large 
numbers of such bubbles would be effectively zero energy. In other words, even for small values of 
V and T, there would be no net global contribution to the energy of the vacuum from virtual 
bubbles. It is conceivable, however, that tiny black holes could exist for positive energy bubbles, 
and possibly “white holes”, we could call them, for the negative ones. We could have quantum 
foam, but zero total vacuum energy. 
 
Radiative Corrections 

As noted, radiative corrections do not arise alone in the vacuum and make no direct contribution 
to vacuum energy. This is true for finite, or infinite, V and T. Additionally, variations in energy from 
uncertainty at each vertex would go in both directions (positive and negative) and cancel globally, 
over many interactions. 
 
BUT remember 

Integer values for ni and nf in (10-35) seem to be required by nature. If this were not true, we 
would not have orthogonal functions as our solutions to the RQM/QFT wave equations and certain 
of our derivations, such as that for the number operator form of the Hamiltonian, would no longer 
be valid. 
 
Bottom line: 

Thus, vacuum energy, carried by particles popping in and out of the vacuum (for virtual 3 
particle bubbles), appears inconsistent with the rest of our theory. To my knowledge, this issue 
(regarding non-integer ni and nf in transition amplitudes) has not been explored in great depth and 
might make a good research topic for someone. If any reader does pursue this, please apprise me of 
the results (via the website for this book, the address of which is found on pg.$xvi, opposite pg. 1.) 
 

10.13 Problem 

1. Show that for the single particle state
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, the norm 

implies integration of the bra times the ket over x, and ( ) ( ) ( ) ( )3 33 2ie d x π δ′′ ′− ′′ ′= −∫
k k x k ki . 


