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Scalars: Spin 0 Fields 
 

..if I look back at my life as a scientist and a teacher, I think the most important 
and beautiful moments were when I say, “ah-hah, now I see a little better” …  

this is the joy of insight which pays for all the trouble one has had in this career. 

      Victor F. Weisskopf 
Quarks, Quasars, and Quandaries 

 

3.0 Preliminaries 

This chapter presents the most fundamental concepts in the theory of quantum fields, and 
contains the very essence of the theory. Master this chapter, and you are well on your way to 
mastering that theory. 

3.0.1 Background 

Early efforts to incorporate special relativity into quantum mechanics started with the non-
relativistic Schrödinger equation, 
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and attempted to find a relativistic, rather than non-relativistic, form for the Hamiltonian H.1 One 
might guess that approach would lead to a valid relativistic Schrödinger equation. This is, in 
essence, true but there is one problem, as we will see below. 

In special relativity, the 4-momentum vector is Lorentz covariant, meaning its length in 4D 
space is invariant. For a free particle (i.e., V = 0), 

 

1 2
2 2 1 2 3 2 2 2

22

3

E / c

p E
p p m c g p p E / c p p p m c

cp

p

  
 

 
 

           
  

p . (3-2) 

Changing dynamical variables over to operators (as happens in quantization), i.e., 

 and i
iE H p i   ℏ  , (3-3) 

one finds, from the RHS of (3-2), 

                                                

1 Actually, Schrödinger first attempted to find a wave equation that was relativistic and came up with 
what later came to be known as the Klein-Gordon equation, which we will study in this chapter. He 
discarded it because of problems discussed later on herein, and because it gave wrong answers for the 
hydrogen atom. Shortly thereafter, he deduced the non-relativistic Schrödinger equation we are familiar 
with. Some time afterwards, other researchers then tried to “relativize” that equation, as discussed herein. 
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 2 2 2 4
i iH c m c    ℏ , (3-4) 

seemingly the only form a relativistic Hamiltonian could take. Unfortunately, taking the square root 
of terms containing a derivative is problematic, and difficult to correlate with the physical world. 

The solution to the problem of finding a relativistic Schrödinger equation has been found, 
however, and as we will see in the next three chapters, turns out to be different for different spin 
types. This was quite unexpected at first, but has since become a cornerstone of relativistic quantum 
theory. (See first row of Wholeness$Chart 1-2 in Chap. 1, pg. 7.) 

Particles with zero spin, such as -mesons (pions) and the famous Higgs boson, are known as 
scalars, and are governed by one particular relativistic Schrödinger equation, deduced by (after 
Schrödinger, actually), and named after, Oscar Klein and Walter Gordon. Particles with ½ spin, 
such as electrons, neutrinos, and quarks, and known as spinors, by a different relativistic 
Schrödinger equation, discovered by Paul Dirac. And particles with spin 1, such as photons and the 
W’s and Z’s that carry the weak charge, and known as vectors, by yet another relativistic 
Schrödinger equation, discovered by Alexandru Proça. The Proça equation reduces, in the massless 
(photon) case, to Maxwell’s equations.  

We will devote a separate chapter to each of these three spin types and the wave equation 
associated with each. We begin in this chapter with scalars. 

3.0.2 Chapter Overview 

RQM first, 

where we will look at  

 deducing the Klein-Gordon equation, the first relativistic Schrödinger equation, using the 
relativistic H 2, 

 solutions (which are states = wave functions) to the Klein-Gordon equation, 

 probability density and its connection to the funny normalization constant in the solutions, and 

 the problem with negative energies in the relativistic solutions. 

Then QFT, 

 using the classical relativistic L (Lagrangian density) for scalar fields, and the Legendre 
transformation to get H (Hamiltonian density), 

 from L and the Euler-Lagrange equation, finding the same Klein-Gordon equation, with the 
same mathematical form for the solutions, but this time the solutions are fields, not states, 

 from 2nd quantization, finding the commutation relations for QFT, 

 determining relevant operators in QFT: H = ∫ H d3x, number, creation/destruction, etc., 

 showing this approach avoids negative energy states, 

 seeing how the vacuum is filled with quanta of energy ½ℏ,  

 deriving other operators (probability density, 3-momentum, charge) and 

 picking up relevant loose ends (scalars = bosons, Fock (multiparticle) space). 

And then, 

 seeing quantum fields in a different light, as harmonic oscillators.  

With finally, and importantly, 

 finding the Feynman propagator, the mathematical expression for virtual particles. 

Free (no force) Fields 

In this chapter, as well as Chaps. 4 (spin ½) and 5 (spin 1), we will deal only with fields/particles 
that are not interacting, i.e., feel no force = “free”. Thus, we will take potential energy V = 0. In 
Chap.$7, which begins Part 2 of the book, we will begin to investigate interactions. 

3.1 Relativistic Quantum Mechanics: A History Lesson 

3.1.1 Two Possible Routes to RQM 

Recall from Chaps. 1 and 2, that 1st quantization, for both non-relativistic and relativistic particle 
theories, entails i) using the classical form of the Hamiltonian as the quantum form of the 
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Hamiltonian, and ii) changing Poisson brackets to commutators. We recall also from Prob. 6 of 
Chap. 1 that non-commutation of dynamical variables means those variables are operators (because 
ordinary numbers commute.) For example, 

 
equivalenti j j i

i ip ,x i p i         ℏ ℏ  (3-5) 

as the RHS above is the only form that satisfies the LHS, and it is an operator. 

One might expect that this is the route we would follow to obtain RQM, i.e., 1st quantization of 
relativistic classical particle theory. However, historically, it was done differently. That is, RQM 
was first extrapolated from NRQM, not from classical theory. As illustrated in Fig. 3-1, it can be 
done either way. 

In this book, to save space and time, we will only show one of these paths, the historical one 
represented by the lowest arrow in Fig. 3-1.  

 
Figure 3-1. Different Routes to Relativistic Quantum Mechanics 

 

3.1.2 Deducing the Klein-Gordon Equation 

As we saw in Sect. 3.0.1, when we try to use a relativistic Hamiltonian in the Schrödinger 
equation, we have the problem of the partial derivative operator (see (3-4)) being under a square 
root sign. So, rather than use H, Klein and Gordon, in 1927, did the next best thing. They used H 2 
instead. That is, they squared the operators (operate on each side twice rather than once) in the 
original Schrödinger equation (3-1) and thus from (3-2), obtained 

  2 2 2 2 4
operi i H c m c

t t
  

   
       

pℏ ℏ , (3-6) 

which becomes from the square of (3-4) 
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Re-arranging, we have the Klein-Gordon equation (expressed in two equivalent ways with slightly 
different notation) 
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. (3-8) 

As noted in Chap. 2, Prob.$4, the operation  
       is called the d’Alembertian operator, 

and is the 4D Minkowski coordinates analogue of the 3D Laplacian operator i i
i i      of 

Cartesian coordinates. 
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In 1934, Pauli and Weisskopf 1 showed that the Klein-Gordon equation specifically describes a 
spin-0 (scalar) particle. This should become evident to us as we study the Dirac and Proça 
equations, for spin ½ and spin 1, later on, and compare them to the Klein-Gordon equation. 

3.1.3 The Solutions to the Klein-Gordon Equation 

A solution set to (3-8), readily checked by substitution into (3-8) (which is good practice when 

using contravariant/covariant notation), is (where 2 2 2
n nE m p ) 
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, (3-9) 

where we will discuss the funny looking normalization factor in front, containing the volume V and 

the energy of the nth solution, later. The coefficients An and †
nB  are constants, and a complex 

conjugate form for the coefficient of the last term above, i.e., †
nB , is used because it will prove 

advantageous later. 

This is a discrete set of solutions, typical for cases with waves constrained inside a volume V, 
though V can be taken as large as one wishes. Each discrete wavelength in the summation of (3-9) 
fits an integer number of times inside the volume V. Continuous (integral rather than sum) solutions, 
for waves not constrained inside a specific volume V, exist for (3-8) as well, but we are not 
concerned with them at this point. 

This solution set is also specifically for plane waves. We will not consider alternative solution 
forms for other wave shapes that would exist in problems with cylindrical or spherical geometries.  

The solution (3-9), because we are working in RQM, is a state, i.e., (x) above = |(x)〉, for a 
single particle. Each individual term in the summation is an eigenstate. (x) is a general state 
superposition of eigenstates. 

Note that in NRQM, we only had terms in the counterpart to (3-9) that had the exponential form 
of –i(Ent – pn∙x)/ℏ, because that was the only form that satisfied the non-relativistic Schrödinger 
equation. Because we are using the square of the relativistic Hamiltonian in RQM, we get additional 
solutions of exponential form +i(Ent – pn∙x)/ℏ that also solve the relativistic Klein-Gordon equation. 
You should do Prob. 1, at the end of the chapter, to justify the statements in this paragraph to 
yourself. 

With an aim towards using natural units, we note the following relations, where wave number ki 

= 2/i and we use the deBroglie relation p.i = ℏk.i, 
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, (3-10) 

and recall the notation introduced in Chap. 2, 
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It is then common to re-write (3-9) in natural units with the above notation. In doing so, we also 
switch the dummy summation variable n, which represents each individual wave in the summation, 
to the 3D vector quantity k, representing the wave number and direction of each possible wave. For 
free fields, a given wave with wave number vector k has a particular energy (see (3-2) with p = k in 
natural units), and we can designate that energy via either Ek or k. It is common practice for 
scalars to use k (rather than p) and  (rather than Ep or Ek.) 

                                                

1 Pauli, W. and Weisskopf, V., Helv. Phys. Acta 7, 709 (1934). Translation in Miller, A. I., Early 

Quantum Electrodynamics: A Source Book, Cambridge U. Press, New York (1994) 
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The Klein-Gordon equation solutions (3-9) then become, in natural units 

    †1

2V

ikx ikxx A e B e

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k k

 . (3-12) 

Except for Box 3-1, which reviews NRQM, we will henceforth, in this chapter, use natural units. 

Definition of Eigensolutions 

As noted previously, in RQM, the solution  of (3-12) is that of a general (sum of eigenstates) 
single particle state. Each eigenstate has mathematical form (where we are going to omit the 2k 
part here, because of what is coming) 

 †or
ikx ikx

,A ,B

e e

V V
 


 k k

. (3-13) 

Each of these forms has what is called unit norm. That is, for k,A (and similarly, for †,B


k
), 
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V
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, (3-14) 

or more generally, all such eigenstates are orthonormal, i.e., their inner products are 

 † 3 31

V
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, d x e e d x
V

   
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Similar relations to (3-15) exist for †,B


k
, and every k,A is orthogonal to every †,B


k

. Work this 

out by doing Prob.2. 

Relations (3-13) to (3-15) should look familiar from NRQM. There, (3-14) was the integral of 
the probability density for a particle in an eigenstate. In RQM, however, things are a little different, 
as we will see, and we use the term “unit norm” for the property displayed in (3-14). 

Unit norm eigenstates were advantageous in NRQM, and they will be in QFT as well. That is the 
reason we omitted the 2k part of our solutions (3-12) in forming our definitions (3-13). By so 
doing, the eigenstates then have unit norm, and things just turn out easier later on. 

3.1.4 Probability Density in RQM 

We are going to investigate probability density in RQM, but first look over Box 3-1, and be sure 
you understand how probability density is derived in NRQM. 

Probability Density Using the Klein-Gordon Equation 

For RQM, we start with the Klein-Gordon equation rather than Schrödinger equation. First post-
multiply it by †, then subtract the complex conjugate equation post-multiplied by , i.e., 
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 (3-16) 

and note that 2†2† = 0. The LHS of the result can be replaced with the new LHS in (3-17) 
below, and the RHS with (3-18). 
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 (3-18) 
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Box 3-1. Review of Non-Relativistic QM Probability Density 

In non-relativistic quantum mechanics (NRQM), we encountered 1) the wave function solution to the Schrödinger 
equation , and 2) the particle probability density † (or equivalently when  is a scalar quantity, *) We 
review here the derivation of that relation for probability density. 

Conserved quantities in field theory: 

Recall the continuity equation of continuum mechanics and electromagnetism, 

                                                      3implies
0 constant in time

V

d x
t




 
         

j ,                   (B3-1.1) 

where  is density (mass or charge density), j is the 3D current density (mass/area-sec or charge/area-sec), and V is all 
space, or at least large enough so that everywhere outside it, for all time,  = 0. V is fixed in space and time, whereas  can 
change in space and time inside V. Any conserved quantity (such as total mass M or total charge Q) obeys (B3-1.1). 

The general procedure: 

Use the governing quantum wave equation to deduce another equation having the form of the continuity equation (B3-
1.1), and we will then know that , whatever it turns out to be in that case, must represent a conserved quantity. Its 
integral over all space is constant in time. If we normalize  such that when integrated over all space, the result equals 
one, we can conjecture that  is the particle probability density (which when integrated over all space equals the 
probability that we will find the particle somewhere in all space, i.e., one.) Then throughout time, as our particle evolves, 
moves, and rearranges its probability density distribution, the total probability of finding it somewhere in space is always 
one. It turns out, from experiment, that the conjecture that this quantity  in NRQM equals probability density is true.  

Probability Density Using the Schrödinger Equation: 

First, pre-multiply the Schrödinger equation by the complex conjugate of the wave function, i.e., 
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                                                     (B3-1.2)  

Then, post-multiply the complex conjugate of the Schrödinger equation by the wave function 
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                                              (B3-1.3)  

where the potential V is real so V=V†. Adding (B3-1.2) to (B3-1.3), we get 
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or 
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                            (B3-1.5) 

This is the same as the continuity equation (B3-1.1) if we take as our probability density 

                                                                                              †     ,                                                             (B3-1.6) 

and as our probability current density (sometimes just probability current) 

                                                                            † †

2iM
     j
ℏ

 .                                                 (B3-1.7) 

This is how the commonly used relation (B3-1.6) is found. 
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Equating the new LHS of (3-17) to the new RHS of (3-18), and to make future work easier, 
multiplying both sides by the constant i, gives the form of the continuity equation 

     
†

† † † 0i i
t t t t

  
     
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 j , (3-19) 

where probability density and the probability current for a Klein-Gordon particle are 
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Importantly, and perhaps surprisingly, the relativistic form of the probability density (3-20) is not 
the same as (B3-1.6), the NRQM probability density. 

4 Currents 

We introduce 4D notation for the scalar and 3D vector of (3-19) and define the scalar 4-current 
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The 4D continuity equation form of (3-19) is then 
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where we have shown three common notational ways to designate partial derivative. (3-23) tells us 
the important fact that the 4-divergence of the 4-current of any conserved quantity (total probability 
in this case) is zero. 

Probability for Klein-Gordon Discrete Solutions 

For a single particle state in RQM, we are going to assume at first, for simplicity, that the 

solution (3-12), has only terms with coefficients Ak, i.e., the general state  contains no eigenstates 

shown with coefficients Bk
†. Probability density (3-20) is then (where primes do not denote 

derivatives with respect to spatial coordinates, merely different summation dummy variables) 
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where the k and k′ came from the time derivatives. 

If we integrate  over the volume V (which is large enough to encompass the entire state), the 
result must equal 1. When we do so, all terms with k′  k go to zero, so the k′ → k and cancel out. 
The V term in the denominator cancels in the integration over the volume V, and the two terms 
result in a factor of 2 that cancels with the 2 in the denominator. The result is 

 3 2 1d x | A |   k

k

. (3-25) 

Thus |Ak|2 is the probability of measuring the kth eigenstate, similar to what the coefficients of 
eigenstates represented in NRQM. 

Difference from NRQM 

Note that in RQM 
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, (3-26) 

whereas in NRQM, we had 
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Normalization Factors 

Obtaining the RHS of (3-26) is the reason for the normalization factors 1 2/ Vk  used in the 

solution  of (3-12) and (3-9). Those factors result in a total probability of one for a single particle 

and |Ak|
2 as the probability for measuring the respective eigenstate. That is, the form of the 

relativistic field equation gave us the form of the probability density in (3-20) (and (3-26)), and the 

need to have total probability of unity gave us the normalization factors in the solutions. 

Relativistic Invariance of Probability 

This total probability value of unity in (3-25) (and (3-26)) is a relativistic invariant (i.e., a world 
scalar.) If we change our frame, the energy spectrum (i.e., the k values) will change (kinetic energy 
for each energy-momentum eigenstate looks different). But these changes cancel out in the 
probability calculation, since the k cancel, and always result in a total probability of one for any 
frame. Further, the Ak here are constants that do not vary with frame, so the probability of finding 
any particular state is also independent of what frame the measurements are taken in. 

Note that this means the normalization factors chosen provide relativistic invariance of total 
probability, which we would not have had with any other choice. 

3.1.5 Negative Energies in RQM 

If we take our traditional operator form for H as i∂/∂t and operate on one of our Klein-Gordon 
solution eigenstates of (3-12) and (3-13), we should get the energy eigenvalue k. When we do this 
for the eigenstates with exponents in –ikx, all looks as expected. 
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However, when we do it for the eigenstates with exponents in +ikx, we have an “uh-oh”, i.e., 
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Since k is always a positive number, we have states with negative energies in RQM. We might 
have expected this, since we used the square of the Hamiltonian as the basis of RQM, and square 
roots typically have both positive and negative signs. 

The bottom line: This is not an attribute of what a good theory has been expected to have, i.e., 
solely positive energies as we see in our world. As we will shortly see, QFT solved this dilemma (as 
well as others delineated in Chap. 1.) 

3.1.6 Negative Probabilities in RQM 

Do Prob. 3 to prove to yourself that a particle  containing only eigenstates of the exponential 
form +i(Ent – pn∙x)/ℏ = ikx (i.e., those with coefficients Bk

† in (3-12)) has total probability of being 
measured of –1. The extra states in RQM have physically untenable negative probabilities! 

Time to move on to QFT. 

3.2 The Klein-Gordon Equation in Quantum Field Theory 

3.2.1 States vs Fields 

It should come as no surprise, to those who have read Chap. 1, that the fundamental scalar wave 
equation of RQM, the Klein-Gordon equation (3-8), is also the fundamental scalar wave equation of 
QFT, except that  therein is considered a field, instead of a state. The word “field” in classical 
theory means an entity that, unlike a particle, is spread out, i.e., is a function of space (it has 
different values at different spatial locations) and typically also a function of time. The state  of 
NRQM and RQM certainly fills that bill, but in quantum theory we don’t use the word “field” for 
this, we use the word “state” (or “wave function” or “ket” or “particle”.) 

RQM normalization 

factors arise from 

need to have total 

probability = 1 and 

|Ak|
2 = probability 

of kth state 

Total probability 

and Ak are frame 

independent 

(relativistically 

invariant) 

Half of our RQM 

eigenstates have 

negative energy 

Half of our RQM 

eigenstates have 

negative 

probability 

density 

States & fields both 

spread out in 

space. But in 

quantum theories, 

“field” also means 

“operator” 



  
 Chapter 3. Scalars: Spin 0 Fields 

 

48

The word “field” in quantum theory refers to a quantity that is spread out in space, but also, 
importantly, as we will soon see, is an operator in QFT. More properly, it is called a quantum field 
or an operator field, though the short term field is far more common. Confusingly, we use the same 
symbol  in QFT for a field as we used for a state in NRQM and RQM. 

Notation 

In QFT, symbols such as , which are not part of a ket symbol, do not represent states, but 
fields. Unless otherwise explicitly noted, in QFT notation, 

         |〉 symbolizes a state (particle)        and         symbolizes a field (operator),      

On the other hand, in NRQM and RQM, both symbols above represented the same thing, a state.  
 

We will understand these distinctions a little better later, but for now understand that formally, 
the Klein-Gordon equation in QFT is called a field equation, because its solution  is a (quantum or 
operator) field. See the second and third rows of Wholeness$Chart 1-2 in Chap. 1, pg. 7. 

There are two common ways to derive this equation, which we present in the following two 
sections, plus a third, which is a good check on the theory and can be found in the Appendix A. 

3.2.2 From RQM to QFT 

Fig. 3-2 illustrates, schematically, the two basic routes to QFT. The quickest is at the bottom of 
the figure, for which we simply postulate that the solution  of the Klein-Gordon equation (3-8) 
describes a field (instead of a particle). This is reasonable, since  is a function of spatial location 
(and often time), i.e., it is a field in the formal mathematical sense. 

Figure 3-2. Different Routes to Quantum Field Theory 

 
We then must apply the commutation relations for fields (see Chap. 2, pg. 31, Wholeness$Chart 

2-5, 6th column = 3rd column on right hand page), instead of the commutation relations for particle 
properties (same chart, 3rd column on left hand page). When we do this, and simply crank the 
mathematics, we obtain QFT. Because the QFT we then obtain describes the real world so well, it 
justifies the original postulate. 

The formal mathematics are much the same as for the alternative route, illustrated on the RHS of 
Fig. 3-2, and treated in the next section. 

3.2.3 From Classical Relativistic Fields to QFT 

Classical Scalar Fields 

The classical Lagrangian density for a free (no forces), real, relativistic scalar field has form 

    0 2 2 2
0

i
i i iK K K



 

             

 

              
  
 i

ɺ ɺ ɺ ɺ
�����

L , (3-30) 

QFTRQM

          1st Quantization:

        H  stays the same +

        invoke commutators  

          2nd Quantization:

        H  stays the same +

        invoke commutators  

States to fields

Same wave equation

Quantization 
way to QFT

 

 

     Classical
   Relativistic 
Particle Theory

     Classical
 Relativistic 
Field Theory

Short way to QFT

Particles to fields

[p i ,x j ]         [ r , s]

Notational 

difference 

between states 

and fields. In 

QFT,  is not a 

state, but a field 

Two different 

routes to QFT 

Short route: 

RQM → QFT. 

Similar math as 

2nd quantization 

below 

Start with classical 

Lagrangian density 

for free scalar field 

2nd quantization 

route: Classical 

fields → QFT 


