52 Chapter 3. Scalars: Spin 0 Fields

Proof of coefficient commutation relations

To prove (3-41), start V\gth (3-40) and take different gpatoordinatex andy, but the same
time coordinate, for gandr . This results in the equal time commutation relations

[o(x0)78 ()= 7 (y ()] =[ 2(x 9'(y .- ¢'(y Jo(x )] = B(x-y), (342) Provn

coefficient
which are only important at this point as a step in gaop Then, plugging the discrete solution: commutation
(3-36) into the middle part of (3-42), where to save sparease the compressed notatipn= a(k), relations
etc., we get
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Using the math identity for the 3D Dirac delta function
. . 1 — —ikk— Re-express Dirac
) in our notat|on=V;e ki) delta function
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on the RHS of the last row in (3-43), and matchgmgns, we see that all terms whéret £ k must
equal zero, since (3-44) has no terms in dotand k’. These particular terms reduce to the
following form, summed ovek andk’'.
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So, all possible coefficient commutators with# k or —k vanish. The remaining terms all hake
= + k, which meansw = ax. Some of these have an exponential forfax + ax/)t, and those
terms give us a summation of terms okéraving form, for each possibié, of
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(All time dependent terms witk' £k equal 0 as no time depace on RHS CommLcJ)tators
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For these terms, the coefficient commutators masish because the exponentialdg varies in
time, whereas there is no such variation on the BHBe last row in (3-43).
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The remaining terms have exponential fofax — ax)t andk’ = £ k. Adding those terms fd¢'
= k with the terms fok’ = —k yields, with the relevant terms on the RHS of 8-tsee & row in

parentheses of (3-44)) on the RHS below, o
Remaining terms
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. Key conmutators
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(All time independent terms in summation with +k  mupt@ RHY.
All terms with & +y) in the exponents of the LHS must equal zerohaRHS only has terms ix (

—vy). The only way the LHS of (3-47) matches the RBI8 each coefficient commutator in the first
row equals unity.

The commutation relations f:akak'Jr andbkbk'Jr in (3-45) to (3-47) are the same as (3-41). QED.

If you are ambitious, have extra time, and/or syriphve to prove everything to yourself, do
Prob. 7 to derive the continuous solution commusatd (3-41).

End of coefficient commutation relations proof

With the coefficient commutator relations in hana, are finally ready to dive into the real core
of QFT.
3.4 TheHamiltonian in QFT

We find the Hamiltonian by integrating the Hamiliam density/ over all space (a volumé¢ | _ [27dv
containing the discrete solutions, which we can enak large as we like.) In QFT, we exprésm
terms of a complex field and substitute our fiedgiaion solutions.
3.4.1 The Free Scalar Hamiltonian in Terms of the Coefficients

For a free scalar fiel#t = HOO, as in (3-33), where we employ our discrete, plaage solutions
(3-36) we get I
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The middle line of (3-48), i.e., thfeq'rﬁd‘?’x part, becomes
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The sum ovek and k' is from negative infinity to positive infinity ithe x, y, and z directions.

All terms in the integration in (3-50) result inraeexcept wherk’ = k or k' = — k, because we
are integrating orthogonal functions between theiundaries. (This is similar tsin(2X)sin(4Xx)
integrated with respect % along a complete number of wavelengths, where kher@ andk’ = 4.)
Since the volume of integration in (3-50) equlsve end up with
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