## Brief Summary of Cosmology

See Jordan, Am J Phys 73(7) 653-662 (July 2005) for much of this. by R. Klauber

| Central Point | Derivation/Remark |
| :---: | :---: |
| Conservation of Energy: $\quad d(\rho V)=-p d V$ <br> Energy Density: $\dot{\rho}=-3(\rho+p) \dot{a} / a=-3(\rho+p) H$ <br> $\rho(a) \mathrm{w} / p=w \rho: \quad \rho_{w} \propto 1 / a^{3(1+w)}$ <br> $\operatorname{Rad} \rho_{\mathrm{w}=1 / 3} \propto 1 / a^{4} \quad$ Matter $\rho_{\mathrm{w}=0} \propto 1 / a^{3} \quad$ Vac $\rho_{\mathrm{w}=-1} \propto$ const | 3 ways to Energy Density relation: <br> 1) Divide top eq by $d t$, use $V=k a^{3}$ <br> 2) Freid metric in $T^{\mu \nu}{ }_{; v}=0$ for $\mu=0$. <br> 3) $T^{\hat{0} \hat{0}} \& T^{\hat{x} \hat{x}}$ field eqs combined. <br> $\rho(a): \rho_{\mathrm{w}}$ into top eq, w/ $V=k a^{3} \& p=w \rho$ $c^{2} \rho=\rho$ in all this $(c=1)$ |
| Basic Eqs: Friedmann Universe (homogeneous, isotropic) <br> (A) $\left(\frac{\dot{a}}{a}\right)^{2}=H^{2}=\frac{8 \pi G \rho}{3}+\frac{\Lambda}{3}-k\left(\frac{a_{0}}{a}\right)^{2}$ Friedmann (initial val) Eq. <br> (B) $\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 p)+\frac{\Lambda}{3} \quad$ Dynamic eq. | Can rep $\Lambda$ in $\rho_{\text {vac }}$ and take $\Lambda=0$ here. <br> Robertson-Walker metric. Einstein eq for $T^{00}$ <br> Einstein eq for $T^{\mathrm{xx}}$ plus (A), or energy density eq plus (A) |
| $\begin{aligned} \hline \text { Radiation: } \lambda \propto a \quad \bar{E}_{\gamma}=2.7 k T \propto 1 / \lambda \propto 1 / a \\ n_{\gamma} \propto 1 / a^{3} \quad \rho_{\gamma}=n_{\gamma} \bar{E}_{\gamma}=2.7 k n_{\gamma} T \propto 1 / a^{4} \quad \text { also } p=\rho_{\gamma} / 3 \end{aligned}$ |  |
| $k=0$ Time Dependence ( $\Lambda=0$ ): <br> Rad: $a \propto t^{1 / 2}$ <br> Matter: $a \propto t^{2 / 3}$ <br> Vacuum: $a \propto e^{H t}$ <br> General: $a \propto t^{2 / 3(1+w)}$ <br> (for $\rho_{\mathrm{v}}=-\mathrm{p}=$ const) | (A) $\rightarrow \dot{a}=\sqrt{\frac{8 \pi G \rho}{3}} a=H a$ and use various values for $\rho(a)$ above. |
| Critical Densty: $\rho_{c}=\frac{3 H^{2}}{8 \pi G} \quad \Omega=\rho / \rho_{c}=\Omega_{\gamma}+\Omega_{m}+\Omega_{v} \quad \Omega_{i}=\rho_{i} / \rho$ $\operatorname{Rad}$ (early univ) $\rho \propto 1 / a^{4}, 1-\frac{1}{\Omega} \propto a^{2}$ and $\rho>\rho_{\mathrm{c}}$ grows fast For inflation $\rho=$ const, $1-\frac{1}{\Omega} \propto \frac{k}{a^{2}}$ and $\rho \rightarrow \rho_{\mathrm{c}}$ fast | From (A), $\Omega=1$, if $k=0$. <br> (A) $\mathrm{w} / k$ and $\Lambda=0$, rearranged gives this relation in $1 / \Omega$. <br> If $k / a^{2} \rightarrow 0$, then $\Omega \rightarrow 1$. If $\Omega=1$ at any time, then $k=0$ and $\Omega=1$ for all time |
|  | (B) for mass and vacuum, assuming vac like cosmol const with $\mathrm{w}=-1$. <br> More generally, in (B), if $p<-\rho / 3$ (i.e., $\mathrm{w}<-1 / 3$ ), where p and $\rho$ are total values, get acceleration. |

Travel Time: Basic principles: 1) $\Delta t=\int_{a}^{a_{0}} \frac{d t\left(a^{\prime}\right)}{d a^{\prime}} d a^{\prime}$
2) Find $d a / d t$ from (B) and invert

Subtleties: $r=\frac{a}{a_{0}} \leq 1 \quad \tau=\frac{t}{1 / H_{0}}=H_{0} t \quad r=\frac{\lambda}{\lambda_{0}}=\frac{1}{1+z}$
Result: $\Delta \tau\left(r=\frac{1}{1+z}\right)=\int_{r}^{1} \frac{d \tau\left(r^{\prime}\right)}{d r^{\prime}} d r^{\prime}$
where $\frac{d \tau}{d r}=\left(\frac{\Omega_{m_{0}}}{r}+\Omega_{v_{0}} r^{2}+1-\Omega_{m_{0}}-\Omega_{v_{0}}\right)^{-1 / 2}$
for vac with $w \neq-1$, get diff relation.
Hubble Plots: Def: $d_{l}=$ luminosity dist $=$ distance to source if flat, static universe for the luminosity we see for standard candle.


## Corrections:

1) expansion on dist $1 / r^{\prime}$ factor $\quad \chi=\int_{r}^{1} \frac{1}{r^{\prime}} \frac{c d \tau\left(r^{\prime}\right)}{d r^{\prime}} d r^{\prime}$
2) curved space: $k=0, \sigma=\chi ; k=1, r_{c} \sin \frac{\chi}{r_{c}} ; k=-1, r_{c} \sinh \frac{\chi}{r_{c}}$
3) expansion on photons: a) decrease intensity per $\gamma$ by $\lambda / \lambda_{0}=r$ b) decrease $\gamma /$ sec arriving by $r=\lambda / \lambda_{0}$

Thus: intensity $\propto 1 /\left[4 \pi\left(d_{l}\right)^{2}\right] \propto 1 /\left[4 \pi(\sigma)^{2}(1+\mathrm{z})^{2}\right]$
Subtlety: $d_{l}$ defined in terms of units of $H_{0}, d_{l}=(1+z) \frac{\sigma}{H_{0}}$
Finally: intensity $\propto \frac{1}{4 \pi\left(\frac{\sigma}{H_{0}}\right)^{2}(1+z)^{2}}$

Ref Jordan.1) Looks flawed to me. Easier to start w basic princ in Hubble plot box Integ (B). Here, result assumes $\mathrm{w}_{\mathrm{v}}=-1$. For integ const, need to evaluate $k a_{0}{ }^{2}$ term via Hubble relation now, i.e.,

$$
\frac{d a}{d t}=H_{0} a_{0} \rightarrow \frac{d\left(a / a_{0}\right)}{H_{0} d t}=1=\frac{d r}{d \tau} \text { now }
$$

This gives constant terms in last line in LHS box.

Original Hubble plots, vel vs dist. Now, $d_{l}$ vs $z$
$=13.7$ bill lt-yrs for pg 6 example
$=42$ bill lt-yrs for pg 6 example
$r_{c}=\frac{1}{\sqrt{1-\Omega_{0}}}$

Value: $d_{l}$ vs z curve depends on $\Omega_{m_{0}}$ and $\Omega_{v_{0}}$ (for $w_{v}=-1$ case), so data helps determine them and from (B), $\ddot{a}$. For $\mathrm{w}_{\mathrm{v}} \neq-1$, will get diff $d \tau / d r$, so diff $\sigma$ and diff curve.

Supernovae (of known intrinsic brightness) shows accel and $\mathrm{w}_{\mathrm{v}}=-1$ const within $10 \%$ over most of hist.

