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1 Background: Types of Distributions 

Normal (bell curve, Gaussian) probability distributions are common. For example, height of human 
females, 

  
Figure 1. Gaussian Probability Distribution 

  
There are other types of distributions. For example, consider having 10,000 balls in a bin, each ball 

having a number from 1 to 100, with each number being on 100 balls. The probability density and 
histogram look like Fig. 2, so this called a uniform, or rectangular, distribution. 

 

Figure 2. Uniform Probability Distribution 
  

There are other shape distributions as well. For example, the probability density for failure of your 
new washing machine vs time when it fails peaks in the first few weeks, then lowers and levels out for 
years, and then gradually rises higher and higher as the years go on (and it gets older). 

For any type of distribution we can find the mean (the average) value, denoted herein with an 
overbar on the variable, and the standard deviation, denoted here and virtually everywhere by σ. Note 
(1) and (2) below, where we differentiate between measuring every member (numbering N in all) of a 
population (subscript “all”) and sampling some lesser number n (< N) of the population. As n → N, then 

allX X→  and σ → σall. 
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Note that if we knew the true mean of the entire population of N members when we measured our 
sample, we could calculate the standard deviation of our sample of n a little differently. That is, 
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2 The Classical Central Limit Theorem 

The central limit theorem has a number of variations depending on such things as whether processes 
are independent or not. We focus herein on the simplest variation, what is known as the classical central 
limit theorem. 

2.1 A Simple Example 

To illustrate, we will use the example of Fig. 2 above, the uniform probability distribution. 

We start by sampling 10 balls at random and finding the mean of the numbers written on them. 
Each time we draw a ball, we put it back in the bin before we draw the next ball. We call this test sample 
#1 and label our resulting mean value 1X  (with subscript 1). n in (2) equals 10 here. N = 10,000, but we 
don’t use that fact in (4).  
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For this, we might get a histogram like Fig. 3, where 1X =60.5. 
 

  
Figure 3. Sample #1 of 10 Balls from Uniform Probability Distribution of 10,000 Balls 

 
Let’s do the same thing again a second time, to get a second mean value for this second time. 
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Our histogram might look like Fig. 4 with a different mean value 2 48 4X .= . 
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       Figure 4. Sample #2 of 10 Balls from Uniform Probability Distribution of 10,000 Balls 
 
 

Let’s now repeat that procedure over and over, each time (the ith time) getting a value 
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Assume we do this procedure a total of NT  times (T subscript for “total tests”). So we now have a setiX  
of NT different mean values. Let’s plot these as a histogram in the LHS of Fig. 5. 

 
     Figure 5.  Histogram of Mean Values iX  for Test Samples (n = 10 per test) for NT Tests 
 
 
Bottom line: We get a histogram approaching a bell (Gaussian, normal) shape curve when we plot all 
our mean values from each sample test AND this is true even for non-Gaussian underlying distributions 
of our whole population (such as the uniform distribution of Fig. 2.) For total number of test samples NT 
→ ∞, the curve becomes a perfect, smooth bell (Gaussian) shape. 

Proof: We don’t prove it here, but a proof can be found in many statistics books. Here we only try to 
make the concept easy to understand. 

Presumption for What Follows: In the following, and the way the central limit theorem is usually posed, 
we assume we have an infinite number of tests, i.e., NT → ∞. That is, we want to talk about a smooth 
distribution of test sample means iX , i.e., a probability density, as in the RHS of Fig. 5. 
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2.2 Quantifying the Central Limit Theorem 

Note the following, again stated without proof. 

2.2.1 The mean (average) of our test sample means (averages), 

The mean (average) of our test sample means (averages), which we designate with X  (notation 

gets a bit unwieldy with the “mean of means”) approaches the average of the underlying whole 
population as the number of tests NT gets large. This is the law of large numbers and should be 
intuitively obvious. 

 as   all TX X N→ → ∞  (7) 

As noted above, we will assume the limiting case in (7) holds, so we can talk about a smooth 
distribution of the test sample mean (average) values iX (RHS of Fig. 5) where the mean of that 
distribution equals the mean of the original underlying distribution of the whole population (Fig. 2). 
 

2.2.2 The standard deviation of our test sample means (averages), 

The standard deviation of our test sample means (averages), as displayed by the width of the bell 
curve in the RHS of Fig. 5, varies with n, the number of measurements (number of balls in Figs. 2 to 5) 
in each test sample. We designate this standard deviation of our test sample means (averages) with the 
symbol σn. The precise dependence is (where σall is the standard deviation of the whole underlying 
population as in Fig. 2 and (1)) 

 all
n

n

σσ = . (8) 

Note this tells us that the greater number of measurements n we have in each of our test samples, 
the smaller the standard deviation of the distribution of the test sample means. In concrete terms, if we 
had taken 20 measurements per test in Figs. 2 to 5 instead of 10 measurements, the curve on the RHS of 
Fig. 5 would be narrower. 

Intuitively this makes sense. The more measurements we have per test sample, the more likely the 
mean of any single test sample will be closer to the mean of the whole population. So the individual test 
sample means iX  should tend to cluster nearer the whole population mean allX . 

2.2.3 Normalized distribution 

A normalized (area underneath = 1) Gaussian distribution has form 
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For us (see RHS of Fig. 5), x → iX , allx X→ , and σ → σn. Thus, the Gaussian distribution we get in the 
central limit theorem for the test sample mean values (see RHS Fig. 5) using (8), is 
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For greater measurements per sample n, the bell curve gets higher and narrower. 
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2.3 Points to Note 

2.3.1 Independence of measurements 

The central limit theorem, in its simplest (classical) guise as shown above, works for independent 
measurements. No measurement can depend on any other measurement. 

By way of example, in our ball sampling case of Figs. 2 to 5, after drawing a ball and recording its 
number, we put the ball back into the bin. This made the next drawing of a ball independent of what had 
gone before (or other measurements). Had we not done that, then the drawing of the first ball, and not 
returning it to the bin, would have an influence on our odds for the next drawing. We would have only 
had 99 chances to draw the same number again, but 100 chances for every other number. The second 
measurement would not be independent of the first. 

Similarly, each test sample (of several measurements each) must be independent of other test 
samples. 

Bottom line: For the classical central limit theorem, measurements must be independent of one another. 

2.3.2 Randomness of measurements 

For the central limit theorem, measured variable (like number on a ball Xi  above) must vary 
randomly with measurements. By way of example, if balls in the above example with numbers under 20 
were hollow, like ping-pong balls, and the rest were solid, like golf balls, then the hollow, lighter balls 
would tend to rise to the top of the bin. And we would be more likely to pick out a lower numbered ball, 
so our averages would tend to be lower, below the random mean of 50.5. 

Note that we can still put the selected ball back into the bin before our next measurement and have 
independence of measurements, but the selection process would not be random. 

So, we can have independence without randomness. And we can have randomness (all balls the 
same weight and size), but not independence (not putting a selected ball back into the bin before the next 
selection). We need both for the classical central limit theorem to work. 

Bottom line: For the central limit theorem, the measurement process must be random. 

2.3.3 Works for any underlying distribution 

Note that the distribution within any given test sample, as in Figs. 3 and 4, will tend to look like the 
distribution of the parent (underlying) population, as in Fig. 2. However, as noted before, the distribution 
of the means of the test samples will be Gaussian (Fig. 5), regardless of the form of the distribution of 
the underlying population. 

Bottom line: Provided measurements are independent and random, the classical central limit theorem 
says the distribution of test sample means will be Gaussian, regardless of the distribution form (curve 
shape) of the underlying population. 
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