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. Result: Wick's
T{AB} =N AB}+ Iﬂ I82 for any time orde. (7-97) theorem proven

for two fields
7.8.3More Than Two Fields
Three fields

Hopefully, we have gained some comfort with Wick's theoremwayking through the treated, and
examples with only two fields. And perhaps, we can simply adbeptthe mathematicians have oy tanded by
proven Wick's theorem formally, for us. Much like integrables, which we employ regularly ;4. ction to more
without proving each relation we use, we can simply accept Wisksrem, apply it to our work at fields. in
hand, and move on. Appendix A

Those wishing to dig deeper and understand a bit better car\ppgaadix A where we extend
the above type of analysis to three fields. In that appemdixhen use induction to justify Wick'’s
theorem for any number of fields.

For those who feel the need for a formal proof, see the aligiticle “The Evaluation of the
Collision Matrix” by G. C. Wicks (Phys. Re®0, 268, 1950), or any of “Notes on Wick’'s Theorem
in Many-Body Theory” by Luca Guido Molinari (wwwteor.mifmit/~molinari/NOTES/Wick.pdf),
Quantum Field Theory for Mathematiciabg R.Ticciati (Cambridge University Press 1999, pg. 85-
87), andField Quantizatiorby W. Greiner and J. Reinhardt (Springer, 1966, p-233).

7.8.4The Issue of Equal Time Operators

Turning Our Different Times Relation into One with Somei&@dlimes

Readers may have noticed that (7-82) seemed to be stated feAfBYC3D4... where times1  Operators at same
of field Ay, t2 of field By, t3 of Cg, etc. are all different (none are the same time.) In contrast, time seemingly not
statement of Wick’s theorem (7-78) was more general in the seaisé# has several fields at the treated in above
same time, such a#;B;CiD;... = (ABCD...)y1 all at the same time, andyB,CyD»... =
(ABCD...)x all at the same, but different fram time.

We can generalize (7-82) by taking, for example; ty, so thatA;B, — A1B;. That is, wherever
we have different fields in (7-82), we can just assume some égwal times. We should thus b

But can generalize
by taking % = t1,

able to derive Wick's theorem (7-78) entailing more than oelel fat the same time from our fOr €xample
relation (7-82). We would find (7-82) then looks like
T{ABG.RG}= N ABG .5 G+ p ABG.FQ+ [N ABC f%}

{lAllchl Fsz ]+ N{ @Iﬁ(ﬁ F |Cé}+ (7-98)

- - .

+ (all normal ordered terms with three contracsijoh etc..
which with slightly different notation looks a llike Wicks’ theorem (7-78). But then we get
The Fly in the Ointment equal times

The one difference between (7-98) and Wicks’ theo(@-78) is that the latter (7-78) has nc contractions,

equal times contractions, whereas the former (7d4885. How do we resolve this? which are not in

. . . Wick's theorem
Resolving the Fly in the Ointment

i) The Traditional Resolution: Normal Ordering imeéraction Hamiltonian

In traditional QFT, we apply Wick’s theorem usi’ﬁg', which for QED takes the form (7-79),
which we repeat below.

Many treatments
resolve this by

(AB.)y =74 (% :—e(z/*/y"‘z,l/ Q,) (AB, =74 ( X)=- (et/‘/y"‘c// A)X etc. (7-99) assuming? ' is

already normal
In that approach it is common to assume the figidsach ofH,'(x1), ' (x2), etc are already orderec

normal ordered. That is,
74 (%)= -eN{ @ y“y a,} 74 (3 F-eNoyy @} etc. (7-100)

If that is so, then all equal time contractlonstlw RHS of (7-98) are zero, since each is arrived
at by re-ordering the fieldg/ ¢/, A, for each’H) (x.) so they are normal ordered. But if they are
already normal ordered, no such re-ordering isireduand we have no equal times contractions.
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But, as I've said before, normal ordering assunlesiedds commute (or for fermions, anti-
commute), and since QFT is grounded in, and onigt&Xecause of, non-commutation (non-ant
commutation) relations, there seems to be an instemey. So, | prefer the following resolution.

i) Another Resolution without Invoking Normal Onileg in H|':

Consider three fields (likey ., A,) operating at the same time that we will lahgB1,C1, each
composed of a construction plus a destruction aper&uperscriptg,d imply construction and
destruction, respectively. With ol andT reordering, one such component®gB1C; yields

N{Aeic = Aeicl= N A8 c) = F 48d=- Ae¢ {TAEY

T{ A Bf Cf'} = N{ A Q‘ Cf} - no equal time commutator (contraction)Wick theoremr

But this may
contradict basic
postulates of QFT

Other resolution

for equal times

(7-101)  contractions =0
Another component, where we note that if all opgsabperate at the same time, we can time re-

order them any way we like (as long as we inclinbepgroper commutation relation), yields

nfaec)= g « [ A q=f dage 44 ¢ |
nea] - £80 [Ha o= { EAGNES o

can time order as long as we d nc~d
any way we like include commutator =T{ A B Cl}

For simplifying
choice for order of
equal time factors,

T{ Ald chf} = N{ A}d B Cf} - no equal time commutator (contraction)Wick theorem.

Repeating for each componentaaB1C4, we can always choose the time ortieve want, since :
all operators operate at the same time. With thiet Ghoice, we get a commutation relation on or €qual times

side of the equation that cancels with one on ttero Parallel logic holds for fermions/anti- contractions
commutators. cancel out, and we

This choice of time ordering results in the simpliegsm for our theory (always the preferrec c?\n/\llpiyet:]hem out
starting point in any theory development) and ashadl see, correctly predicts experiment. orWick's theorem

Thus,N{ABC}=T{ ABG - noequal time commutator (contiaa} in Wick theoren (7-103)

To those who might contend that the above is sirsfdight-of-hand use of normal ordering, ' )
reply that equal-time commutators, if included aaywlead to non-physical situations. Fo If we included them
example, conservation of 4-momentum in certain ciaged interactions would only be possible fo @nyway, they would
particles having zero energy, i.e., for particlest o not exist, and thus can be ignored. Wessil Igad to non-physical
this in the appendix of Chap. 8, which has beereddd the revision of the second edition an Situations
posted on the corrections page at the book web(Sig® URL on pg. xvi, opposite pg. 1.)

The bottom lineEqual-time contractions don't play a role in Wiskheorem (7-78) for QFT.

7.8.5Summary of Wick’'s Theorem

To get Wick’s theorem, we start with a series ofrapor fields, operating in arbitrary order and
set it equal to itself, i..é41B2C3D4...= A1BoC3Dy...

On the LHS, we then re-arrange operator fieldsgismmmutation/anti-commutation relations
such that earlier times are to the right of lalees. We herein use the symiolto represent this Summary of how
re-ordering procedure. The final result of the Léetfials the original LHS expression, since at ea Wick theorem
step, we simply substituted equivalent relationdtie original pair of adjacent operators. arises from

On the RHS, we re-arrange operator fields usingneotation/anti-commutation relations suct commutator/anti-
that destruction operators are all to the rightrefation operators. We herein use the symaio commutator
represent this re-ordering procedure. The finalltesf the RHS equals the original RHS relations
expression. Thus, the final RHS equals the finaBLH

The final result of these operations is the samengsoying Wick’s theorem (7-78).

In Wick’s theorem, the time ordering operatidrre-orders operators with earlier times to the
right of later times, but assumes we can switclerdf adjacent operators as if they commuted (or
for two fermions, anti-commuted). Similarly, the rm@l orderingN operator re-orders with
destruction operators all on the right, but assumesan switch orders of adjacent operators as if
they commuted (or for two fermions, anti-commuted).

Using theT. andN. procedures, we find contractions arising in tmalffiresult. Using th& and
N operations, we insert those same contractiondesignated in Wick’s theorem.



