Page 16 - Derivation going from (2-18) to (2-25) by Luc Longtin

We start from the totally general 2 X 2 complex matrix in the form of (2-18), to which we impose the conditions (2-19) for a special unitary group. With a view of writing the matrix in a form that will reduce to the identity matrix in the limit where the independent parameters vanish, we write:

$$
M=\left[\begin{array}{cc}
1+\delta_{1} & \delta_{3} \\
\delta_{4} & 1+\delta_{2}
\end{array}\right] \quad \ldots \text { with conditions } M^{\dagger} M=I \text { and Det } M=1
$$

In this form, at this point, the $\delta_{i}{ }^{\prime}$'s $i=1,2,3,4$, are arbitrary complex parameters.
From the special condition, Det $M=1$, we must have: $\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)-\delta_{3} \delta_{4}=1$
From the unitary condition, $M^{\dagger} M=I$, we must thus have:

$$
M^{\dagger} M=\left[\begin{array}{cc}
1+\delta_{1}^{*} & \delta_{4}^{*} \\
\delta_{3}^{*} & 1+\delta_{2}^{*}
\end{array}\right]\left[\begin{array}{cc}
1+\delta_{1} & \delta_{3} \\
\delta_{4} & 1+\delta_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Component

Expression

Component Expression

$1-1 \quad\left(1+\delta_{1}^{*}\right)\left(1+\delta_{1}\right)+\delta_{4}^{*} \delta_{4}=1 \quad 1-2 \quad\left(1+\delta_{1}^{*}\right) \delta_{3}+\delta_{4}^{*}\left(1+\delta_{2}\right)=0$
$2-1 \quad\left(1+\delta_{1}\right) \delta_{3}^{*}+\delta_{4}\left(1+\delta_{2}^{*}\right)=0$
$2-2 \quad\left(1+\delta_{2}^{*}\right)\left(1+\delta_{2}\right)+\delta_{3}^{*} \delta_{3}=1$
Multiplying the 1-1 component with $\delta_{3}: \quad\left(1+\delta_{1}\right)\left(1+\delta_{1}^{*}\right) \delta_{3}+\delta_{3} \delta_{4} \delta_{4}^{*}=\delta_{3}$
Using the 1-2 component, we can write: $\quad-\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \delta_{4}^{*}+\delta_{3} \delta_{4} \delta_{4}^{*}=\delta_{3}$
Using the special condition relation, $\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)=1+\delta_{3} \delta_{4}$, we have:

$$
-\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \delta_{4}^{*}+\delta_{3} \delta_{4} \delta_{4}^{*}=-\left(1+\delta_{3} \delta_{4}\right) \delta_{4}^{*}+\delta_{3} \delta_{4} \delta_{4}^{*}=-\delta_{4}^{*}=\delta_{3}
$$

So: $-\delta_{4}^{*}=\delta_{3} \quad$ or $\quad \delta_{4}=-\delta_{3}^{*}$
Substituting into the 1-2 component relation, we get: $\left(1+\delta_{1}^{*}\right) \delta_{3}-\left(1+\delta_{2}\right) \delta_{3}=0$
So: $\delta_{1}^{*}=\delta_{2} \quad$ or $\quad \delta_{1}=\delta_{2}^{*}$
From the special condition: $\quad\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)-\delta_{3} \delta_{4}=\left(1+\delta_{1}\right)\left(1+\delta_{1}^{*}\right)+\delta_{3} \delta_{3}^{*}=1$
Or: $\quad \delta_{1}+\delta_{1}^{*}+\delta_{1} \delta_{1}^{*}+\delta_{3} \delta_{3}^{*}=0$
Therefore: $\quad M=\left[\begin{array}{cc}1+\delta_{1} & \delta_{3} \\ \delta_{4} & 1+\delta_{2}\end{array}\right]=\left[\begin{array}{cc}1+\delta_{1} & \delta_{3} \\ -\delta_{3}^{*} & 1+\delta_{1}^{*}\end{array}\right]$
NOTE: This matrix has four (real) parameters; namely the real and imaginary parts of δ_{1} and δ_{3}. However, there is the special condition that imposes Det $M=1$, so that there are, in fact, three independent (real) parameters. Expressing δ_{1} and δ_{3} in terms of real variables, we can write:

$$
\delta_{3}=\alpha_{2}+i \alpha_{1} \quad \text { so } \quad \delta_{3}^{*}=\alpha_{2}-i \alpha_{1}
$$

In Student Friendly Quantum Field Theory, The Standard Model, 2021 by Robert D. Klauber

$$
\delta_{1}=\alpha_{0}+i \alpha_{3} \quad \text { so } \quad \delta_{1}^{*}=\alpha_{0}-i \alpha_{3}
$$

NOTE: In the above relations, all of the α parameters are real.
So: $M=\left[\begin{array}{cc}1+\alpha_{0}+i \alpha_{3} & \alpha_{2}+i \alpha_{1} \\ -\alpha_{2}+i \alpha_{1} & 1+\alpha_{0}-i \alpha_{3}\end{array}\right] \quad$ with \quad Det $M=1$
There remains to express the special condition in terms of the α_{i} 's.
Thus: $\delta_{1}+\delta_{1}^{*}+\delta_{1} \delta_{1}^{*}+\delta_{3} \delta_{3}^{*}=0 \quad$...becomes...

$$
\begin{array}{ll}
\alpha_{0}+i \alpha_{3}+\alpha_{0}-i \alpha_{3}+\left(\alpha_{0}+i \alpha_{3}\right)\left(\alpha_{0}-i \alpha_{3}\right)+\left(\alpha_{2}+i \alpha_{1}\right)\left(\alpha_{2}-i \alpha_{1}\right)=0 \\
2 \alpha_{0}+\alpha_{0}^{2}+\alpha_{3}^{2}+\alpha_{2}^{2}+\alpha_{1}^{2}=0 & \text { or }
\end{array} \alpha_{0}^{2}+2 \alpha_{0}+\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}=0 . ~ l
$$

So: $\quad \alpha_{0}=-1 \pm \sqrt{1-\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)} \quad$ or $\quad \alpha_{0}=\sqrt{1-\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)}-1$
We choose the (${ }^{+}$) sign solution, since we want α_{0} to also vanish in the limit where the three independent α_{i} 's vanish. We also note that since all the α 's are real, the sum inside the square root cannot exceed unity; that is: $\quad \alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2} \leq 1$

NOTE: Of course, as planned from the beginning, in the limit where all the parameters tend to zero, the matrix M approaches the identity matrix, as desired.

Finally, we can also write in a form that will be useful later on, by factoring out a factor of i.
So: $\quad M=I+i\left[\begin{array}{cc}-i \alpha_{0}+\alpha_{3} & \alpha_{1}-i \alpha_{2} \\ \alpha_{1}+i \alpha_{2} & -i \alpha_{0}-\alpha_{3}\end{array}\right] \quad \ldots$ where $\alpha_{0}=\sqrt{1-\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)}-1$

