Brief Summary of Cosmology See Jordan, *Am J Phys* **73**(7) 653-662 (July 2005) for much of this. by R. Klauber

<u>Central Point</u>	Derivation/Remark
Conservation of Energy: $d(\rho V) = -pdV$	3 ways to Energy Density relation:
Energy Density: $\dot{\rho} = -3(\rho + p)\dot{a}/a = -3(\rho + p)H$	1) Divide top eq by dt , use $V = ka^3$
$a(x) = \frac{1}{x^{3(1+w)}}$	2) Freid metric in $T^{\mu\nu}_{;\nu} = 0$ for $\mu = 0$.
$p(a) \le p = wp$: $p_w \propto 1/a$	3) $T^{00} \& T^{xx}$ field eqs combined.
Rad $\rho_{w=1/3} \propto 1/a^4$ Matter $\rho_{w=0} \propto 1/a^3$ Vac $\rho_{w=-1} \propto const$	$\rho(a)$: $\rho_{\rm w}$ into top eq, w/ $V = ka^3 \& p = w\rho$
Denie Franz Friedram University (home sources in the is)	$c^{2}\rho = \rho$ in all this ($c = 1$)
Basic Eqs: Friedmann Universe (homogeneous, isotropic)	Can rep Λ in ρ_{vac} and take $\Lambda = 0$ here.
(A) $\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - k\left(\frac{a_0}{a}\right)^2$ Friedmann (initial val) Eq.	Robertson-Walker metric. Einstein eq for T^{00}
(B) $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho + 3p) + \frac{\Lambda}{3}$ Dynamic eq.	Einstein eq for <i>T</i> ^{xx} plus (A), or energy density eq plus (A)
Radiation: $\lambda \propto a$ $\overline{E}_{\gamma} = 2.7kT \propto 1/\lambda \propto 1/a$	
$n_{\gamma} \propto 1/a^3$ $\rho_{\gamma} = n_{\gamma} \overline{E}_{\gamma} = 2.7 k n_{\gamma} T \propto 1/a^4$ also $p = \rho_{\gamma}/3$	
$k = 0$ Time Dependence ($\Lambda = 0$):	(A) $= \frac{8\pi G\rho}{\pi}$. Us and use
Rad: $a \propto t^{1/2}$ Matter: $a \propto t^{2/3}$	$(A) \rightarrow a = \sqrt{\frac{3}{3}} a = Ha$ and use
Vacuum: $a \propto e^{Ht}$ General: $a \propto t^{2/3(1+w)}$	various values for $\rho(a)$ above.
(for $\rho_v = -p = const$)	
Critical Densty: $\rho_c = \frac{3H^2}{8\pi G}$ $\Omega = \rho / \rho_c = \Omega_\gamma + \Omega_m + \Omega_\nu$ $\Omega_i = \rho_i / \rho$	From (A), $\Omega = 1$, if $k = 0$.
Rad (early univ) $\rho \propto 1/a^4$, $1 - \frac{1}{\Omega} \propto a^2$ and $\rho > \rho_c$ grows fast	(A) w/ k and $\Lambda = 0$, rearranged gives this relation in $1/\Omega$.
For inflation $\rho = \text{const}, \ 1 - \frac{1}{\Omega} \propto \frac{k}{a^2}$ and $\rho \to \rho_c$ fast	If $k/a^2 \rightarrow 0$, then $\Omega \rightarrow 1$. If $\Omega=1$ at any time, then $k=0$ and $\Omega=1$ for all time
Acceleration: $\ddot{a} = -\frac{4\pi G}{3} (\rho_m - 2\rho_v) a$ $\ddot{a} > 0$ if $2\rho_{v_1} > \rho_m$	(B) for mass and vacuum, assuming vac like cosmol const with $w = -1$.
$2\Omega_{\nu} > \Omega_{m}$ Acceleration $2\Omega_{\nu} = \Omega_{m}$ Deceleration $2\Omega_{\nu} < \Omega_{m}$ Expansion will not stop $K = 1$ $K = 0$ $K = -1$ $\Omega_{\nu} + \Omega_{m} > 1$ $\Omega_{\nu} + \Omega_{m} < 1$ $\Omega_{\nu} + \Omega_{m} = 1$	More generally, in (B), if $p < -\rho/3$ (i.e., w < -1/3), where p and ρ are total values, get acceleration.
$-1 \qquad \qquad -1 \qquad \qquad 2 \qquad \Rightarrow \Omega_{\rm m}$	

Travel Time: <u>Basic principles</u> : 1) $\Delta t = \int_{a}^{a_0} \frac{dt(a')}{da'} da'$	Ref Jordan.1) Looks flawed to me. Easier to start w basic princ in Hubble plot box
2) Find <i>da/dt</i> from (B) and invert	Integ (B). Here, result assumes $w_v = -1$.
<u>Subtleties</u> : $r = \frac{a}{a_0} \le 1$ $\tau = \frac{t}{1/H_0} = H_0 t$ $r = \frac{\lambda}{\lambda_0} = \frac{1}{1+z}$	For integ const, need to evaluate ka_0^2 term via Hubble relation now, i.e.,
<u>Result</u> : $\Delta \tau \left(r = \frac{1}{1+z} \right) = \int_{r}^{1} \frac{d\tau(r')}{dr'} dr'$	$\frac{da}{dt} = H_0 a_0 \rightarrow \frac{d(a/a_0)}{H_0 dt} = 1 = \frac{dr}{d\tau} \text{ now}$
where $\frac{d\tau}{dr} = \left(\frac{\Omega_{m_0}}{r} + \Omega_{v_0}r^2 + 1 - \Omega_{m_0} - \Omega_{v_0}\right)^{-1/2}$	This gives constant terms in last line in LHS box.
for vac with $w \neq -1$, get diff relation.	
Hubble Plots: <u>Def</u> : d_l = luminosity dist = distance to source if flat, static universe for the luminosity we see for standard candle.	Original Hubble plots, vel vs dist. Now, d_l vs z
<u>Basic principle:</u> luminosity dist = $\int_{r}^{1} \frac{cd\tau(r')}{dr'} dr'$ (see above)	= 13.7 bill lt-yrs for pg 6 example
Corrections:	
1) expansion on dist 1/r' factor $\chi = \int_{r}^{1} \frac{1}{r'} \frac{cd\tau(r')}{dr'} dr'$	= 42 bill lt-yrs for pg 6 example
2) curved space: $k=0, \sigma = \chi; k=1, r_c \sin \frac{\chi}{r_c}; k=-1, r_c \sinh \frac{\chi}{r_c}$	$r_c = \frac{1}{\sqrt{1 - \Omega_0}}$
3) expansion on photons: a) decrease intensity per γ by $\lambda/\lambda_0 = r$ b) decrease γ /sec arriving by $r = \lambda/\lambda_0$	
<u>Thus</u> : intensity $\propto 1/[4\pi(d_l)^2] \propto 1/[4\pi(\sigma)^2(1+z)^2]$	
<u>Subtlety</u> : d_l defined in terms of units of $H_{0, l} = (1+z) \frac{\sigma}{H_0}$	<u>Value:</u> d_l vs z curve depends on Ω_{m_0}
Einelly, intensity of	and Ω_{v_0} (for $w_v = -1$ case), so data
<u>Finally</u> . Intensity $\propto \frac{1}{4\pi \left(\frac{\sigma}{H_0}\right)^2 (1+z)^2}$	helps determine them and from (B), \ddot{a} . For $w_v \neq -1$, will get diff $d\tau/dr$, so diff σ and diff curve.
	Supernovae (of known intrinsic brightness) shows accel and $w_v = -1$ const within 10% over most of hist.