
Brief Summary of Cosmology 
See Jordan, Am J Phys 73(7) 653-662 (July 2005) for much of this.  by R. Klauber 

 

Central Point Derivation/Remark 

Conservation of Energy:    ( )d V pdV    

Energy Density:         3 / 3p a a p H       ɺ ɺ  

 (a)  w/  p=w :         3(1 )1/ w

w a          

Rad  w=1/3 a4   Matter w=0 a3   Vac  w=-1  const 

3 ways to Energy Density relation: 

1) Divide top eq by dt, use V=ka3 

2) Freid metric in T
; = 0 for  = 0. 

3) 
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T T  field eqs combined. 

(a):  w into top eq, w/ V=ka3 & p=w   

               c2 =   in all this (c = 1) 

Basic Eqs:  Friedmann Universe (homogeneous, isotropic) 

(A) 

22

2 08

3 3

aa G
H k

a a

            
   

ɺ
 Friedmann (initial val) Eq. 
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               Dynamic eq. 

Can rep  in vac and take  = 0 here. 

 

Robertson-Walker metric. Einstein eq for 

T00 

 

Einstein eq for Txx plus (A), or  

energy density eq plus (A) 

Radiation:    a    2.7E kT        1/a 

n  1/a3    = n E =2.7knT   1/a4     also p = /3 

 

k = 0 Time Dependence ( = 0): 

Rad:  a  t1/2                  Matter:  a  t2/3 

     Vacuum:  a  eH t          General:   a  t2/ 3(1+w) 

(for v = – p = const) 
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various values for  (a)  above. 

Critical Densty:
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For inflation  = const, 
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  and   c fast 

From (A),  = 1, if k = 0. 

(A) w/ k and  =0, rearranged gives this 

relation in 1/

If k/a2 → 0, then → 1.  If =1 at any 

time, then k=0 and =1 for all time 

Acceleration:   4
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(B) for mass and vacuum, assuming vac 

like cosmol const with w = -1. 

 

More generally, in (B), if   p < -  /3  

(i.e., w < -1/3), where p and  are total 

values, get acceleration. 



Travel Time:  Basic principles: 1)  
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                                               2) Find da/dt from (B) and invert 
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Result:    11
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for vac with w  – 1, get diff relation. 

Ref Jordan.1) Looks flawed to me. Easier 

to start w basic princ in Hubble plot box 

Integ (B). Here, result assumes wv = -1. 

For integ const, need to evaluate ka0
2 

term via Hubble relation now, i.e., 
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This gives constant terms in last line in 

LHS box. 

Hubble Plots:  Def:  dl = luminosity dist = distance to source if flat, 

static universe for the luminosity we see for standard candle. 

Basic principle:  luminosity dist = 
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Corrections:   

1) expansion on dist 1/r’ factor   
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2) curved space:  k=0,  = ;  k=1, sinc
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3) expansion on photons:  a) decrease intensity per  by 0 = r 

                                          b) decrease /sec arriving by r =0 

Thus:  intensity  1/[4(dl)
2]  1/[4()2(1+z)2] 

Subtlety:  dl defined in terms of units of H0,  
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Finally:  intensity 
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Original Hubble plots, vel vs dist. 

Now, dl vs z 

 

= 13.7 bill lt-yrs for pg 6 example 

 

 

= 42 bill lt-yrs for pg 6 example 
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Value:  dl vs z curve depends on 
0m  

and 
0v (for wv = –1 case), so data 

helps determine them and from (B), aɺɺ .  

For wv  – 1, will get diff d/dr, so diff 

 and diff curve. 

  Supernovae (of known intrinsic 

brightness) shows accel and wv = -1 

const within 10% over most of hist. 

 


