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coefficient commutation relations. Even if we chose to use teese directly, without employing
the commutation relations, trak)a'(k) term is not coupled to thie(k)b'(k)term so both terms
together would not represent a vertex in a Feynman diagraimatlimterpretation, one might think
of the a(k)a'(k) as representing creation of a particle and destruction of the particle at the
same event, i.e., nothing would happen as time evolves. Nesoente. No pair popping.

In summary, for free fields

 Terms in the free Hamiltonian density containing two creaijmerators that might create a
particle/antiparticle pair at an event drop out of the fult (femsity) Hamiltonian.

* The only terms surviving in the full Hamiltonian have createmd destruction operators
paired. These would create and destroy the same particle at thesamhd.e., nothing would
effectively happen.

We conclude that the free field components of the Hamiltonian ndo lead to
particle/antiparticle pairs popping in and out of the vacuum.

10.12 Appendix E: Considerationsfor Finite Volume I nteractions

All of the foregoing material in this chapter related to “stadd@+T, in which fields/particles
are considered to extend over infinite voluvhand infinite timeT. That assumption, as we will see
in Part 4 of this book, leads to accurate real world preditior real world fields/particles of finite
extensions iV andT.

In developing our theory, this assumption gave rise tadelctions (see (8-30), 1:822)
because we integrated over unbounded space and time. These deltndurarising in each
transition amplitude, led to strict conservation of 4-motmenat every vertex. Had and T been
finite instead of unbounded, integration would not havettedelta functions, and so one might
guestion if, with finiteV andT, if the resulting relation would lead to uncertainty ingmithg 4-
momentum. Presumably, for larg¢é and T, the relation would approximate a delta function
implying approximate, but not exact, conservation of 4-mdaeind thus, smallev and T would
mean 4-momenta would be less constrained to be conserved.

This would give rise to an uncertainty in outgoing 4-motmenat any vertex for which the
fields did not have infinite extensionVhandT. SmallerV andT means greater uncertainty, and this
correlates with the familiar uncertainty principle.

To examine this more closely, consider the delta function shio\{B-30), pg.222, wherek = P;

is the 4-momentum leaving the vertex @he p; + p; is the incoming 4-momentum,
o I[P -R)X
(2 69 (P, -R) =" e g, (10-32)

Now consider the RHS of (10-32) integrated over finitetdad of infiniteV andT, where, to
keep things simple, we use the 1D correlate of the 4D integrdlrepresent that with the symbol

o (P17 APege,, 1o j_LL’fzei(Pf P, =1 (p ) (10-33)
The integral is easy to evaluate, dnsl found to be
i(P -P L/2 _ o _ L/2 sin( P. -P L)
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In the development of NRQM, RQM, and QFT (see (R24(3-25), pg 46 and Se3.4.1, pgs.
53-54), we typically assume
2m 2mn; -
R:Zﬂ p="" pf_R:M
L L L
because (10-35) results in orthogonal functiond™fand zero values for quantities like probability
density in NRQM for particles at/2 and —L/2, as well as certain terms in the probabilityR§)M
and in the Hamiltonian of QFT that must be zeree(8bove references.)
n; andry as integers
For (10-35) in (10-34), we find

n .n; integers, (10-35)
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A7) ot
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Due to the numerator, this is zero exceptrfor n;. Then

an|{7{n; — min: —n

- = lim|2t [zl =) =2L (n-n)
=% n Sn er(nf —ni) er(nf —ni)

So, | is zero, except whenx =n;, i.e., whenP; = P;. That behaves like a delta function for
argumen®; # P,. However wherPs = P, | is noteo, as a delta function is, as longlas finite.

Looking again at our transition amplitude calcwatin (8-30), pg222, we see that the finite
(V there for 3D casey andT, for 4D) will still leave us with zero value unleBs= P; (k = p; + p»
there.) The value of the transition amplitude wilhoge because we now hdvéV for 3D, VT for
4D) as finite whenP; = P;, but other values foP; are prohibited (have zero probability of
occurring.§

(P -P) =L (10-37)

Bottom line: Forn; and ny as integers, and finite volume and time, we stillsmhave strict 4-
momentum conservation at a vertex. That is, theroiuncertainty principle at play giving rise to
evanescent energy and 3-momentum “popping in aticbbthe vacuum.

n;_andn; as non-integers

If, however,n; andn; could be non-integers, thérof (10-36) can have non zero values whgn
# n; (and thus whef®; # P;). Analogous results hold for 4D, so for finlkandT, we could have
non-zero probability (due to a non-zero value -8R)) forP; # P; and not have strict conservation
of 4-momenturf

Bottom line: Forn, andn; as non-integers, and finite volume and time, wendbhave strict 4-
momentum conservation at a vertex. That is, tresmiuncertainty principle of sorts at play, which
could give rise to evanescent energy and 3-momefipapping in and out” of the vacuum. For
infinite volume and time, strict conservation egist

Impact ofn; andn; as non-integers on various kinds of “vacuum flatittns”

If non-integer values fon; and n; manifest in nature, then the following may be ssedifor
each type of “vacuum fluctuation” in QFT.

“Pair Popping”

The functional form of the transition amplitude ahds questions involving the delta function
found therein are not relevant to the pair popgitagy, as there are no transition amplitudes having
vertices with only two (not three, as for vacuum Habpparticles. (See “Virtual Bubbles” section
below.)

Zero Point Energy

The non-integen; and n; condition would not modify anything we have saiddierabout the
ZPE Y. quanta, as they represent free fields, withantices, i.e., no interactions. However, it does
relate to virtual vacuum bubbles and radiative extions, which are manifestations of interacting
fields. (See Wholeness Chart 10-1, pg. 278.)

1 In the limit whereL — oo, (10-37) becomes2d (P; = P;). WhenV - o, we get the the 3D delta
function, and foiT, V - o, the 4D relation.

2 Additional analysis, which we mention but not derédy leads to the conclusion that fpandn; as non-
integers, we do get a delta function in (10-33d(é10-32) ad - o (V,T - o).
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Virtual Bubbles

A 3-particle virtual bubble has zero initial 4-momtem, but as noted above for finkkandT, it
could then, after the first vertex, have a non-zetal 4-momentum (solely for non-integgrand
ny). And this then starts to look like the pair poppiscenario (even though there are three, not two
particles.)

However, we have seen that negative energy virtudicfes are as likely as positive energy
ones. So, the sum total energy of the bubble cbalgositive or negative. The sum over large
numbers of such bubbles would be effectively zerrgn In other words, even for small values of
V and T, there would be no net global contribution to theergy of the vacuum from virtual
bubbles. It is conceivable, however, that tiny bladkes could exist for positive energy bubbles,
and possibly “white holes”, we could call them, foetnegative ones. We could have quantum
foam, but zero total vacuum energy.

Radiative Corrections

As noted, radiative corrections do not arise alontae vacuum and make no direct contribution
to vacuum energy. This is true for finite, or i@ vV andT. Additionally, variations in energy from
uncertainty at each vertex would go in both ditdi (positive and negative) and cancel globally,
over many interactions.

BUT remember

Integer values fon; andn; in (10-35) seem to be required by nature. If thise not true, we
would not have orthogonal functions as our solutimnthe RQM/QFT wave equations and certain
of our derivations, such as that for the numberatoe form of the Hamiltonian, would no longer
be valid.

Bottom line:

Thus, vacuum energy, carried by particles poppmand out of the vacuum (for virtual 3
particle bubbles), appears inconsistent with thé eéur theory. To my knowledge, this issue
(regarding non-integam andny in transition amplitudes) has not been exploredramt depth and
might make a good research topic for someone.\lfraader does pursue this, please apprise me of
the results (via the website for this book, the edslof which is found on ggvi, opposite pg. 1.)

10.13 Problem
. . A(K)e™ o _
1. Show that for the single particle stzfagﬂ)z J'—S d’k'} having unit norm, i.e.
(27)
T\ ok
(go) =1, thenj|A(k')|2d3k'=l. Hint: The bra is (¢= J'A (k )e'3 dk"|, the norm
(27)

implies integration of the bra times the ket oxl,eandj' g K)x g3y = (277)3 3 (k"=k').



