Box 2-2 Subtleties

We first need to recall the definition of physical 3-momentum

$$
\begin{align*}
& p^{i}=m \dot{x}^{i}=m \frac{d x^{i}}{d t} \quad\left\{\begin{array}{c}
\text { contraviant form is physical 3-momentum we measure } \\
\text { (found from } x^{i}, \text { the physical coords we measure) }
\end{array}\right. \tag{1}\\
& p_{i}=m \dot{x}_{i}=m \frac{d x_{i}}{d t}=-m \frac{d x^{i}}{d t}=-m \dot{x}^{i}\left\{\begin{array}{c}
\text { covariant form is negative of physical 3-momentum } \\
\text { (is not what we measure for 3-momentum) }
\end{array}\right.
\end{align*}
$$

Then consider our free total Lagrangian L (no potential energy)

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{x}^{i}\right)^{2}, \tag{2}
\end{equation*}
$$

and its conjugate momentum (as usually defined in tensor analysis so the subscript i before the first equal sign is equivalent to a superscript i in the denominator after the equal sign),

$$
\begin{equation*}
p_{i}=\frac{\partial L}{\partial \dot{x}^{i}}=m \dot{x}^{i} \quad\{\text { conjugate momentum via tensor analysis . } \tag{3}
\end{equation*}
$$

Note that the p_{i} in (3) differs from that in the second row of (1)! In reality, the value of the conjugate momentum equals our physical 3-momentum (top row of (1).

So what we show in the LHS of (B2-2.1) in Box 2-2 is the conjugate momentum p_{i}, but its actual value $m \dot{x}^{i}$ is what we use the symbol p^{i} for in the rest of the book, i.e., the real physical 3-momentum (not its negative).

So to stay consistent with the symbolism of the rest of the book (and in the literature) we really should have written (B-2-2.1) as

$$
\begin{equation*}
p_{i}=-\frac{\partial L}{\partial \dot{x}^{i}} \xrightarrow[\text { divide by particle volume }]{\text { for small particle in medium, }} \quad \beta_{i}=-\frac{\partial \mathcal{L}}{\partial \dot{x}^{i}} \tag{4}
\end{equation*}
$$

$\int(\mathrm{B} 2-2.1)$ re-written in terms of $\left\{\begin{array}{l}\text { symbols used elsewhere in book, } \\ \text { opposite sign of tensor analysis }\end{array}\right.$
(This would have been inconsistent with the usual tensor analysis notation.)
Similar logic holds for the conjugate momentum π_{r} found from the Lagrangian density \mathcal{L} in (B2-2.2). That is, its appropriate value corresponding to the symbolism of (4) has the opposite sign of what Box 2-2 shows, i.e.,

$$
\pi_{r}=-\frac{\partial \mathcal{L}}{\partial \dot{\phi}^{r}} \quad\left\{\begin{array}{l}
(\mathrm{B} 2-2.2) \text { re-written, } \tag{5}\\
\text { opposite sign of tensor analysis }
\end{array} .\right.
$$

If we use the symbolism of (4) and (5), which parallels the rest of the book and other literature in QFT, then in (B2-2.3), reproduced below, the minus signs drop out and we get the same result.

$$
\frac{\mathcal{p}_{i}}{\pi_{r}}=\frac{\partial \mathcal{L} / \partial \dot{x}^{i}}{\partial \mathcal{L} / \partial \dot{\phi}^{r}}=\frac{\partial \dot{\phi}^{r}}{\partial \dot{x}^{i}}=\frac{\partial \phi^{r} / \partial t}{\partial x^{i} / \partial t}=\frac{\partial \phi^{r}}{\partial x^{i}} \quad \rightarrow \mathcal{p}_{i}=\pi_{r} \frac{\partial \phi^{r}}{\partial x^{i}} \rightarrow \boldsymbol{\beta}^{i}=-\pi_{r} \frac{\partial \phi^{r}}{\partial x^{i}} \quad\left\{\begin{array}{l}
(\mathrm{B} 2-2.3), \tag{6}\\
\text { same result }
\end{array}\right.
$$

Perhaps now you can see why I fudged a bit in the book Box 2-2, and why I didn't want to get into this explanation there, at that time. It would have confused newcomers far more than enlightened them.

