Original Prob 14 of $1^{\text {st }}$ edition below.

Problem 14. Use Noether's theorem for scalars and the transformation $x^{i} \rightarrow x^{i}+\alpha^{j}$ to show that three-momentum k_{i} is conserved. Then, show the same result via commutation of the three-momentum operator of Chap. 3 (which can be found in Wholeness Chart 5-4 at the end of Chap. 5) with the Hamiltonian.

Prob 14, Correction version of $2^{\text {nd }}$ edition.

Problem 14. Show that the total (not density) 3-momentum k^{i} for free scalars is conserved. Use our knowledge that the conjugate momentum for x^{i} is k_{i}, the total (not density) 3-momentum (expressed in covariant components), and it is conserved if L is symmetric (invariant) under the coordinate translation transformation $x^{i} \rightarrow x^{\prime i}=x^{i}+\alpha^{i}$, where α^{i} is a constant 3D vector. Then, show the same result via commutation of the three-momentum operator of Chap. 3 (see Wholeness Chart 5-4, pg. 158) with the Hamiltonian. (Solution is posted on book website. See pg.xvi, opposite pg. 1.)

Ans. (first part).
The Lagrangian density is $\mathcal{L}_{0}^{0}=\phi^{\dagger}{ }_{, \mu} \phi^{, \mu}-\mu^{2} \phi^{\dagger} \phi$. We must integrate this over all volume to get the total Lagrangian L. $L=\int \mathcal{L}_{0}^{0} d V$. If k_{i} is conserved, then of course, so is k^{i}. So, we need to show L is invariant under $x^{i} \rightarrow x^{\prime i}=x^{i}+\alpha$.
The 1st term in $\mathcal{L}_{0}^{0}, \phi^{\dagger}{ }_{, \mu} \phi^{, \mu}$

$$
\begin{aligned}
& \phi=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(a(\mathbf{k}) e^{-i k_{\mu} x^{\mu}}+b^{\dagger}(\mathbf{k}) e^{i k_{\mu} x^{\mu}}\right) \quad \phi^{\dagger}=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(b(\mathbf{k}) e^{-i k_{\mu} x^{\mu}}+a^{\dagger}(\mathbf{k}) e^{i k_{\mu} x^{\mu}}\right) \\
& \phi,{ }_{\mu}=\sum_{\mathbf{k}} \frac{i k_{\mu}}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(-a(\mathbf{k}) e^{-i k_{\mu} x^{\mu}}+b^{\dagger}(\mathbf{k}) e^{i k_{\mu} x^{\mu}}\right) \quad \phi^{, \mu}=\sum_{\mathbf{k}} \frac{i k^{\mu}}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(-a(\mathbf{k}) e^{-i k_{\mu} x^{\mu}}+b^{\dagger}(\mathbf{k}) e^{i k_{\mu} x^{\mu}}\right) \quad \phi_{\mu}^{\dagger}=\sum_{\mathbf{k}} \frac{i k_{\mu}}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(-b(\mathbf{k}) e^{-i k_{\mu} x^{\mu}}+a^{\dagger}(\mathbf{k}) e^{i k_{\mu} x^{\mu}}\right) \\
& \phi^{\dagger},{ }_{\mu} \phi^{, \mu}=\sum_{\mathbf{k}} \sum_{\mathbf{k}^{\prime \prime}} \frac{-1}{2 V} \frac{k_{\mu} k^{\prime \prime \mu}}{\sqrt{\omega_{\mathbf{k}} \omega_{\mathbf{k}^{\prime \prime}}}}\left(b(\mathbf{k}) a\left(\mathbf{k}^{\prime \prime}\right) e^{-i k_{\mu} x^{\mu}} e^{-i k_{\mu}^{\prime \prime} x^{\mu}}-b(\mathbf{k}) b^{\dagger}\left(\mathbf{k}^{\prime \prime}\right) e^{-i k_{\mu} x^{\mu}} e^{i k_{\mu}^{\prime \prime} x^{\mu}}\right. \\
& \left.-a^{\dagger}(\mathbf{k}) a\left(\mathbf{k}^{\prime \prime}\right) e^{i k_{\mu} x^{\mu}} e^{-i k_{\mu}^{\prime \prime} x^{\mu}}+a^{\dagger}(\mathbf{k}) b^{\dagger}\left(\mathbf{k}^{\prime \prime}\right) e^{i k_{\mu} x^{\mu}} e^{i k_{\mu}^{\prime \prime} x^{\mu}}\right)
\end{aligned}
$$

We have to integrate each term in \mathcal{L} over all volume to find L. When we do this to the first term $\phi^{\dagger},{ }_{\mu} \phi^{, \mu}$ above, the first sub-term on the RHS inside the parentheses immediately above will only survive if $k_{i}=-k^{\prime \prime}{ }_{i}$. The same is true of the last sub-term. The $2^{\text {nd }}$ and $3^{\text {rd }}$ sub-terms will only survive if $k_{i}=k^{\prime \prime}$. So, therefore (where we note that for $k_{i}=-k^{\prime \prime}{ }_{i}$,

$$
\begin{align*}
k_{\mu} k^{\prime \prime \mu}= & \left.\omega_{\mathbf{k}}^{2}+k_{i} k^{\prime \prime i}=\omega_{\mathbf{k}}^{2}+k_{i}\left(-k^{i}\right)=\omega_{\mathbf{k}}^{2}+k_{i} k_{i}=k_{\mu} k_{\mu}\right), \\
& \underbrace{\int \phi^{\dagger},{ }_{\mu} \phi^{\prime}, \mu V}_{\text {original term in } L}=\sum_{\mathbf{k}} \frac{-1}{2 \omega_{\mathbf{k}}}\binom{k_{\mu} k_{\mu} e^{-i 2 \omega_{\mathbf{k}} t} b(\mathbf{k}) a(-\mathbf{k})-k_{\mu} k^{\mu} b(\mathbf{k}) b^{\dagger}(\mathbf{k})}{-k_{\mu} k^{\mu} a^{\dagger}(\mathbf{k}) a(\mathbf{k})+k_{\mu} k_{\mu} e^{i 2 \omega_{\mathbf{k}} t} a^{\dagger}(\mathbf{k}) b^{\dagger}(-\mathbf{k})} \tag{A}
\end{align*}
$$

The time dependent terms may seem strange until we remember that L here is an operator and its expectation value is what we would be related to our real-world measurement. For any state $\left|\phi_{1} \phi_{2} ..\right\rangle$, the contribution to the expectation value from the first and last terms in (A) is zero since, for example, $\left\langle\phi_{1} \ldots\right| a^{\dagger}(\mathbf{k}) b^{\dagger}(\mathbf{k})\left|\phi_{1} \ldots\right\rangle=\left\langle\phi_{1} \ldots\right|\left|\phi_{\mathbf{k}} \bar{\phi}_{\mathbf{k}} \phi_{1} \ldots\right\rangle=0$.

Now, let's see what we get when we transform the spatial coordinates via $x^{i} \rightarrow x^{\prime i}=x^{i}+\alpha$.

$$
\begin{array}{r}
\phi^{\dagger},{ }_{\mu} \phi^{, \mu} \xrightarrow{x^{i} \rightarrow x^{i}=x^{\prime i}-\alpha^{i}}=\phi^{\prime \dagger},{ }_{\mu} \phi^{\prime, \mu}=\sum_{\mathbf{k}} \sum_{\mathbf{k}^{\prime \prime}} \frac{-1}{2 V} \frac{k_{\mu} k^{\prime \prime \mu}}{\sqrt{\omega_{\mathbf{k}} \omega_{\mathbf{k}}{ }^{\prime \prime}}}\left(b(\mathbf{k}) a\left(\mathbf{k}^{\prime \prime}\right) e^{-i k_{\mu} x^{\prime \mu}} e^{i k_{i} \alpha^{i}} e^{-i k_{\mu}^{\prime \prime} x^{\prime \mu}} e^{i k_{i}^{\prime \prime} \alpha^{i}}\right. \\
-b(\mathbf{k}) b^{\dagger}\left(\mathbf{k}^{\prime \prime}\right) e^{-i k_{\mu} x^{\prime \mu}} e^{i k_{i} \alpha^{i}} e^{i k_{\mu}^{\prime \prime} x^{\prime \mu}} e^{-i k_{i}^{\prime \prime} \alpha^{i}}-a^{\dagger}(\mathbf{k}) a\left(\mathbf{k}^{\prime \prime}\right) e^{i k_{\mu} x^{\prime \mu}} e^{-i k_{i} \alpha^{i}} e^{-i k_{\mu}^{\prime \prime} x^{\prime \mu}} e^{i k_{i}^{\prime \prime} \alpha^{i}} \\
\left.+a^{\dagger}(\mathbf{k}) b^{\dagger}\left(\mathbf{k}^{\prime \prime}\right) e^{i k_{\mu} x^{\prime \mu}} e^{-i k_{i} \alpha^{i}} e^{i k_{\mu}^{\prime \prime} x^{\prime \mu}} e^{-i k_{i} \alpha^{i}}\right)
\end{array}
$$

Student Friendly Quantum Field Theory

Once again, the first and last sub-terms above, when integrated over all space, can only be non-zero if $k_{i}=-k$ '", and in those cases $e^{i k_{i} \alpha^{i}} e^{i k_{i}^{\prime \prime} \alpha^{i}}=1$. The $2^{\text {nd }}$ and $3^{\text {rd }}$ sub-terms will only survive if $k_{i}=k^{\prime \prime}{ }_{i}$. In that case, $e^{i k_{i} \alpha^{i}} e^{-i k_{i}^{\prime \prime} \alpha^{i}}=1$. When we do this, we get

$$
\begin{equation*}
\underbrace{\int \phi^{\prime \dagger},{ }_{\mu} \phi^{\prime}, \mu}_{\text {ransformed term in } L} d V \quad=\sum_{\mathbf{k}} \frac{-1}{2 \omega_{\mathbf{k}}}\binom{k_{\mu} k_{\mu} e^{-i 2 \omega_{\mathbf{k}} t} b(\mathbf{k}) a(-\mathbf{k})-k_{\mu} k^{\mu} b(\mathbf{k}) b^{\dagger}(\mathbf{k})}{-k_{\mu} k^{\mu} a^{\dagger}(\mathbf{k}) a(\mathbf{k})+k_{\mu} k_{\mu} e^{i 2 \omega_{\mathbf{k}} t} a^{\dagger}(\mathbf{k}) b^{\dagger}(-\mathbf{k})} . \tag{B}
\end{equation*}
$$

Since (A) and (B) are the same, the first term in L is symmetric under the transformation.
The $2^{\text {nd }}$ term in $\mathcal{L}_{0}^{0},-\mu^{2} \phi^{\dagger} \phi$
The second term in L follows in almost identical fashion (and is simpler, since no derivatives exist in it) to the first.

$$
\begin{align*}
& -\mu^{2} \phi^{\dagger} \phi=-\sum_{\mathbf{k}} \sum_{\mathbf{k}^{\prime \prime}} \frac{\mu^{2}}{2 V \sqrt{\omega_{\mathbf{k}} \omega_{\mathbf{k}^{\prime \prime}}}}\left(b(\mathbf{k}) a\left(\mathbf{k}^{\prime \prime}\right) e^{-i k_{\mu} x^{\mu}} e^{-i k_{\mu}^{\prime \prime} x^{\mu}}+b(\mathbf{k}) b^{\dagger}\left(\mathbf{k}^{\prime \prime}\right) e^{-i k_{\mu} x^{\mu}} e^{i k_{\mu}^{\prime \prime} x^{\mu}}\right. \\
& \left.+a^{\dagger}(\mathbf{k}) a\left(\mathbf{k}^{\prime \prime}\right) e^{i k_{\mu} x^{\mu}} e^{-i k_{\mu}^{\prime \prime} x^{\mu}}+a^{\dagger}(\mathbf{k}) b^{\dagger}\left(\mathbf{k}^{\prime \prime}\right) e^{i k_{\mu} x^{\mu}} e^{i k_{\mu}^{\prime \prime} x^{\mu}}\right) \\
& \underbrace{-\int \mu^{2} \phi^{\dagger} \phi d V}_{\text {original term }}=-\sum_{\mathbf{k}} \frac{\mu^{2}}{2 \omega_{\mathbf{k}}}\left(e^{-i 2 \omega_{\mathbf{k}} t} b(\mathbf{k}) a(-\mathbf{k})+b(\mathbf{k}) b^{\dagger}(\mathbf{k})+a^{\dagger}(\mathbf{k}) a(\mathbf{k})+e^{i 2 \omega_{\mathbf{k}} t} a^{\dagger}(\mathbf{k}) b^{\dagger}(-\mathbf{k})\right) \tag{C}
\end{align*}
$$

When we transform the spatial coordinates via $x^{i} \rightarrow x^{\prime i}=x^{i}+\alpha$, we get

$$
\begin{array}{r}
-\mu^{2} \phi^{\dagger} \phi \xrightarrow{x^{i} \rightarrow x^{i}=x^{\prime i}-\alpha^{i}}=-\mu^{2} \phi^{\prime \dagger} \phi^{\prime}=-\sum_{\mathbf{k}} \sum_{\mathbf{k}^{\prime \prime}} \frac{\mu^{2}}{2 V \sqrt{\omega_{\mathbf{k}} \omega_{\mathbf{k}}{ }^{\prime \prime}}}\left(b(\mathbf{k}) a\left(\mathbf{k}^{\prime \prime}\right) e^{-i k_{\mu} x^{\prime \mu}} e^{i k_{i} \alpha^{i}} e^{-i k_{\mu}^{\prime \prime \prime} x^{\prime \mu}} e^{i k_{i}^{\prime \prime} \alpha^{i}}\right. \\
+b(\mathbf{k}) b^{\dagger}\left(\mathbf{k}^{\prime \prime}\right) e^{-i k_{\mu} x^{\prime \mu}} e^{i k_{i} \alpha^{i}} e^{i k_{\mu}^{\prime \prime} x^{\prime \mu}} e^{-i k_{i}^{\prime \prime} \alpha^{i}}+a^{\dagger}(\mathbf{k}) a\left(\mathbf{k}^{\prime \prime}\right) e^{i k_{\mu} x^{\prime \mu}} e^{-i k_{i} \alpha^{i}} e^{-i k_{\mu}^{\prime \prime} x^{\prime \mu}} e^{i k_{i}^{\prime \prime} \alpha^{i}} \\
\left.+a^{\dagger}(\mathbf{k}) b^{\dagger}\left(\mathbf{k}^{\prime \prime}\right) e^{i k_{\mu} x^{\prime \mu}} e^{-i k_{i} \alpha^{i}} e^{i k_{\mu}^{\prime \prime} x^{\prime \mu}} e^{-i k_{i} \alpha^{i}}\right) .
\end{array}
$$

When we integrate the above over space, the same sub-terms will drop out in the same way as did to get (B). Thus, we end up with

$$
\begin{equation*}
\underbrace{-\int \mu^{2} \phi^{\dagger} \phi d V}_{\text {transformed term }}=-\sum_{\mathbf{k}} \frac{\mu^{2}}{2 \omega_{\mathbf{k}}}\left(e^{-i 2 \omega_{\mathbf{k}} t} b(\mathbf{k}) a(-\mathbf{k})+b(\mathbf{k}) b^{\dagger}(\mathbf{k})+a^{\dagger}(\mathbf{k}) a(\mathbf{k})+e^{i 2 \omega_{\mathbf{k}} t} a^{\dagger}(\mathbf{k}) b^{\dagger}(-\mathbf{k})\right) \tag{D}
\end{equation*}
$$

Since (C) and (D) are the same, the second term in L is also symmetric under the transformation, and thus L is symmetric under it.
From macro variational mechanics, we know that if L is symmetric in some coordinate, then the conjugate momentum of that coordinate is conserved. k_{i}, the particle(s) 3-momentum is the conjugate momentum of x^{i}. Thus, k_{i}, is conserved. Note one subtlety. To get to macro mechanics we integrated over all field coordinates x^{i}, so there was no x^{i} coordinate left in L. Macroscopically, we would then need to consider our x^{i} coordinate as that of the position of the center of mass of our solid body (particle). A transformation on the field coordinates x^{i} would then be the same transformation on the center of mass x^{i} coordinate used in macro, solid body, variational mechanics analysis.

Ans. (second part).

$$
H=\sum_{\mathbf{k}} \omega_{\mathbf{k}}\left(N_{a}(\mathbf{k})+N_{b}(\mathbf{k})\right) \quad \mathbf{P}=\sum_{\mathbf{k}} \mathbf{k}\left(N_{a}(\mathbf{k})+N_{b}(\mathbf{k})\right) \rightarrow[H, \mathbf{P}]=0 \quad\binom{\text { because all number }}{\text { operators commute }}
$$

Thus \mathbf{P} is conserved for the free Hamiltonian.

