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1 Background: Types of Distributions

Normal (bell curve, Gaussian) probability distrioats are common. For example, height of human
females,
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Figure 1. Gaussian Probability Distribution

There are other types of distributions. For examgbasider having 10,000 balls in a bin, each ball
having a number from 1 to 100, with each numbendp&in 100 balls. The probability density and
histogram look like Fig. 2, so this called a unmgror rectangular, distribution.
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Figure 2. Uniform Probability Distribution

There are other shape distributions as well. Farmgpte, the probability density for failure of your
new washing machine vs time when it fails peakthenfirst few weeks, then lowers and levels out for

years, and then gradually rises higher and highéhayears go on (and it gets older).

For any type of distribution we can find the me#éme(average) value, denoted herein with an
overbar on the variable, and the standard deviatdenoted here and virtually everywhere doyNote
(1) and (2) below, where we differentiate betweesasuring every member (numberiNgn all) of a
population (subscript “all”) and sampling some &ssumbein (< N) of the population. As - N, then
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Measuring sample of members of populatigiX ) = X =

Note that if we knew the true mean of the entirpypation ofN members when we measured our
sample, we could calculate the standard deviati@muonsample of a little differently. That is,
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2 The Classical Central Limit Theorem

The central limit theorem has a number of variatidapending on such things as whether processes
are independent or not. We focus herein on thelsshpariation, what is known as the classical i@nt
limit theorem.

2.1 ASimple Example
To illustrate, we will use the example of Fig. 2ab, the uniform probability distribution.

We start by sampling 10 balls at random and findimg mean of the numbers written on them.
Each time we draw a ball, we put it back in the liéfiore we draw the next ball. We call this teshgke
#1 and label our resulting mean valdg (with subscript 1)n in (2) equals 10 her& = 10,000, but we
don’t use that fact in (4).
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For this, we might get a histogram like Fig. 3, veh&, =60.5.
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Figure 3. Sample #1 of 10 Ballsfrom Uniform Probability Distribution of 10,000 Balls

Let’s do the same thing again a second time, t@@etcond mean value for this second time.
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Our histogram might look like Fig. 4 with a diffetemean valuex, = 48.4.
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Figure 4. Sample #2 of 10 Ballsfrom Uniform Probability Distribution of 10,000 Balls

Let’s now repeat that procedure over and over, &auh (theith time) getting a value
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Assume we do this procedure a totaNgftimes { subscript for “total tests”). So we now have aX§et
of Ny different mean values. Let’s plot these as a grstm in the LHS of Fig. 5.
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Figure5. Histogram of Mean Values X; for Test Samples (n = 10 per test) for Nt Tests

Bottom line: We get a histogram approaching a {@Hussian, normal) shape curve when we plot all
our mean values from each sample test ANBis true even for non-Gaussian underlying distributions

of our whole population (such as the uniform distribution of Fig. 2.) Fotal number of test samplég

- o, the curve becomes a perfect, smooth bell (Gaujsskape.

Proof: We don’t prove it here, but a proof can bend in many statistics books. Here we only try to
make the concept easy to understand.

Presumption for What Follows: In the following, atte way the central limit theorem is usually pgsed
we assume we have an infinite number of tests,N:e—~ . That is, we want to talk about a smooth
distribution of test sample means, i.e., a probability density, as in the RHS of.FHg




2.2 Quantifying the Central Limit Theorem
Note the following, again stated without proof.

2.2.1 The mean (average) of our test sample means (averages),

The mean (average) of our test sample means (asraghich we designate Wit@?> (notation

gets a bit unwieldy with the “mean of means”) apgmttes the average of the un_derlying whole
population as the number of tedts gets large. This is the law of large numbers amodukl be
intuitively obvious.
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As noted above, we will assume the limiting cas€7nholds, so we can talk about a smooth
distribution of the test sample mean (average) esly (RHS of Fig. 5) where the mean of that
distribution equals the mean of the original unglad distribution of the whole population (Fig. 2).

2.2.2 The standard deviation of our test sample means (averages),

The standard deviation of our test sample mearerdges), as displayed by the width of the bell
curve in the RHS of Fig. 5, varies with the number of measurements (number of ballsgs.F2 to 5)
in each test sample. We designate this standaridta®vof our test sample means (averages) with the
symbol g,. The precise dependence is (Whexg is the standard deviation of the whole underlying
population as in Fig. 2 and (1))
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Note this tells us that the greater number of meseantsn we have in each of our test samples,
the smaller the standard deviation of the distidyubf the test sample means. In concrete termsgif
had taken 20 measurements per test in Figs. 2rnst&ad of 10 measurements, the curve on the RHS of
Fig. 5 would be narrower.

(8)

Intuitively this makes sense. The more measuremeateave per test sample, the more likely the
mean of any single test sample will be closer eorttean of the whole population. So the individeat t
sample meang; should tend to cluster nearer the whole populatieanx .

2.2.3 Normalized distribution
A normalized (area underneath = 1) Gaussian digtab has form
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p(x)= o~ 21T

For us (see RHS of Fig. 8,-» X;, X -» X, ando - &,. Thus, the Gaussian distribution we get in the
central limit theorem for the test sample mean esl{see RHS Fig. 5) using (8), is
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For greater measurements per samptée bell curve gets higher and narrower.

(10)




2.3 Points to Note
2.3.1 Independence of measurements

The central limit theorem, in its simplest (claspiqguise as shown above, works for independent
measurements. No measurement can depend on amyrethsurement.

By way of example, in our ball sampling case ofsFig to 5, after drawing a ball and recording its
number, we put the ball back into the bin. This enite next drawing of a ball independent of what ha
gone before (or other measurements). Had we nat tlaat, then the drawing of the first ball, and not
returning it to the bin, would have an influenceanr odds for the next drawing. We would have only
had 99 chances to draw the same number again,0ButHances for every other number. The second
measurement would not be independent of the first.

Similarly, each test sample (of several measuresneath) must be independent of other test
samples.

Bottom line: For the classical central limit themraneasurements must be independent of one another.

2.3.2 Randomness of measurements

For the central limit theorem, measured variabike (humber on a balk; above) must vary
randomly with measurements. By way of examplealfsoin the above example with numbers under 20
were hollow, like ping-pong balls, and the restavsolid, like golf balls, then the hollow, lightealls
would tend to rise to the top of the bin. And wewdbbe more likely to pick out a lower numberedibal
S0 our averages would tend to be lower, belowdahdam mean of 50.5.

Note that we can still put the selected ball bantk the bin before our next measurement and have
independence of measurements, but the selecti@essavould not be random.

So, we can have independence without randomnes$.wencan have randomness (all balls the
same weight and size), but not independence (rtohgua selected ball back into the bin beforertbegt
selection). We need both for the classical cetitrat theorem to work.

Bottom line: For the central limit theorem, the m@@ment process must be random.
2.3.3 Works for any underlying distribution

Note that the distribution within any given testngde, as in Figs. 3 and 4, will tend to look likest
distribution of the parent (underlying) populati@s,in Fig. 2. However, as noted before, the thistion
of the means of the test samples will be Gaus$tan b), regardless of the form of the distributimn
the underlying population.

Bottom line: Provided measurements are indepenaedtrandom, the classical central limit theorem
says the distribution of test sample means wilQaissian, regardless of the distribution form (eurv
shape) of the underlying population.
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